Chapter 1 3

VEC and VAR Models:

An Introduction to
Macroeconometrics

Learning Objectives

Based on the material in this chapter, you should be able to do the following:

Explain why economic variables are dynamically interdependent.

Explain how to estimate the VEC and VAR models for the bivariate case.

Explain how to generate impulse response functions and variance decompositions

for the simple case when the variables are not contemporaneously interdependent

L
2. Explain the VEC model.
3. Explain the importance of error correction.
4. Explain the VAR model.
5. Explain the relationship between a VEC model and a VAR model.
6.
1.
and when the shocks are not correlated.
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In Chapter 12, we studied the time-series properties of data and cointegrating relationships
between pairs of nonstationary series. In those examples, we assumed that one of the
variables was the dependent variable (let us call it y,) and the other was the independent
variable (say x,), and we treated the relationship between y, and x; like a regression model.
However, a priori, unless we have good reasons not to, we could just as easily have assumed
that y, is the independent variable and x, is the dependent variable. Put simply, we are
working with two variables {y;, x, } and the two possible regression models relating them are

9 =Bo+Bux +el, e ~N(0c2) (13.1a)
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% = Ban +Pay + &, & ~N{0,0%) (13.1b)

In this bivariate (two series) system there can be only one unique retationship between x, and
yr, and so it must be the case that B; = 1/B1) and Bag = —Bio/B1:- A bit of terminology:
for (13.12) we say that we have normalized on y (meaning the coefficient in front of y is set
to 1) whereas for (13.1b) we say that we have normalized on x (meaning the coefficient in
front of x is set to 1).

Is it better to write the relationship as (13.1a) or (13.1b), or is it better to recognize that, in
many relationships, variables like y and x are simultaneously determined? The aim of this
chapter is to explore the causal relationship between pairs of time-series variables. In doing
so, we shall be extending our study of time-series data to take account of their dynamic
properties and interactions. In particular, we will discuss the vector error correction
(VEC) and vector autoregressive (VAR) models. We will learn how to estimate a VEC
model when there is cointegration between I(1) variables, and how to estimate a VAR model
when there is no cointegration.

Some important terminology emerges here. Univariate analysis examines a single data
series. Bivariate analysis examines a pair of series, The term vector indicates that we are
considering a number of series, two, three, or more. The term *“vector™ is a generalization of

the following: the univariate and bivariate cases.

:pendent.
13.1 VEC and VAR Models
Let us begin with two time-series variables y, and x, and generalize the discussion about
dynamic relationships in Chapter 9 to yield a system of equations:

AR model.

¥e = Bro + Bruye1 + Braxe1 + v/
x = Pao + Bay—1 + Baax—1 +f

he bivariate case. (13.2)

variance decompositions

raneously interdependent L. . . . . . . .
The equations in (13.2) describe a system in which each variable is a function of its own lag,

and the lag of the other variable in the system. In this case, the system contains two variables
yand x. In the first equation y, is a function of its own lag y,.; and the lag of the other variable
inthe system x,_;. In the second equation x, is a function of its own lag x,; and the lag of the
other variable in the system y, ;. Together the equations constitute a system known as a
vector antoregression (VAR). In this example, since the maximum lag is of order 1, we have
a VAR(1).
- I y and x are stationary 1(0) variables, the above system can be estimated using least
squares applied to each equation. If, however, y and x are nonstationary I{1) and not
cointegrated, then, as discussed in Chapter 12, we work with the first differences. In this
case, the VAR model is
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) (13.1a)

Ay, = BAy,_y + Bradx_y + v

(13.3)
Ax, = By Ay 1 + Brdx,y + v

All variables are now I(0), and the system can again be estimated by least squares, To recap: the

" VAR model is a general framework to describe the dynamic interrelationship between stationary

variables. Thus, if ¥ and x are stationary I(0) variables, the system in equation (13.2) is used.

On the other hand, if y and x are I(1) variables but they are not cointegrated, we examine the

interrelation between them using a VAR framework in first differences (13.3).
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Ify and x are I(1) and cointegrated, then we need to modify the system of equations to allow
for the cointegrating relationship between the I(1) variables. We do this for tworeasons. First, ag
economists, we like to retain and use valuable information about the cointegrating telationship
and second, as cconometricians, we like to ensure that we use the best technique that takes into
account the properties of the time-series data. Recall the chapter on simulfaneous equations-—
the cointegrating equation is one way of introducing simultaneous interactions without requiring
the data to be stationary. Introducing the cointegrating refationship leads to a model known as the
VEC model. We tarn now to this model.

Consider two nonstationary variables y, and x, that are integrated of order 1, y, ~1(1) and
x; ~1(1) and which we have shown to be cointegrated, so that

ve = Po+Brx + e (13.4)

Note that we could have chosen to normalize on x, Whether we normalize on y or x is often
determined from economic theory; the critical point is that there can be at most one
fundamental relationship between the two variables.

The VEC model is a special form of the VAR for I(1) variables that are cointegrated. The
VEC model is ‘

Ay, = ago + an(y—1 — Bo — Brxe-1) + v

] (13.5a)
Ax, = aigg + a1 {(yi—1 — Bo — Brxr—1) +vi

which we can expand as

yr = augp -+ (o + Dy — arsPo — eniBrr—t +37 (13.5b)
X = Qap + oYy — 021Bo — (o1 Br — Dxmy + 97 .

Comparing (13.5b) with (13.2) shows the VEC as a VAR where the I(1) variable y, is related
to other lagged variables (y,_1 and x,_;) and where the I(1) variable x; is also related to the
other lagged variables (y,..; and x,..;). Note, however, that the two equations contain the
comron cointegrating relationship.

The coefficients oy, otz are known as error correction coefﬁczents so named because
they show how much Ay, and Ax, respond to the cointegrating error y,—; — o — P1xi—1 =
;1. The idea that the error leads to a correction comes about because of the conditions put
on oy, oy toensure stability, namely (—1 < oy < 0) and (0 < ayy < 1). To appreciate this
idea, consider a positive error e, >0 that occurred because y,—; > (Bo + Bix—1). A
negative error correction coefficient in the first equation («y;) ensures that Ay falls, while
the positive error correction coefficient in the second equation (o)) ensures that Ax rises,
thereby correcting the error. Having the error correction coefficients less than 1 in absolute
value ensures that the system is not explosive,

The error correction model has become an extremely popular model because its interpret-
ation is intuitively appealing. Think about two nonstationary variables, say consamption (jet us
call it y,) and income (let us call it x,), that we expect to be related (cointegrated). Now think
about a change in your income Ax;, say a pay raise! Consummption will most likely increase, but it
may take you a while to change your consumption pattern in response to a change in your pay.
The VEC model allows us to examine how much consumption will change in response to a
change in the explanatory variable (the cointegration part, y, = Bo + B1x, + e,), as well as the
speed of the change (the ervor correction part, Ay, = ag -+ oui (e, 1) + v{ where g, is the
cointegrating extor).
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stem of equations to aligy,

There is one final point to discuss—the role of the intercept terms. Thus far, we have
iis for two reasomns. First, 5

introduced an intercept term in the cointegrating equation (Bg) as well as in the VEC (g

cohltegrating relationship and az0). However, doing so can create a problem. To see why, we collect all the intercept
st technique that takes ing terms and rewrite (13.5b) as

stmultaneous equationg—_

sractions without requirin Yo = (o — et13Po) + (etry + Dyemt — oy Brtiot + v

s to a model known as th (13.5¢)

x = (ez0 — a1 Bo) + aziye—1 — (a1 — Dy +9F
:d of order 1; ¥, ~I(1) an ‘ i . . i )
; If we estimate each equation by least squares, we obtain estimates of composite terms
(o — a1 Bo) and (g — w21 Bo), and we are not able to disentangle the separate effects of
Bo, 10, and cpe. In the next section, we discuss a simple two-step least squares procedure
that gets around this problem. However, the lesson here is to check whether and where an
intercept term is needed.

13
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ere can be at most ony
that are cointegrated. The 13.2 Estimating a Vector Error Correction Model

There are many econometric methods to estimate the error correction model. The most
* straightforward is to use a two-step least squares procedure. First, use least squares to
estimate the cointegrating relationship y, = Bo + Bi1xs +e; and generate the lagged
~residuals &_y =y, — by — brx,—;.

Second, use least squares to estimate the equations:

(13.50)

Ay, =g + e érg + v (13.6a)
Axp = agp o1 &1 + ] (13.6b)

(13.55)
1+ ;

Note that all the variables in equation (13.6) (Ay, Ax and &) are stationary {recall that for y
: and x to be cointegrated, the residuals & must be stationary). Hence, the standard regression
 analysis studied in earlier chapters may be used to test the significance of the parameters.
- The usual residual diagnostic tests may be applied.

We need to be careful here about how we combine stationary and nonstationary variables in a
. regression model. Cointegration is about the relationship between I(1) variables. The coin-
- tegrating equation does not contain I{0) variables. The corresponding VEC model, however,
relates the change in an I(1) variable (the I(0} variables Ay and Ax) to other I(0} variables,
* namely the cointegration residuals &, 1 and, if required, other stationary variables may be added.
- In other words, we should not mix stationary and nonstationary variables: an I(0) dependent
variable on the left-hand side of a repression equation should be “explained” by other I{()
- variables on the right-hand side and an I(1) dependent variable on the left-hand side of a
regression equation should be “explained” by other I(1) variables on the right-hand side.
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13.2.1 ExXAMPIE

In Figure 13.1 the quarterly real GDP of a small economy (Australia) and a large economy
(United States) for the sample period 1970.1 to 2000.4 aze displayed. Note that the series
- have been scaled so that both economies show a real GDP value of 100 in 2000. They appear
_in the file gdp.dat. It appears from the figure that both series are nonstationary and possibly
cointegrated.

Formal unit root tests of the series confirm that they are indeed nonstationary. To check
for cointegration we obtain the fitted equation in (13.7) (the intercept term is omitted
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because it has no economic meaning):
A, =0.9850, R*=0.995 (13.7)

where A denotes real GDP for Australia and I/ denotes real GDP for the United States. Note
that we have normalized on A because it makes more sense to think of a small economy
responding to a large economy. We then performed a test for stationarity of the residuals
& = A, — 0.9850,. The estimated unit root test equation for the residuals is

Ao, = —0.1286,_,

(13.8)
(rau) (—2.889)

Since the cointegrating relationship does not contain an intercept term [see Chapter 12,
equation (12.8a)], the 5% critical value is —2.76. The unit root t-value of —2.889 isless than
—2.16. We reject the null of no cointegration and we conclude that the two real GDP series
are cointegrated. This result implies that economic activity in the smalt economy (Australia,
A,) is linked to economic activity in the large economy (United States, Up). If U, were to
increase by one unit, A, would increase by 0.985. But the Australian economy may not
respond fully by this amount within the guarter. To ascertain how much it will respond
within a quarter, we estimate the error correction model by least squares. The estimated
VEC model for {4;, U,} is

AA, = 0.492 — 0.0998,_

2.077 '
fl 2.077) (13.9)
AU, = 0.510 4 0.030&,_,
0) (0.789)

The results show that both error comrection coefficients are of the appropriate sign. The
negative error correction coefficient in the first equation (—0.099) indicates that AA falls,
while the positive error correction coefficient in the second equation (0.030) indicates
that AU rises, when ther'e is a positive cointegrating error: (&_; >0 or 4, 1 > 0.985U,1).
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This behavior (negative change in A and positive change in /) “‘cormrects” the cointegrating
error. The error correction coefficient (—0.099) is significant at the 5% level; it indicates
that the quarterly adjustment of A; will be about 10% of the deviation of A, ; from its
cointegrating value 0.985U,_). This is a slow rate of adjustment. However, the error
correction coefficient in the second equation (0.030) is insignificant; it suggests that AU
does not react to the cointegrating error. This outcome is consistent with the view that the
small economy is likely to react to economic conditions in the large economy, but not vice
versa.

13.3 Estimating a VAR Model

The VEC is a multivariate dynamic model that incorporates a cointegrating equation. It is
relevant when, for the two variable case, we have two variables, say y and x, that are both
(1), but are cointegrated. Now we ask: what should we do if we are interested in the
interdependencies between y and x, but they are not cointegrated? In this case, we estimate a
vector autoregressive (VAR) model as shown in (13.3).

As an example, consider Figure 13.2 that shows the log of GDP (denoted as &) and log of
the CPI (denoted as P) for the US economy over the period 1960:1 to0 2004:4. The data are in
the file growth.dat.

The fitted least squares regression of G, on P is

G, = 1.632 + 0.624P,
(1) (41.49) (61.482)

For this fitted model R? = 0.955 and the t-statistics are very large, a seemingly strong result.
Based on the plots the series appear to be nonstationary. To test for cointegration, compute
the least squares residual &, = G, — 1.632 — 0.624P;. The Dickey-Fuller regression is

Ae, = —0.0092,_;

(13.10)
(taw) {—0.977)

The potential cointegrating relationship contains an intercept term to capture the component
of GDP that is independent of the CP1. Thus, the 5% critical value of the test for stationarity

48
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Frcurg 13,2 Real GDP and the consumer price index (CPI) in logarithms.




352 VEC AND VAR MODELS

in the cointegrating residuals is —3.37 [see Chapter 12, equation (12.8b)]. Since the fau (unit
root t-value) of —0.977 is greater than —3.37, it indicates that the errors are nonstationary
and hence that the relationship between G (i.e., In(GDP)) and P (i.e., In{CFI)} is spurious.
That is, we have no cointegration. Thus we would not apply a VEC model to examine the
dynamic relationship between aggregate price P and output G. Instead we estimate a VAR
model for the set of I{0) variables {AP,, AG,}.

For illustrative purposes, the order of lag in this example has been restricted to 1. In
general, one should test for the significance of lag terms greater than 1. The results are

AP, = 0.001 + 0.827AP,_ + 0.046AG,_, (13.113)
(1) (2.017)(18.494) (1.165) '
AG, = 0.010 — 0.327AP,_; + 0.228AG,_, (13.118)

(1) (7.845)(=4.153}  (3.256)

The first equation (13.11a) shows that the quarterly growth in price (AP,) is significantly
related to its own past value {AP,_.; ) butinsignificantly related to the quarterly growth in fast
period’s GDP (AG,..;). The second equation (13.11b) shows that AG, is significantly
positively related to its own past value and significantly negatively related to last period’s
change in price (i.e., inflation). The constant terms capture the fixed component in the
change in log price (which is a measure of inflation) and the change in In(GDF) (which is a
measure of the change in economic activity, or growth in the economy).

Having estimated these models can we infer anything else? If the system is subjected toa
price (demand) shock, what is the effect of the shock on the dynamic path of inflation and
growth? Will inflation rise and by how much? If the system is also subjected to a quantity
(supply) shock, what is the contribution of a price versus a quantity shock on the variation of
output? We turn now to some analysis suited to addressing these questions.

13.4 Impulse Responses and Variance Decompositions

Impulse response functions and variance decompositions are techniques that are used by
macroeconometricians to analyze problems such as the effect of an oil price shock on
inflation and GDP growth, and the effect of a change in monetary policy on the economy.

13.4.1 Impurse REsponNsE FUNCTIONS

Impulse response functions show the effects of shocks on the adjustment path of the
variables. To help us understand this we shall first consider a univariate series.

13.4.1a The Univariate Case

Consider a univariate series y; = py; 1 + v, and subject it to a shock of size v in period 1.
Assume an arbitrary starting value of y at time zero: yp = 0. Since we are interested in the
dynamic path, the starting point is irrelevant. Attime t = 1, following the shock, the value of
y will be: y; = pyg + v1 = v. Assume that there are no subsequent shocks in later time
periods fm=v;=---=0], at time =2, yy=py=pv. At time =3,
v3 = pyz = p{py() = p?v, and so on. Thus the time-path of y following the shock is
{v,pv,p*v,...}. The values of the coefficients {1,p,p?,...} are known as multipliers,
and the time-path of y following the shock is known as the impulse response function.
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. rrcure 13. 3 Tmpulse responses for an AR(1) model y; = 0.9y, -+ e, following a unit shock.

To illustrate, assume that p = 0.9 and let the shock be unity: v = 1. According to the

. analysis, y will be {1,0.9,0.81,...}, approaching zero over time. This impulse response
- function is plotted in Figure 13.3. It shows us what happens to y after a shock. In this case, y

initially rises by the full amount of the shock and then it gradually returns to the value before

- the shock.

13.4.1b The Bivariate Case

. Now, let us consider an impulse response function analysis with two time series based on a

bivariate VAR system of stationary variables:

Ye =010+ S1uyee1 + 812w +97

(13.12)
x = Bag + Byor + Sogxey H0F

 In this case, there are two possible shocks to the system—one to y and the other to x. Thus we

are interested in four impulse response functions—the effect of a shock to y on the time-

_ paths of y and x and the effect of a shock to x on the time-paths of v and x.

The acteal mechanics of generating impulse responses in a system is complicated by (i)
the fact that one has to allow for interdependent dynamics (the multivariate analog of
generating the multipliers) and (if) one has to identify the correct shock from uncbservable

: data. Taken together, these two complications lead to what is known as the identification

problem. In this chapter, we consider a special case where there is no identification
problem.' This special case occurs when the system described in (13.12) is a true -

- representation of the dynamic system—namely, y is related only to lags of y and x, and

xisrelated only tolags of y and x. In other words, y and x are related in a dynarnic fashion, but
not contemporaneously. The current value x, does not appear in the equation for y, and the
current value y; does not appear in the equation for x,. Also, we need to assume the errors v
and v/ are independent of each other (contemporaneously uncorrelated). In addition, we
assurme v ~ N{0, o2} and v* ~ N(0, 02).

! Appendix 134 introduees the general problem.
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Consider the case when there is a one standard deviation shock (alternatively called
an innovation) to y so that at time ¢ = 1, v} = oy, and v} is zero thereafter. Assume
v¥ = 0 for all . It is traditional to consider a standard deviation shock (innovation)
rather than a unit shock to overcome measurement issues. Assume yo = xp = 0. Also,
since we are focusing on how a shock changes the paths of y and x, we can ignore the
intercepts. Then

l. Whent == I, the effect of a shock of size oy ony is y; == v{ = 0y, and the effect on x
isx = =0
2. When ¢ = 2, the effect of the shock on y is
ya = 8yy1 + 8j2x; = 80y + 80 = dusoy

and the effect on x is

X3 = Byyyy + Bpxy = Soyoy, + 8220 = 8y,

3. When ¢ = 3, the effect of the shock on y is
y3 = B11y2 + Braxy = 8118110y + 8128210y,
and the effect on x is

x3 = B3y + Bpaxy = B218110y + 8228210

By repeating the substitutions for t = 4,5, .., we obtain the impulse response of the shock
(or innovation) to y on y as ap{ 1, 811, (811811 + 812821, .. .} and the impulse response of a
shock to y on x as a,{0, 821, (821811 + 822821), . .}

Now consider what happens when there is a one standard deviation shock to x so that at
timet = 1,v{ = g, and vy is zero thereafter. Assume v} = O forallz. In the ﬁrstperiod after
the shock, the effect of a shock of size o, onyis y; = v] = 0, and the effect of the shock onx
is x; = v{ = o,. Two periods after the shock, when ¢ = 2, the effect on.y 18

vy = 8y yr + Bizxy = 8110 + 8190, = B0y
and the effect on x is

xo = Syt + Baaxy = 8210 + SO = Bpp0,

Again, by repeated substitutions, we obtain the impulse response of a shock to x on y as
040, 812, (311912 + 3128m), . ..}, and the impulse response of a shock to x on x as
o1, 82, (82192 + 322822), .}. Figure 13.4 shows the four impulse response functions
for numerical values: o, = 1,0, = 2,81 = 0.7,8,2 =0.2, 351 == 0.3 and 847 = 0.6.

The advantage of examining impulse response functions (and not just VAR coefficients)
is that they show the size of the impact of the shock plus the rate at which the shock
dissipates, allowing for interdependencies.
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FIGURE 13.4 Impulse responses to standard deviation shock.

13.4.2 ForecasT ERROR VARIANCE DECOMPOSITIONS
Ise response of the shock _
he impulse response of a Another way to disentangle the effects of various shocks is to consider the contribution of
-each type of shock to the forecast error variance.

ition shock to x so that ai

1¢. In the first period after 13.4.2a Univariate Analysis

1e effect of the shock onx Consider again the univariate series, y; = py,.; + v. The best one-siep ahead forecast
fect on y is ' {alternatively the forecast one period ahead) is
F
Vit = Edpye +vip]
T where E; is the expected value conditional on information at time £ (i.e., we are interested in
the mean value of .11 using what is known at time 7). At time ¢ the conditional expectation
Ei|py:] = pyy is known, but the error vy is unknown, and so its conditional expectation is
zero. Thus, the best forecast of y,.y is py, and the forecast error is
y, .

Vet = Eiyept] = Yer1 =~ oy = v

z of a shock to xon y a8
“a shock to x on x a8
pulse response function:
0.3 and 89y = 0.6.

ot just VAR coefficients) -
rate at which the shock _;

The variance of the one-step forecast error is var(v,, ) = o Suppose we wish to forecast
two steps ahead, then, using the same logic, the two-step forecast becomes

}’ﬂrz = Efpy1 +viga] = Eefp(py: + vigr) + Viya] = PZJ’:

and the two-step forecast error becomes

Yesz — Erlyera] = yer2 — 02 = pee1 + Vg2
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In this case, the variance of the forecast error is var(pves + Vo) = o?(p? + 1) showing
that the variance of forecast error increases as we increase the forecast horizon.

Tn this univariate example, there is only one shock that leads to a forecast error. Hence the
forecast error variance is 100% due to its own shock. The exercise of attributing the source of
the variation in the forecast error is kniown as variance decomposition.

13.4.2b Bivariate Analysis

We can perform a variance decomposition for our special bivariate example where there is
no identification problem. Tgnoring the intercepts (since they are constants), the one—step
ahead forecasts are

Yf:_l = Er[all}’r + By2% + V,)'H] = dny + B12%y
xﬂ.l = B[Sy -+ Bypx: + vial = 8o1y; -+ a2k

The corresponding one-step ahead forecast errors and yariances are

FE) =yt — Eyent] = v, var(FE[) = a;
FE{ = X501 — Elxi] = Vit var(FE{) = o% .:.:#;;_
Hence in the first period, all variation in the forecast e1ror for y is due to its owWn shock.
Likewise, 100% of the forecast €110 for x can be explained by its own shock. Using the
same technique, the two—step ahead forecast for y i8
oy = BBy F Biaxisr + Vil
= E[811(811yr + S22 + vl) 4 d12(Baryr + Soaxr + Vi) + Vika]
= 811 (Buuys + Brpxr) + 812(8a1yc + B22%t)

and that for x is

x)riz = E 81y + So2%e1 + o)
=1 Et[821(811)7: + 612}(:; -+ Vry+1) —+ 822(821))’ + 622xi + VIx+L) + Vr{i-Z]
= 8y (Buye + Bux) + B92(Bd1ys + B2

The corresponding two-step ahead forecast errors-and variances are (recall that we are
working with the special case of independent errors)

FE) =y~ Elyeqa) = Buvig + BiavipL +Visal

var(FE}) = 83,05 + 32,02 + oF
FE; = X2 — E,[x,+2] - [5211’3’“ + 522Vf+s + Vf+2]
var(FE3) = 8&0‘3 + 6%203: 4 cri

We can decompose the fotal variance of the forecast error for ¥ (83,0% + 807 + o3)s
jnto that due to shocks to ¥, (83,05 + ?), and that due shacks to x, (8},0%). This
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decomposition is often expressed In proportional terms. The proportion of the two-

) = a*(p? +1) Showﬁlg - step forecast error variance of y explained by its “own’ shock is

orecast horizon,

aforecasterror. Hence the

>f attributing the source of . (83,02 + 02)/(8],07 + 8]0% + o))

asition.
and the proportion of the two-step forecast error variance of y explained by the “other”
shock is

te example where there jg 52 52, g2 2
a 52 a2 oy + @
3 constants), the one—step (81502)/ (8110} + 820 + 07) ,

Similarly, the proportion of the two-step forecast error variance of x explained by its “own’’

. shock is
312K )y
Sppy (8%20% + 0',25)/(8%10'3 + 85,0% + a2)
and the proporticn of the forecast error of x explained by the “other” shock is

3 are P p. Y

2 (33103)/ (83103 + 83,07 + 02)
= 0‘},

2 For our numerical example with oy = 1, 0. =2, 81 = 0.7, 812 = 0.2, 85 = 0.3, and
=0y Y

822 = 0.6, we find that 90.303% of the two-step forecast error variance of v is due to y, and
only 9.697% is due to x.

To sum up, suppose you were interested in the relationship between economic growth and
inflation. A VAR model will tell you whether they are significantly related to each other; an
impulse response analysis will show how growth and inflation react dynamically to shocks,
and a variance decomposition analysis will be informative about the sources of volatility.

y is due to its own shock.
*its own shock. Using the

13.4.2c The General Case

The example above assumes that x and y are not conferporaneously related and that the
shocks are uncorrelated. There is no identification problem, and the generation and interpret-
ation of the impulse response functions and decomposition of the forecast error variance are
steaightforward. In general, this is unlikely to be the case. Contemporaneous interactions and
correlated errors complicate the identification of the nature of shocks and hence the
interpretation of the impulses and decomposition of the causes of the forecast error variance.
%A i) Vi) ' This topic is discussed in greater detail in textbooks devoted to time-series analysis.? A
description of how the identification problem can arise is given in Appendix 13A.

o + Vi) Vi

2es are (recall that we are 13.5 Exercises

13.5.1 PROBLEMS

y
Vil 13.1 Consider the following first-order VAR model of stationary variables.
¥r = 8y + B1axey + ]
x X =0 _ Do X, +Vx
+ Vr+2] t 21Ye-1 -+ 0221 '

Under the assumption that there is no contemporaneous dependence, determine the
impulse responses, four periods after a standard deviation shock for

2 2 2 52 2
o + 81,05 + O . . ) ) ,
x y, (81 y T 0120x ¥ ), ? One reference you might consider is Liitkepohl, H. (2005) Introduction to Multiple Tine Sertes Analysis,

2 3 R
shocks to x, (87,0%). This Springer, Chapter 9.
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VEC AND VAR MODELS

(a) y following a shock to y
(b) y following a shock to x
{¢) x following a shock to y
(d) x following a shock to x

Consider the first-order VAR modelin Exercise 13.1. Under the assumption that thepe

is no contemporaneous dependence determine

(a) the contribution of a shock to y on the variance of the three-step ahead forecast
error for y;

{(b) the contribution of a shock to x on the variance of the three-step ahead forecagt
error for y;

(c) the contribution of a shock to y on the variance of the three-step ahead forecast
error for x;

(d) the contribution of a shock to x on the variance of the three-step ahead forecast
error for x.

The VEC model is a special form of the VAR for I(1) variables that are cointegrated,
Consider the following VEC model:

Ay, = oup + ag (-1 — Bo — Brxe1) +v7
Axy = agp + oz (yem1 — Bo — Brxr1) +vi'

The VEC model may also be rewritten as a VAR, but the two equations will contain
COmMmOon parameters:

v = ayp + (a1 + Dy — oaiPo — arPrxe-y +v7
X = Oign + @1 V-1 — e21B0 — (@21 B — By + v

(a) Suppose you were given the foliowing results of an estimated VEC model.

Ay =2 0501 —1—0.7x_s)

Ay, =3+ 0.3(y-1 — 1 —0.7x1)

Rewrite the model in the VAR form.
(b) Now suppose you were given the following results of an estimated VAR model,
but you were also told that y and x are cointegrated.

5’1 - 0.7y;ﬁ1 + 0.3+ 0.24/\':(_1
.i; = O.Gy;fl - 06 ‘l‘ 0.52x,_1

Rewrite the model in the YEC form,

13.5.2 CompruTEr EXERCISES

13.4 The data file gdp.dat contains quarterly data on the real GDP of Australia (AUS) and

real GDP of the United States (I/SA ) for the sampie period 1970.1 to 2000.4.

{a) Are the series stationary or nonstationary?

{b) Test for cointegration allowing for an intercept term. You will find that the
intercept is negative. Is this sensible? If not, repeat the test for cointegration
excluding the constant term.

{c) Save the cointegrating residuals and estimate the VEC model.




