Suppose that we want to estimate the consumption function

$$
c_{t}^{*}=\beta_{1}+\beta_{2} y_{i}^{*}
$$

where c_{t}^{*} and y_{*}^{*} are true but unobservable consumption and income, respectively. The observable values c_{t} and y_{t} are subject to errors of measurement and are related to the true values as follows:

$$
c_{t}=c_{t}^{*}+v_{t} \quad y_{t}=y_{t}^{*}+u_{t}
$$

where v_{t} and u_{t} are each independent and identically distributed random variables with $N\left(0, \sigma_{v}^{2}\right)$ and $N\left(0, \sigma_{w}^{2}\right)$ distributions, respectively. Data on c_{q}, y_{t}, and two potential instrumental variables, i_{t} (investment) and g_{f} (government expenditure), appear in Table 14.3. (KDATA'H ON WERSITE')
(a) Find least squares estimates of β_{1} and β_{2}. (OLS)
(b) Find instrumental variables estimates for β_{1} and β_{2} by using the following instruments:
(i) i_{t}
(ii) g ,
(iii) $x_{i}=i_{i}+g_{1}$
(iv) i_{t} and g_{t}

Comment on the alternative estimates and their standard errors.
(c) A number of variations of Hausman's specification test for testing for contemporaneous correlation between y_{t} and the composite error $v_{t}-\beta_{2} u_{t}$ are possible. These variations depend on (i) the instrumental variable (IV) estimator that is used, and (ii) whether the error variance $\operatorname{var}\left(v_{t}-\beta_{2} u_{t}\right)=$ σ^{2} is estimated from least squares procedures or instrumental variables procedures. Using estimates for β_{2}, carry out Hausman's test for the following cases. Comment on the outcome.

Case	IV Estimator	Choice of $\hat{\sigma}^{\mathbf{2}}$
1	Uses i_{t}	IV
2	Uses g_{t}	IV
3	Uses x_{t}	Least squares
4	Uses x_{i}	IV
5	Uses i_{t} and g_{t}	IV

Table 14.3 Hypothetical Data for i, g, c, and y

Observation	i	g	c	y
1	1.5	0.5	15.30	17.30
2	1.4	0.6	19.91	21.91
3	1.5	0.7	20.94	22.96
4	1.4	0.8	19.66	21.86
5	1.5	0.9	21.32	23.72
6	1.4	1.0	18.33	20.73
7	1.6	1.0	19.59	22.19
8	1.5	1.1	21.30	23.90
9	1.6	1.2	20.93	23.73
10	1.6	1.2	21.64	24.44
11	1.7	1.3	21.90	24.90
12	1.6	1.4	20.50	23.50
13	1.8	1.4	22.83	26.05
14	1.7	1.5	23.49	26.69
15	1.9	1.5	24.20	27.60
16	1.8	1.6	23.05	26.45
17	2.0	1.6	24.01	27.61
18	1.9	1.7	25.83	29.43
19	2.0	1.8	25.15	28.95
20	2.0	1.8	25.06	28.86

