Suppose that we want to estimate the consumption function

$$c_i^* = \beta_1 + \beta_2 y_i^*$$

where c_i^* and y_i^* are true but unobservable consumption and income, respectively. The observable values c_i and y_i are subject to errors of measurement and are related to the true values as follows:

$$c_i = c_i^* + v_i$$
 $y_i = y_i^* + u_i$

where v_i and u_i are each independent and identically distributed random variables with $N(0, \sigma_v^2)$ and $N(0, \sigma_u^2)$ distributions, respectively. Data on c_i , y_i , and two potential instrumental variables, i_i (investment) and g_i (government expenditure), appear in Table 14.3. ("DATA" ON WERSITE") (a) Find least squares estimates of β_1 and β_2 . (OLS)

(b) Find instrumental variables estimates for β_1 and β_2 by using the following instruments:

(i)
$$i_1$$
 (ii) g_1 (iii) $x_1 = i_1 + g_1$ (iv) i_1 and g_1

Comment on the alternative estimates and their standard errors.

(c) A number of variations of Hausman's specification test for testing for contemporaneous correlation between y_i and the composite error $v_i - \beta_2 u_i$ are possible. These variations depend on (i) the instrumental variable (IV) estimator that is used, and (ii) whether the error variance $var(v_i - \beta_2 u_i) = \sigma^2$ is estimated from least squares procedures or instrumental variables procedures. Using estimates for β_2 , carry out Hausman's test for the following cases. Comment on the outcome.

Case	IV Estimator	Choice of $\hat{\sigma}^2$	
1	Uses i,	IV	
2	Uses g_i	IV	
3	Uses x_t	Least squares	
4	Uses x_i	IV .	
5	Uses i_i and g_i	IV	

	• •			
Observation	i	g	с	у
1	1.5	0.5	15.30	17.30
2	1.4	0.6	19.91	21.91
3	1.5	0.7	20.94	22.96
4	1.4	0.8	19.66	21.86
5	1.5	0.9	21.32	23.72
6	1.4	1.0	18.33	20.73
7	1.6	1,0	19.59	22.19
8	1.5	1.1	21.30	23.90
9	1.6	1.2	20.93	23.73
10	1.6	1.2	21.64	24.44
11	1.7	1.3	21.90	24.90
12	1.6	1.4	20.50	23.50
13	. 1.8	1.4	22.83	26.05
14	1.7	1.5	23.49	26.69
15	1.9	1.5	24.20	27.60
16	1.8	1.6	23.05	26.45
17	2.0	1.6	24.01	27.61
18	1.9	1.7	25.83	29.43
19	2.0	1.8	25.15	28.95
20	2.0	1.8	25,06	28.86

Table 14.3 Hypothetical Data for i, g, c, and y