STOCHASTIC TREND MODELS

. RANDOM WALK

yo is a constant

(.

von $y_t = t \sigma^2 \rightarrow \infty$ as $t \rightarrow \infty$ linear alway of ACF

RAMDOM WALK + DRIPT

· Random WALK + NOIST

Me = My -1 + Ex

Mx WN with variance Tn2 Et, nt-simolependent & S,t

Mo : instruct condition = const.

40 = 40 + 70

$$\Delta y_t = \mathcal{E}_t + \Delta \eta_t \qquad MA(1)$$

$$= \mathcal{E}_{t+} (\eta_{t-} \eta_{t-1})$$

"GENERAL TREND + IRREGULAR

Mr = Mt - + Go + E+

· LOCAL LINEAR TREND

$$h_t = h_{t-1} + a_t + E_t$$

 $a_t = a_{t-1} + \delta_t$ $\int \delta_t f:WN$

Dy+ is MA(2)

PROCESSES

DS

DIPPERBUCE STATIONARY

TREND STATIONARY

· AFFER DIPETRENCING

· AFTER DIPFERENCING
IS MON-INVERTIBLE

- · REMOVING DETER. TREND
 - =) STOCHASTIC TREND REMAINS

· REMONING DETER TREND => STATIONARY

nominvertible

ffect the very long-run forecast of y_{i+s} is α_0 + ffect the very long-run forecast of lues α_0 and α_1 , the forecast error is always ϵ_{r+s} ; hence, the forecast is serially correlated, long-term, and the forecast horizon (s).

 $\{y_i\}$ series has a stochastic trend. $\{y_i = \mu_i + \eta_i, \text{ where } \mu_i = \mu_{i-1} + \epsilon_i, \text{$

$$s - \eta_t$$

s unbounded for long-term fore-

$$\epsilon_{t+i} + \eta_{t+s}$$

flidence interval surrounding our the variance of the forecast error

itomal view by demonstrating that er than TS processes. They obconomic time series: real GNP,
unemployment rate, GNP deflaock, velocity, bond yields, and an
as early as 1860 for consumer
a 1970 for the entire series. Some
irst two columns report the firstminal GNP, industrial production,
outrelations of the first three series
cough p(1) for the unemployment
s than 0.5.

I second-order sample autocorremelations of the first differences e supports the claim that the data

Table 3.2 Selected Autocorrelations from Nelson and Plosser

ρ(1)	ρ(2)	r(1)	r(2)	d(1)	d(2)
0.95	0.90	0.34	0.04	0.87	0.66
0.95	0.89	0.44	0.08	0.93	0.79
0.97	0.94	0.03	-0.11	0.84	0.67
0.75	0.47	0.09	-0.29	0.75	0,46
	0.95 0.95 0.97	0.95 0.90 0.95 0.89 0.97 0.94	0.95 0.90 0.34 0.95 0.89 0.44 0.97 0.94 0.03	0.95 0.90 0.34 0.04 0.95 0.89 0.44 0.08 0.97 0.94 0.03 -0.11	0.95 0.90 0.34 0.04 0.87 0.95 0.89 0.44 0.08 0.93 0.97 0.94 0.03 -0.11 0.84

- Notes: 1. Full details of the correlogram can be obtained from Nelson and Plosser (1982) who report the first six sample autocorrelations.
 - Respectively, p(i), r(i), and d(i) refer to the ith-order autocorrelation coefficient of each series, first difference of the series, and detrended values of the series.

are generated from DS processes. Nelson and Plosser point out that the positive autocorrelation of differenced real and nominal GNP at lag 1 only is suggestive of an MA(1) process. To further strengthen the argument for DS-generating processes, recall that differencing a TS process yields a noninvertible moving process. None of the differenced series reported by Nelson and Plosser appear to have a unit root in the MA terms.

The results from fitting a linear trend to the data and forming sample autocorrelations of the residuals are shown in the last two columns of the table. An interesting feature of the data is that the sample autocorrelations of the detrended data are reasonably high. This is consistent with the fact that detrending a DS series will not eliminate the nonstationarity. Notice that detrending the unemployment rate has no effect on the autocorrelations.

Rather than rely solely on an analysis of correlograms, it is possible to formally test whether a series is difference stationary. We examine such formal tests in the next chapter. The testing procedure is not as straightforward as it might seem. We cannot use the usual statistical techniques since classical procedures all presume that the data are stationary. For now, it suffices to say that Nelson and Plosser are not able to reject the null hypothesis that their data are DS. If this view is correct, macroeconomic variables do not grow at a smooth long-run rate. Some macroeconomic shocks are of a permanent nature; the effects of such shocks are never eliminated.

11. STOCHASTIC TRENDS AND UNIVARIATE DECOMPOSITIONS

Nelson and Plosser's (1982) findings suggest that many economic time series have a stochastic trend and an irregular component. Having observed a series, but not the individual components, is there any way to decompose the series into the con-

to test the hypotheses $\gamma = 0$. Dickey tatistics (called ϕ_1 , ϕ_2 and ϕ_3) to test 10) or (4.13), the null hypothesis $\gamma =$ g a time trend in the regression—so pothesis $a_0 = \gamma = a_2 = 0$ is tested usage = 0 is tested usage = 0 is tested usage = 0 is tested usage = 3 statistic.

S(unrestricted)] r

1=2

the sums of the squared residuals pdels

Model	Hypothesis	Test Statistic	Critical values for 95% and 99% Confidence Intervals
$\Delta y_t = a_0 + \gamma y_{t-1} + a_2 t + \epsilon_c$	γ=0	τ,	-3.45 and - 4 0 4
	$a_0 = 0$ given $\gamma = 0$	$\tau_{\alpha\tau}$	3.11 and 3.78
	$a_2 = 0$ given $\gamma = 0$	$\tau_{\beta\tau}$	2.79 and 3.53
	$\gamma = a_2 = 0$	\$ 3	6.49 and 8.73
	$a_0 = \gamma = a_2 = 0$	\$ 2	4.88 and 6.50
$\Delta y_t = a_0 + \gamma y_{t-1} + \epsilon_t$	γ = 0	T _p	-2.89 and -3.51
	$a_0 = 0$ given $\gamma = 0$	Tope	2.54 and 3.22
	$a_0 = \gamma = 0$	ϕ_0	4.71 and 6.70
$\Delta y_t = \gamma y_{t-1} + \epsilon_t$	$\gamma = 0$	τ	-1.95 and -2.60

Notes: Critical values are for a sample size of 100.

UMT ROOT TESTS

D.F: AR(1)

$$0 \quad x_{t} = p \quad x_{t-1} + e_{t} \qquad \Rightarrow \hat{\pi} = T(\hat{p}-1)$$

$$0 \quad \delta x_{t} = (p-1) \quad x_{t-1} + e_{t} \qquad \Rightarrow \hat{\tau} .$$

②
$$x_t = \lambda + \rho x_{t-1} + \ell_t$$
 => $\hat{\rho}_{\mu}$
• $\Delta x_t = \lambda + (\rho - 1) x_{t-1} + \ell_t$ => \hat{J}_{μ}

ADF: AR(p)

$$0 \quad \Delta x_{t} = (|p_{i}^{-1}| | x_{t-i} + \sum_{i=2}^{p} p_{i} | \Delta x_{t-i+1} + e_{t}$$

ARMA

Table 2.1

Tests for a Unit Root in Selected Financial Series

Series	ê	DF	ADF(4)	5% crit value
log share pr	.999	.11	.007	•
log int rate	.975	-3.016	-3.113	-2.867
log \$US/SF	.996	-1.318	-1.5636	-2.866
log returns	.111	-24.7492	-11.7512	-2.8657
log returns	.111	-24.7492	-11.7512	-2.8657

Series are described in section 1. ADF(4) is augmented Dickey Fuller Test with 4 lags.

	$\gamma_1 = 0$	$\gamma_2 = 0$	1/2 = 1/2 = 10
Intercept	-2.88	-1.95	3.08
Intercept plus seasonal dummies	-2.95	-2.94	6.57
Intercept plus seasonal dummies	-3.53	-2.94	6.60
plus time trend			1

4. EXAMPLES OF THE AUGMENTED DICKEY-FULLER TEST

The last chapter reviewed the evidence reported by Nelson and Plosser (1982) suggesting that macroeconomic variables are difference stationary rather than trend stationary. We are now in a position to consider their formal tests of the hypothesis. For each series under study, Nelson and Plosser estimated the regression:

$$\Delta y_t = a_0 + a_2 t + \gamma \, y_{t-1} + \sum_{i=2}^p \beta_i \Delta y_{t-1+i} + \epsilon_t$$

The chosen lag lengths are reported in the column labeled p in Table 4.2. The estimated values a_0 , a_2 , and γ are reported in columns 3. 4, and 5, respectively.

Table 4.2 Nelson and Plosser's Tests for Unit Roots

Lunte 4.2 Incis	OIL GALGE A	100041				
	p	a_0	a_2	γ	γ+1	
Real GNP	2	0.819 (3.03)	0.006 (3.03)	-0.175 (-2.99)	0.825	
Nominal GNP	2	1.06 (2.37)	₹ 0.006 (2.34)	-0.101 (-2.32)	0.899	
Industrial production	6	0.103 (4.32)	0.007 (2.44)	-0.165 (-2.53)	0.835	
Unemployment rate	4	0.513 (2.81)	-0.000 (-0.23)	-0.29 <mark>4*</mark> (-3.55)	0.706	

Notes:

- p is the chosen lag length. Coefficients divided by their standard errors are in parentheses.
 Thus, entries in parentheses represent the t-test for the null hypothesis that a coefficient is equal to zero. Under the null of nonstationary, it is necessary to use the Dickey-Fuller critical values. At the 0.05 significance level, the critical value for the t-statistic is -3.45.
- An asterisk (*) denotes significance at the 0.05 level. For real and nominal GNP and industrial production, it is not possible to reject the null γ = 0 at the 0.05 level. Hence, the unemployment rate appears to be stationary.
- 3. The expression $\gamma + 1$ is the estimate of the partial autocorrelation between y_t and y_{t+1} .

TABLE B.5 Critical Values for the Phillips-Perron Z_{ρ} Test and for the Dickey-Fuller Test Based on Estimated *OLS* Autoregressive Coefficient

Sample	Probability that $T(\hat{\rho}-1)$ is less than entry							
size			0.05	0.10 0.90		0.95	0.975	0.99
				Case 1				
25	-11.9	-9.3	-7.3	-5.3	1.01	1.40	1.79	2.28
50	-12.9	-9.9	-7.7	-5.5	0.97	1.35	1.70	2.16
100	-13.3	-10.2	-7.9	-5.6	0.95	1.31	1.65	2.09
250	-13.6	-10.3	-8.0	-5.7	0.93	1.28	1.62	2.04
500	-13.7	-10.4	-8.0	-5.7	0.93	1.28	1.61	2.04
∞	-13.8	-10.5	-8.1	-5.7	0.93	1.28	1.60	2.03
				Case 2				
25	-17.2	-14.6	-12.5	-10.2	-0.76	0.01	0.65	1.40
50	-18.9	-15.7	-13.3	-10.7	-0.81	-0.07	0.53	1.22
100	-19.8	-16.3	-13.7	-11.0	-0.83	-0.10	0.47	1.14
250	-20.3	-16.6	-14.0	-11.2	-0.84	-0.12	0.43	1.09
500	-20.5	-16.8	-14.0	-11.2	-0.84	-0.13	0.42	1.06
∞	-20.7	-16.9	-14.1	-11.3	-0.85	-0.13	0.41	1.04
				Case 4				
25	-22.5	-19.9	-17.9	-15.6	-3.66	-2.51	-1.53	-0.43
50	-25.7	-22.4	-19.8	-16.8	-3.71	-2.60	-1.66	-0.65
100	-27.4	-23.6	-20.7	-17.5	-3.74	-2.62	-1.73	-0.75
250	-28.4	-24.4	-21.3	-18.0	-3.75	-2.64	-1.78	-0.82
500	-28.9	-24.8	-21.5	-18.1	-3.76	-2.65	-1.78	-0.84
. 00	-29.5	-25.1	-21.8	-18.3	-3.77	-2.66	-1.79	-0.87

The probability shown at the head of the column is the area in the left-hand tail.

Source: Wayne A. Fuller, Introduction to Statistical Time Series, Wiley, New York, 1976, p. 371.

Table 8.5.2. Empirical cumulative distribution of $\hat{\tau}$ for $\rho = 1$

			•							
	Sample Size			Proba	bility of a	a Smaller	Value		19	4
	n .	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99	
040					(ĵ)					
Source of the state of the stat	25	-2.66	-2.26	-1.95	-1.60	0.92	1.33	1.70	2.16	
Que la	50	-2.62	-2.25	-1.95	-1.61	0.91	1.31	1.66	2.08	
18 1000	√ 100	-2.60	-2.24	-1.95	-1.61	0.90	1.29	1.64	2.03	
W W	250	-2.58	-2.23	-1.95	-1.62	0.89	1.29	1.63	2.01	
Pom.	500	- 2.58	-2.23	- 1:95	- 1.62	0.89	1.28	1.62	2.00	
	~	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00	ut pas N.
por ale					$\hat{ au}_{\mu}$				* * ***** ****** * * *****************	
W.	25	-3.75	-3.33	-3.00		0.37	0.00	0.34	0.72	
51	2, 50	-3.58	-3.22	-2.93	-2.60	-0.40	-0.03	0.29	0.66	
(P)	100 no	-3.51	-3.17	-2.89	-2.58	-0.42	-0.05	0.26	0.63	
1	250	-3.46	-3.14	-2.88	-2.57	-0.42	-0.06	0.24	0.62	
J. 1966	500	-3.44	-3.13	-2.87	-2.57	-0.43	-0.07	0.24	0.61	
	∞	-3.43	- 3:12	-2.86	-2.57	-0.44	-0.07	0.23	0.60	
					$\hat{\tau}_{\tau}$					
న	∑ ₀ 25	4.38	- 3.95	-3.60		-1.14	-0.80		~ 0.15	
(1)	√ ⁷ 50	-4.15	-3.80	-3.50			-0.87	-0.58	-0.24	
1 (**	100	-4.04			-3.15		-0.90	-0.62	-0.28	
2	250	~ 3.99			-3.13		-0.92	-0.64	-0.31	
and a second	500	-3.98	-3.68	-3.42	-3.13	- 1.24	-0.93	-0.65	0.32	
	00	-3.96	-3.66	-3.41	-3.12	-1.25	-0.94	-0.66	-0.33	

This table was constructed by David A. Dickey using the Monte Carlo method. Details are given in Dickey (1975). Standard errors of the estimates vary, but most are less than 0.02.

To extend the results for the first order process with $\rho = 1$ to the pth order autoregressive process, we consider the time series

$$Y_t = \sum_{j=1}^{t} Z_j, \qquad t = 1, 2, ...,$$
 (8.5.11)

where $\{Z_t: t \in (0, \pm 1, \pm 2, ...)\}$ is a (p-1) order autoregressive time series with the representation

$$Z_t + \sum_{i=2}^{p} a_i Z_{t-i+1} = e_t,$$
 (8.5.12)

or of