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On-Line APPENDIX B

Identification Conditions

B.1 Independent Component Analysis (ICA)

Let us consider the independent component model:

Y = Dε, (b.1)

where the observed vector Y is of dimension n and the components ε1, ..., εn are indepen-

dent.

Proposition B.1. [Eriksson, Koivunen (2004), Th. 3, and Comon (1994), Th 11]

Under the following conditions:

i) D is invertible,

ii) the components ε1, ..., εn are independent and at most one of them has a Gaussian

distribution,

the matrix D is identifiable up to the post multiplication by ∆Q, where Q is a permutation

matrix and ∆ a diagonal matrix with non-zero diagonal elements.

The matrix D is identifiable up to a permutation of indexes and to signed scaling

εi → ±σiεi ,with σi > 0, i = 1, ..., n. The only local identification issue is the positive

scaling, which can be solved by introducing identifying restrictions.

Proposition B.2. [Hyvarinen et al. (2001)]

Under the assumptions of Proposition B.1. the local identification issue is solved if D

is an orthogonal matrix: D′D = Id.

B.2 Two-Sided Multivariate Moving Averages

Proposition B.1 has been extended by Chan, Ho (2004), Chan, Ho, Tong (2006) to

two-sided moving averages. We give a version of their result for structural mixed models:

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p +Dut.

Proposition B.3

Let us assume that:

i) The roots of det(Id− Φ1z − · · · − Φpz
p) = 0 are not on the unit circle,
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ii) Matrix D is invertible,

iii) (ut) is i.i.d. with independent components,

iv) Each component admits a finite even moment of order k larger than 3, and at least

one non-zero cumulant of order larger than 3.

Then i) Φ1, ....,Φp are identifiable, ii) D is identifiable up to the identification issues given

in Proposition B.1.

This result corresponds to Condition 4 in Chan, Ho, Tong (2006). Assumption iv) implies

that all distributions of the components are non-Gaussian.

The conditions of Proposition B.2. are sufficient for identification. Other sufficient

conditions based on the cross-moments of 3rd and 4th order have been considered in the

literature to weaken the assumption of cross-sectional independence [see Velasco (2022)].
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On-Line Appendix C: Predictive Density Estimation

This Appendix describes the kernel-based estimation of the predictive density given

in Proposition 1 from the following time series:

ε̂t = Yt − Φ̂1Yt−1 − · · · − Φ̂pYt−p+1, t = 1, ..., T,

Ẑ2,t = Â2

(
Yt
Ỹt−1

)
, t = 1, ..., T.

The above time series is used to approximate the density g of εt and density l2 of Z2,t as

follows:

ĝT (ε) =
1

T

1

hm

T∑
t=1

Km

(
ε− ε̂t
h

)
,

and

l̂2,T (z2) =
1

T

1

hn2

T∑
t=1

Kn2

(
z2 − Ẑ2,t

h

)
,

where h1, h2 are the bandwidths and Km, Kn2 are multivariate kernels of dimensions m

and n2, respectively. Then, the estimated predictive density is:

l̂T (y|Y T ) =

l̂2,T

[
Â2

(
y

ỸT

)]
l̂2,T

[
Â2

(
YT
ỸT−1

)] | det Ĵ2| ĝT (y − Φ̂1YT − · · · − Φ̂pYT−p+1),

This formula is easily extended to bandwidths adjusted for each component, by re-

placing for example 1
hm
Km

(
ε−ε̂t
h

)
by
∏m

j=1
1
hj
K
(
εj−ε̂j,t
hj

)
, where K is a univariate kernel.

Such an adjustment can account for different component variances.

Let us consider the example of a bivariate VAR(1) process with one noncausal com-

ponent and a scalar noncausal eigenvalue λ2 (see Section 6). The estimated coefficients

of the inverse of A are denoted by:

Â−1 =

(
â11 â12

â21 â22

)
.
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The predictive density depends on unknown scalar parameters λ1, λ2 and functional

parameters l2, g that can be estimated. The marginal density l2(A
2y) can be approximated

by a kernel estimator:

l̂2,T (Â2y) =
1

T

1

h2

T∑
t=1

K

(
â21(y1 − y1,t) + â22(y2 − y2,t)

h2

)
,

while the density l2(A
2YT ), can be approximated by a kernel estimator:

l̂2,T (yT ) =
1

T

1

h2

T∑
t=1

K

(
â21(y1,T − y1,t) + â22(y2,T − y2,t)

h2

)
,

where h2 is a bandwidth. The joint density g(y − ΦyT ) can be approximated by

ĝT (y−Φ̂yT ) =
1

T

1

h11h12

T∑
t=1

K

(
y1 − φ̂1,1y1,T − φ̂1,2y2,T − ε̂1,t

h11

)
K

(
y2 − φ2,1y1,T − φ2,2y2,T − ε̂2,t

h12

)
.

where ε̂1,t and ε̂2,t are residuals ε̂t = yt − Φ̂yt−1 and h11, h12 are two bandwidths adjusted

for the variation of ε̂1,t and ε̂2,t, respectively. We get:

l̂T (y1, y2|YT ) =

1
T

1
h2

∑T
t=1K

(
â21(y1−y1,t)+â22(y2−y2,t)

h2

)
1
T

1
h2

∑T
t=1K

(
â21(y1,T−y1,t)+â22(y2,T−y2,t)

h2

)
|λ̂2|

1

T

1

h11h12

T∑
t=1

K

(
y1 − φ̂1,1y1,T − φ̂1,2y2,T − ε̂1,t)

h11

)

K

(
y2 − φ̂2,1y1,T − φ̂2,2y2,T − ε̂2,t)

h12

)
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On-Line Appendix D: Empirical Analysis of Oil Prices and GDP

1. Quarterly Data Estimation

1.1 Estimated errors

The estimated errors of the mixed VAR(1) model are plotted below:
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Figure 1: Errors ε̂t, Noncausal VAR(1), Q1 1986 -Q2 2019

Their densities are non-Gaussian, as shown in Figure 2:
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(b) Density of ε̂2,t

Figure 2: Density of ε̂t
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(c) ACF of ε̂3

Figure 3: Residual ACF

We observe that the estimated residuals, their squares and third powers are serially

uncorrelated. The variance-covariance matrix is Σ̂ =

[
0.262 0.184
0.184 1.506

]
and contempora-

neous correlation is 0.28 (statistically significant at 0.05).

1.1 GCov estimation of the mixed model for log-prices

The estimation of the VAR(1) model applied to the logarithms of oil prices produces

an autoregressive matrix with two imaginary eigenvalues of modulus greater than 1. The

estimation applied to the differences of log-prices produces an autoregressive matrix with

two real eigenvalues inside the unit circle.

The figure below shows a path of a process with the same matrix Φ and t(6) distributed

errors with the variance-covariance matrix equal to Σ̂ of the mixed VAR(1) given above.
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Figure 4: Simulated path

We observe that the simulated model can imitate the dynamics of a bivariate series of

growth and oil.

1.3 Analysis of the SVAR model by OLS

The Augmented Dickey-Fuller test and Phillips-Perron test performed without inter-

cept, with intercept and with both intercept and trend do not reject the unit root hypoth-

esis in the oil prices. All these tests reject the unit root in the GDP rate (results available

on request). These standard testing methods are based on the assumption of linear causal

dynamics and can be misleading. In our framework of a mixed causal-noncausal model,

the causal dynamic is stationary, nonlinear with local trends. The Dickey-Fuller and

Phillips-Perron tests do not distinguish between the local and global trends [Gourieroux,

Jasiak (2019)]. Hence their outcomes can be confusing.

The VAR(1) estimated by the OLS and Normality-based Maximum Likelihood (ML)

produce similar results. The OLS output is given below:

The first dependent variable (top panel) is the oil price and the second dependent

variable (bottom panel) is the GDP. The regressors x1 and x2 are the lagged oil and

lagged GDP rate. The coefficient on the lagged oil is close to 1 and its ML estimator is

0.95 with standard error 0.029.

Next, we adopt the approach of Kilian, Vigfusson (2017) and model the difference of

logarithms of oil prices and GDP rate as a VAR(1) model.
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Figure 5: Results of OLS estimation of VAR(1) with price levels
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Figure 6: Results of OLS estimation of VAR(1) with diff log prices

The first regressor x1 is the lag 1 of differenced logarithm of oil price. The second

regressor x2 is the lagged GDP rate.

The ACF of the ε̂t of this model is given below.
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(c) ACF of ε̂3

Figure 7: Power ACF of ε̂t, diff-log prices, VAR(1)

We observe that the residuals of differenced logarithms of oil prices show significant

autocorrelation at high lags and an ARCH effect at lag 2. There also remains significant

correlation at lag 2 in powers 3 of the residuals. This motivates extending the lag up

to lag 4, as in Kilian, Vigfusson (2017) and adding a comtemporaneous difference log of

oil prices to the GDP rate equation as regressor x9, which gives this model a structural

interpretation.
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Figure 8: Results of OLS estimation of SVAR(4) with diff-log prices

The ACF of the residuals of this SVAR model are shown below.



THIS VERSION: May 21, 2023 13

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series 1

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

Series 1 & Series 2

−15 −10 −5 0

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series 2 & Series 1

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

Series 2

(a) ACF of ε̂

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series 1

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

Series 1 & Series 2

−15 −10 −5 0

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series 2 & Series 1

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

Series 2

(b) ACF of ε̂2

Figure 9: Power ACF of ε̂t, diff-log prices, SVAR(4)

The residuals are contemporaneously uncorrelated. There is a significant autocorrela-

tion in the squared oil residuals at lag 2 that was also observed in the ACF of the previous

VAR(1) model. This nonlinear effect has not been removed by extending the lags in the

model.

1.4 Analysis of the threshold VAR model, OLS

Next, we estimate model (1) on page 1753 of Kilian, Vigfusson (2017) by adding the

terms representing the differences between the log oil prices and its maximum over the
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past 3 years. These terms at lags 0 to 4, appear in the model below as regressors x11 to

x13.

Figure 10: Results of OLS estimation of Kilian-Vigfusson model

The model contains 22 regressors and accounts for the simultaneity and nonlinear

effects. Moreover, the model is structural and the current value of oil appears in the

growth rate equation 2. The oil is modelled as the first differences in log prices. The

ARCH effect in the residuals at lag 2 is not removed when the additional regressors are

added to the model. This nonlinear effect remains, as shown in the residual ACF below.
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(b) ACF of ε̂2

Figure 11: Power ACF of ε̂t, OLS estimation

We conclude that the mixed causal-noncausal VAR(1) model with 4 autoregressive

coefficients fits the data equally well as the above model with 24 coefficients.

It is interesting to see if the residuals of the model remain uncorrelated when the

normality assumption is relaxed and the GCov estimator is used instead of the OLS

estimator.

The Shapiro test of normality applied to the residuals of the oil equation does not

reject the null (p-value of 0.8387). However, the normality is strongly rejected in the

residuals from the second equation (p-value of 0.01711).

The autocorrelations of the residuals and their squares are plotted below:
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(b) ACF of squared GCov residual

Figure 12: Power ACF of ε̂t, GCov estimation

We observe that unlike the OLS residuals, the GCov residuals of the Kilian-Vigfusson

model are contemporaneously correlated. Their squares are contemporaneously correlated

too. The normality assumption and the use of OLS has an effect on the estimates.

2. Predictive Densities

We first provide the predictive densities of the estimated models of Section 6.2 for

additional dates between T=112 and T=118.
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Figure 13: VAR(1) based predictive density estimation, T=112
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Figure 14: VAR(1) based predictive density estimation, T=114
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Figure 15: VAR(1) based predictive density estimation, T=115
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Figure 16: VAR(1) based predictive density estimation, T=116



THIS VERSION: May 21, 2023 21

Figure 17: VAR(1) based predictive density estimation, T=118

2.2. One step-ahead path forecasting

We perform a sequence of 1 step ahead forecasts, where the series is re-estimated at

each step on a subsample of observations from time 1 up to the forecast origin. The first

forecast is performed at time T=100 and the values of both component series at time

T+1=101 are predicted. Next, the sample is increased by 1 observation and extended up

to time T=101. Then the value of the series at time T+1=102 is forecast, and so on,

until the end of the path.

At each step, the estimated parameters are the sample means and the parameters of

matrix Φ, which are used in the forecast computation. The forecast is evaluated each

time over a grid of 200 values equally spaced by 0.1, below and above the last values of

latent components of the series.
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The first sequence of forecasts is based on the estimates from 4 nonlinear transforms

in the objective function of the GCov estimator. Only the powers 1 and 2 of the errors

are considered. The forecasts (black lines) and the true values of the processes (red lines)

are given below.
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Figure 18: VAR(1) based path of growth rate (4 transforms), T=101-135



THIS VERSION: May 21, 2023 23

100 105 110 115 120 125 130 135

4
6

8
10

12
14

16

Figure 19: VAR(1) based path of oil/10 (4 transforms), T=101-135

We observe that the path of oil prices is well fitted. However, the VAR(1) has a difficulty

fitting small variations in the growth rate. The MSFE (Mean squared Forecast Error) is

0.184 for the rate and 1.582 for the oil.

For this reason, we increase the number of power transforms in the objective function,

by considering powers 1, 2, 3 and 4 of the errors. The Figures below show that this refined

estimation approach helps to forecast the small changes in the growth rate.
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Figure 20: VAR(1) based path of growth rate (8 transforms), T=101-135
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Figure 21: VAR(1) based path of oil/10 (8 transforms), T=101-135

We observe that it takes a few steps for this method to start improving the forecast of the

series. Over the entire subset of 34 forecasts, the MSFE is higher under this approach, as

compared to the previous one. More specifically, the MSFE of growth rate is 0.201. The

MSFE of oil is 1.904. An improvement appears over the set of last 14 observations.

Over the last 14 observations, when 4 additional power functions are added to the

GCov estimation, the MSFE of growth rate decreases from 0.071 to 0.068 and the MSFE

of oil decreases from 0.727 to 0.645

For comparison, we compute the IN-SAMPLE fitted values of the structural model of

Kilian, Vigfusson model with 22 parameters estimated by the OLS. It is specified for the

differences of logarithmic values of oil and accounts for the nonlinearity in oil series and

simultaneity in the growth rate. As mentioned earlier,the current value of the oil variable

determines the growth rate simultaneously et each point in time (regressor 9). In our

computation, the true values of oil, rather than the predicted ones are used to compute

the fitted values of growth. Moreover, the levels of oil prices are computed by adding the
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fitted difference to the true past value of the oil price levels rather than from the random

walk representation involving the initial value.
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Figure 22: Kilian-Vigfusson: fitted values of oil/10), T=101-135

The MSE of fitted values of oil over the same period of 34 forecasts is 1.934 and is

higher than the oos MSFE of noncausal VAR(1). Over the subset of last 14 observations,

the MSE of oil is 0.867 and is also higher than the mean forecast error of the VAR(1)

model.
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Figure 23: Kilian-Vigfusson: fitted values of growth, T=101-135

The MSE of the fitted values of growth rate is 0.204 and is marginally higher/equal, as

compared to the oos MSFE of noncausal VAR(1). Over the subset of last 14 observations,

the MSE of growth rate is 0.140 and is higher than the mean forecast error of the VAR(1)

model. Importantly, we observe that the fitted series does not accommodate local changes

in the trend of the rate.

In the table below the forecasts are computed for the levels of the variables (oil divided

by 10), with the mean added to the forecast. The previous tables were forecasting the

deviations from the mean.
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Forecast with 8 power transforms

T forecast interval growth interval oil true values
growth oil q11 q12 q21 q22 growth oil

110 0.507 14.025 -11.192 1.407 -2.174 15.825840 0.139 12.684
112 0.502 14.427 -10.997 1.402 -2.872 16.027 0.711 11.998
114 0.150 12.455 -7.849 1.050 -3.144 14.055 1.284 12.586
115 0.853 12.844 -11.346 2.053 -3.155 14.444 1.164 11.944
116 0.833 12.169 -11.066 1.933 -2.630 13.869 0.448 9.114
118 0.766 5.911 -9.633 1.666 -0.188 7.711 0.580 7.152
133 0.542 6.679 -8.457 1.442 -2.320 8.479 0.542 6.606
134 0.619 6.653 -9.180 1.519 -3.546 8.453 0.673 7.452

Forecast with 4 power transforms

T forecast interval growth interval oil true values
growth oil q11 q12 q21 q22 growth oil

110 0.385 13.367 -11.814 1.285 -2.432 15.167 0.139 12.684
112 0.360 13.879 -11.639 1.260 -3.020 15.579 0.711 11.998
114 0.235 13.182 -6.764 1.135 -3.817 14.882 1.284 12.586
115 0.571 12.665 -13.128 1.471 -2.234 14.565 1.164 11.944
116 0.581 12.005 -12.518 1.481 -2.394 13.905 0.448 9.114
118 0.712 5.942 -9.887 1.712 0.042 7.842 0.580 7.152
133 0.581 7.010 -7.618 1.481 -2.589 8.810 0.542 6.606
134 0.666 6.777 -9.033 1.566 -3.322 8.577 0.673 7.452
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