ANSWER 3 OF THE FOLLOWING 4 QUESTIONS

QUESTION 1

Consider the seemingly unrelated regression (SUR) model:

$$\left[\begin{array}{c}y_1\\y_2\end{array}\right] = \left[\begin{array}{cc}X_1 & 0\\0 & X_2\end{array}\right] \left[\begin{array}{c}\beta_1\\\beta_2\end{array}\right] + \left[\begin{array}{c}e_1\\e_2\end{array}\right]$$

where $e = \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \sim N(0, W)$, and $W = \begin{bmatrix} \sigma_1^2 I_T & \sigma_{12} I_T \\ \sigma_{12} I_T & \sigma_2^2 I_T \end{bmatrix}$. The $T \times K$ matrix X_1 and $T \times K$ matrix X_2 contain regressors fixed in repeated samples.

- (a) Show that when $\sigma_{12} = 0$, the variance of the GLS estimator of the entire model is equal to the variances of OLS estimators obtained separately from each equation of the system.
- (b) How would you test the null hypothesis $H_0: \sigma_1^2 \neq \sigma_2^2$?
- (c) Suppose that the null hypothesis that the coefficients on variables in equation 1 are equal to the coefficients on the equivalent variables in equation 2 has not been rejected by the test.

Given that outcome, a "pooled regression" OLS estimator of the common coefficient vector β is proposed as an alternative to the GLS estimator in a). It is obtained by regressing

$$Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
 on $X^* = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$

Compare the properties of this OLS estimator and the FGLS estimator of the model: 1) are they unbiased/consistent and 2) what can be said about the variances of those estimators.

QUESTION 2

An econometrician needs to estimate a linear model with the dependent variable y_t and explanatory variable z_t^* :

$$y_t = \beta_1 + \beta_2 z_t^*$$

which is referred to as Model (1). The random variable z_t^* is not directly observed. The data available for this variable contain a measurement error:

$$z_t = z_t^* + u_t$$

where the measurement error u_t has mean zero and variance σ_u^2 , and is serially uncorrelated and independent of z_t^* and y_t .

- a) Specify Model 1 in terms of the observable variables and define the error term e_t . You have obtained Model 2.

 all questions below concern Model 2
- b) Write the fomulas of the OLS estimator b_2 and its variance.
- c) Is the OLS estimator b_2 a consistent estimator of β_2 ? Show and explain what affects the consistency of that estimator.
- d) The econometrician wants to use variable x_t as an instrument for z_t and to proceed in two steps: First regress z_t on x_t , and next use the fitted value \hat{z}_t in the regression of y_t on \hat{z}_t . If the correlation between x_t and z_t is close to 0, what implication(s) would that have on the IV estimator $\hat{\beta}_2^{IV}$?

QUESTION 3

Consider the simultaneous equation model:

$$y_{1t} = \beta_{11}x_{1t} + \gamma_{12}y_{2t} + e_{1t} \tag{1}$$

$$y_{2t} = \beta_{21}x_{1t} + \gamma_{21}y_{1t} + \beta_{22}x_{2t} + \beta_{23}x_{3t} + e_{2t}$$
 (2)

where errors e_{1t} and e_{2t} have variances σ_1^2 and σ_2^2 , respectively, and are uncorrelated.

- (a) Show that coefficient γ_{12} cannot be consistently estimated by the OLS from equation (1).
- (b) Use the identification conditions to determine which equation is estimable
- (c) Write the reduced form (without deriving it -use the symbols π_{ij} for the coefficients of the reduced form) and describe the 2SLS estimation.
- (d) Suppose that variables x_2 and x_3 are very highly correlated. How is that problem called in econometrics and how would it affect the identification and the 2SLS estimation-discuss.

QUESTION 4

Consider the following regression model with a single random regressor:

$$y_t = \beta_1 + \beta_2 x_t + e_t, \ t = 1, ..., T$$
(3)

where the errors e_t are iid, with mean zero, and variance σ^2 . The regressor x_t may be correlated with the error term e_t .

Denote by X the $T \times 2$ matrix that contains a vector of ones and the vector x_t .

- 1) If $plim_{\overline{T}}^{\frac{1}{2}}X'e = 0$, explain why the econometrician should use the OLS estimator b_{OLS} rather than the IV estimator $\hat{\beta}_{IV}$.
- 2) Suppose, that an econometrician decides to test the null hypothesis H_0 : $plim_T^1 X'e = 0$, using the Hausman test based on the difference of estimators, denoted by $d = \hat{\beta}_{IV} b_{OLS}$. Under H_0 , $plim\ d = 0$, whereas under the alternative $plim\ d \neq 0$. The test statistic is

$$m = d'\{\widehat{Var}(d)\}^{-1}d.$$

Show that $Var(d) = Var(\beta_{IV}) - Var(b_{OLS})$, using the following result by Hausman: "under the null hypothesis, the covariance between an efficient

estimator b_E of a parameter vector β , and its difference $b_E - b_I$ from an inefficient estimator b_I of the same parameter vector is zero".

3) Generalize your result in to the estimated variances, and show that

$$m = \frac{1}{\hat{\sigma}^2} d' [(\hat{X}'\hat{X})^{-1} - (X'X)^{-1}]^{-1} d$$

4). Under H_0 we are using two different, but consistent estimators of σ^2 . Why should we use the same error variance estimator, such as $\hat{\sigma}_{OLS}^2$ in the estimated variances of estimators.