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1. Introduction

Originally focus on conditional mean models but as economic
theory started to consider risk behavior.

— higher order moments (non-linearities)
— dynamics of uncertainty

We will cover class of models called ARCH-type models.

Criginal paper

Engle, R.F. (1982), "Autoregressive conditional heteroscedasticity
with estimators of the variance of U.K. inflation”, Econometfrica
50, 987-1007. |

Survey papers :

Bollerslev, T., R.Y. Chou and K.F. Kroner (1992}, "ARCH Modeling
in Finance : A Review of the Theory and Empirical Evidence”,
Journal of Econometrics 52, 5-59.

(Lists 200 + applications - Finance)

Bollerslev, T., R.F. Engle and D.B. Nelson (1994), "ARCH Models",
Handbook of Econometrics, vol. 4 (forthcoming).



1.1 DEFINITIONS
Let {e,(08)} denote a discrete time stochastic process with cond.
mean and variance functions parameterized by finite dimensional
vector 8 € ® < R" and 9, denotes the true value.
For the moment : g(6) is scalar..

The process {e, (8,)} is ARCH if

Eii (8, (6p)) =0 t=1,2,...

Gtz(eo) = Varz—f (Et(ea)) = Et—t(ﬂtz(eo))

depends non-trivially on the sigma-field generated by

{et_i(eu),et_z{euj,...}
Note where there is action in the mean

| Ly (eﬂ) = Et—1 (Yi}
Then, let e,(8;) =Y, - 1, (8,)

= cond. var. of g, (6,) = cond. var. of y, (8,)



From the analysis so far, we have that .
o -1/2 .
Z(0,) = £,(8,) (Gt (BD)) = standardized process

= z,(8,) has cond. mean zero

cond. var. = 1
This is the basis of estimation of ARCH type models

Note: If cond. distr. of z has also time invariant fourth

moments, then from Jensen’s inequality :

c o) - £ fefet) - E () E o) 2

e (z) £ (of] = E (&) (E€)

If z, ~ N(0,1) = ¢, is leptokurtic.



Fig 1.5 Monthly CRSP Equity Returns 1526-1 to 1989/12
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Fig 1.1 Time Series of Gaussian Hoise
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Fig 2.8 MNon- Parametiric Densiﬁy for Monthly CRSP Returns
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Fig 2.18 Non-parametric Demsity, change in log SUS/SF
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Fig 2.11 Estimated Density for an ARCH(1) Process
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1.2 EMPIRICAL REGULARITIES OF ASSET RETURNS

Parametric specification of g, (8,) has many possibilities

= to have any guidance, study stylized facts first

(i) Thick tails

Asset returns are leptokurtic

(i) Volatility Clustering

=5 lock at any plot of financial time series, i.e. stocks,

exchange rate, etc.
French, Schwert and Stambaugh (1987) Volatility during 30’s
> Volatility during

60’s

Note :  Thick tails and volatility clustering are related



(iii) Leverage effects

Black (1976)

Leverage effect = tendency for changes in stock prices to be
negatively correlated with changes in stock
volatility.

Firm with debt and equity becomes highly leveraged when value of
the firm falls.

(iv) Non-Trading Periods

Fama (1965), French and Roll (1986).
Information accumulates more slowly when markets are closed.

(v) Forecastable Evenis

Forecastable events of important info = high ex ante volatility.

Indiv. firm's stock returns volatility around earnings
announcements.

Also fixed income and foreign exchange volatility increase during
periods of central bank trading.



Volatility at the open and close of market and middle of day.

(vi) Volatility and Serial Correlation

Strong inverse relation between volatility and serial correlation for
U.S. stock indices. _

(vii)} Co-movements in volatilities

Commonality in volatility.

= reason for factor ARCH

(viii) Macroeconomic Variables and Volatility

Surprisingly weak link between macroeconomic incertainty and

volatility.
Glosten, Jagannathan and Runkle (1993).

Strong positive relationship between stock return volatility and

interest rates.



1.3 UNIVARIATE PARAMETRIC MODELS

(i) ARCH (q)

q
o, = @ + Y gy = o+all)e,
i=1

. 2
Define v, =& - o

= & =@ +a (L), +V,

AR(q) model for the squared innovations &’

Unconditional variance

Var (&) = ¢° = o/ (1-; -..-01)
(0 + ...+0 )<
w=0 a =0 i=1,...,9

ARCH produces fat tails in the unconditional distribution,

YET NOT FAT ENOUGH.



The ARCH(q) model may also be represented as a time varying
parameter AR(q) model for ¢,

g =+ ofL)C,, &, {C} scaler i.i.d. stochastic process with
mean zero and variance one.

See Tsay (1987) and Bera, Higgins and Lee (1992) for further

discussion.

In practice ARCH requires long lags to accommodate data

= GARCH(p,q)

ol = + Y gy +Y, Boy = o + ofLer, + B(L)ok

i=1,9 j=1.p

Positivity conditions on &>

a) «aflL) and B(L) have no commen roots
b) the roots of B(x) = 1 lie outside the unit circle

c) a(x)/(1-B(x)) all coeff. in this series are non-negative



Alternative representation for GARCH(p,q) process

Let t—af—crf,

<
I

max{p a)

q
CRENES BV * v,

i=1 j=1

then &

Like ARMA(max(p,q),q) process on af

= stationarity : roots of a(x) + B(x)
lie outside the unit circle

Yet in many empirical applications

o(1) + B(1) =

= |IGARCH processes (see later on issues of unit roots and
persistence)

(i) EGARCH

GARCH captures successfully - thick tailed returns
- volatility clustering



can be modified to allow for - nontrading day effects
- predictable information releases

But fails in leverage effects

EGARCH of Nelson (1991)

o; depends on both the size and the sign of lagged residuals
-1
5 a _ p _
In (Gt}—m{1 Y. aL’J [1 -y BJLJJ (E-}zt_1 +7[ |2 | =B 5 | ] )
i=1 =1

In (Gf) follows ARMA(p,q) process. Yet, innovation process is

consiructed to produce asymmetric response function z, ~ i.i.d.
(0,1)

@ can accommodate non trading day effects etc.

(ifi) Other univariate parameterizations

*  Quite many, yet too often ad hoc
(see Bollerslev, Engle and Nelson (1994) for details).
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1.4 ARCH IN MEaN MODELS

Many theories in finance call for an implicit trade off between the
expected returns and the variance or the covariance between

returns

CAPM
excess return on all risky assets are
proportional to the non-diversifiable risk as
measured by the covaiances with the market

portfolio

Intertemporal CAPM Merton (1973)
expectied excess return on the market portfolio
is linear in its conditional variance

(with log utility for representative agent)

— ARCH in mean or ARCH-M
~ Engle, Lilien and Robins (1987)

i, (8) = g(c:(6),8)

dg/ac” = 0

1-11



1.5 NONPARAMETRIC AND SEMIPARAMETRIC MODELS
Overwhelming variety of parametric univariate ARCH models
= perhaps nonparametric approach
Pagan and Schwert (1990) : Kernel and Fourier series

To fit models for the relation between y? on past y,s

2

‘l"'t = f (yt—Tr yz_gr-- yta-pi'e) * nt

Because of the problems of high dimensionality cannot choose p
very high

= limited possibility to capture temporal dependence
Issue of distance measure in fit

— least squares o.k. for homoscedasticity but

heteroscedasticity

1-12



An Empirical Example of the EGARCH Model

Data: VWR daily returns from CRSP July 1862 - Dec. 1987
Minus (monthly T-Bill returns)
Denote raw data by R,

Cond. Mean : R,=a + bR, + ¢cc” + &

E..& =0 and E_E) = of

Cond. Var. : In(csf) = o, + (1 R U Q) 9(2.4)

(1-aL-..-AL?

o, = o+ In(1 + Ng), N, : # nontrading days before day t

9(z4) = 0Z, + M1Z,| - E[Z]]

v exp[—(wz)lzmﬂ]

z ~Lid. #(z) = -
a2l )1"(1 o)

B 4 {Q(m)rﬁ fu)I“(3fﬂ)]wg



When L= 2 — Gaussian distr.
v < 2 — Thicker tails

v > 2 — Thinner tails

Useful expression for the I.ikelihcud :

Z, = o;'(R-a-bR, ,~co?)

1-14



2. INFERENCE PROCEDURES

2.1 TESTING FOrR ARCH
2.2 MLE
2.3 Quasi - MLE

2.4 SPECIFICATION TESTS



2.1 TESTING FOR ARCH

(i) Serial Correlation and LM tests
Engle (1982) proposed a single test for ARCH

Under Hy VY, =XB+¢g

x, is weakly exogenous ¢, | I, ~ N(0,6°)
Regress & on a constant and &,,... ...,
= TR*~%"(q)
Intuition : if ARCH effect is present = volatility clustering

= past € predict current

Easy to use but caution because of regression in mean model

misspecification

Alternative tests (also subject to caution) - use F - test (i.e. Wald)
- Portmanteau tests |



