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On-Line APPENDIX B

Identification Conditions

B.1 Independent Component Analysis (ICA)

Let us consider the independent component model:

Y = De, (b.1)

where the observed vector Y is of dimension n and the components €4, ..., €, are indepen-
dent.
Proposition B.1. [Eriksson, Koivunen (2004), Th. 3, and Comon (1994), Th 11]
Under the following conditions:
i) D is invertible,
ii) the components €y, ..., €, are independent and at most one of them has a Gaussian
distribution,
the matrix D is identifiable up to the post multiplication by AQ), where () is a permutation

matrix and A a diagonal matrix with non-zero diagonal elements.

The matrix D is identifiable up to a permutation of indexes and to signed scaling
¢, — +oie; ,with o; > 0, ¢ = 1,...,n. The only local identification issue is the positive

scaling, which can be solved by introducing identifying restrictions.
Proposition B.2. [Hyvarinen et al. (2001)]

Under the assumptions of Proposition B.1. the local identification issue is solved if D

is an orthogonal matrix: D'D = Id.

B.2 Two-Sided Multivariate Moving Averages
Proposition B.1 has been extended by Chan, Ho (2004), Chan, Ho, Tong (2006) to

two-sided moving averages. We give a version of their result for structural mixed models:

Y, =&Y+ + ®,Yi, + Duy.

Proposition B.3
Let us assume that:

i) The roots of det(/d — &2 — - -- — ®,2P) = 0 are not on the unit circle,
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ii) Matrix D is invertible,

iii) (uy) is i.i.d. with independent components,

iv) Each component admits a finite even moment of order k larger than 3, and at least
one non-zero cumulant of order larger than 3.
Then i) @4, ...., @, are identifiable, ii) D is identifiable up to the identification issues given

in Proposition B.1.

This result corresponds to Condition 4 in Chan, Ho, Tong (2006). Assumption iv) implies
that all distributions of the components are non-Gaussian.

The conditions of Proposition B.2. are sufficient for identification. Other sufficient
conditions based on the cross-moments of 3rd and 4th order have been considered in the

literature to weaken the assumption of cross-sectional independence [see Velasco (2022)].
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On-Line Appendix C: Predictive Density Estimation

This Appendix describes the kernel-based estimation of the predictive density given

in Proposition 1 from the following time series:

ét = Yt - qA)IYt—l - (i)p}/t—p-i-h = 17 "'7T7
. A Y,
Zo, =A% t=1,..,T.
2.t < )/t—l ) 9 9 3
The above time series is used to approximate the density g of €, and density Iy of Zy; as
follows:
T
1 € — ét
~rim 2 (),
and

T A
A 11 29 — L.
l2’T(Z2>_T_h"QZKm< i )

where hy, hy are the bandwidths and K,,, K, are multivariate kernels of dimensions m

and ng, respectively. Then, the estimated predictive density is:

()
. Yo

lar | A% -
()

This formula is easily extended to bandwidths adjusted for each component, by re-

placing for example himK (6 et) by H;n 1 hl K <6J s t), where K is a univariate kernel.

Such an adjustment can account for different component variances.

Ir(ylY 7) = | det Jo| gr(y — 1Yy — -+ — QY7 p01),

Let us consider the example of a bivariate VAR(1) process with one noncausal com-
ponent and a scalar noncausal eigenvalue Ay (see Section 6). The estimated coefficients

of the inverse of A are denoted by:
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The predictive density depends on unknown scalar parameters i, Ao and functional

parameters [y, g that can be estimated. The marginal density lo(A%y) can be approximated

by a kernel estimator:

T
. 11 a? (y1 — y1e) + a**(y2 — yau)
o p(A%y) = = — E K : ’
2,T( y) T hy ( Ry ) ’

while the density l5(A?Y7), can be approximated by a kernel estimator:

N 11 &21 . + &22 _
lar(yr) = Th Z K < (Y10 — Y1) . (Yo7 y27t)) |
t=

where hy is a bandwidth. The joint density g(y — ®yr) can be approximated by

T A A
A 2 1 1 Y1 — QLY — P12Y2 — €14 <y2—¢21le—¢22y2T—€2t)
—d = — K o e ~ | K o e = .
o= tur) =7 ; ( hii hs

where €, ; and €, are residuals € = y; — (iDyt_l and hyy, hio are two bandwidths adjusted

for the variation of € and €;, respectively. We get:

1 T a2 (y1—y1,0)+a%? (y2—y2.¢)
A LSl ( :

l Yr) =
T(y17y2| T) 1T K (&21(yl,T*yl,t)+&22(y2,T*y2,t))
ha

|;\2 11 i (9= &1,1y1,T — Q§1,zy27T — €1t)
T hyihio P hi1

K (yz - ¢2,1yl,T - ¢2,2y2,T - 62,t))

h12
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On-Line Appendix D: Empirical Analysis of Oil Prices and GDP

1. Quarterly Data Estimation
1.1 Estimated errors
The estimated errors of the mixed VAR(1) model are plotted below:

[o] 20 40 60 80 100 120

Figure 1: Errors é;, Noncausal VAR(1), Q1 1986 -Q2 2019

Their densities are non-Gaussian, as shown in Figure 2:

N =133 Bandwidth = 0.1442 N =133 Bandwidih = 0.2446

(a) Density of € (b) Density of é;;

Figure 2: Density of ¢
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Figure 3: Residual ACF

We observe that the estimated residuals, their squares and third powers are serially
0.262 0.184

0.184 1.506
neous correlation is 0.28 (statistically significant at 0.05).

uncorrelated. The variance-covariance matrix is > = [ } and contempora-

1.1 GCov estimation of the mixed model for log-prices

The estimation of the VAR(1) model applied to the logarithms of oil prices produces
an autoregressive matrix with two imaginary eigenvalues of modulus greater than 1. The
estimation applied to the differences of log-prices produces an autoregressive matrix with
two real eigenvalues inside the unit circle.

The figure below shows a path of a process with the same matrix ® and t(6) distributed

errors with the variance-covariance matrix equal to ¥ of the mixed VAR(1) given above.
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Figure 4: Simulated path

We observe that the simulated model can imitate the dynamics of a bivariate series of

growth and oil.

1.3 Analysis of the SVAR model by OLS

The Augmented Dickey-Fuller test and Phillips-Perron test performed without inter-
cept, with intercept and with both intercept and trend do not reject the unit root hypoth-
esis in the oil prices. All these tests reject the unit root in the GDP rate (results available
on request). These standard testing methods are based on the assumption of linear causal
dynamics and can be misleading. In our framework of a mixed causal-noncausal model,
the causal dynamic is stationary, nonlinear with local trends. The Dickey-Fuller and
Phillips-Perron tests do not distinguish between the local and global trends [Gourieroux,
Jasiak (2019)]. Hence their outcomes can be confusing.

The VAR(1) estimated by the OLS and Normality-based Maximum Likelihood (ML)
produce similar results. The OLS output is given below:

The first dependent variable (top panel) is the oil price and the second dependent
variable (bottom panel) is the GDP. The regressors z1 and z2 are the lagged oil and
lagged GDP rate. The coefficient on the lagged oil is close to 1 and its ML estimator is
0.95 with standard error 0.029.

Next, we adopt the approach of Kilian, Vigfusson (2017) and model the difference of
logarithms of oil prices and GDP rate as a VAR(1) model.
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cases: 133 Dependent wariable: Y
Missing cases: a Deletion method: MNone
Total S55: 161256.914 Degrees of freedom: 1z
R-squared: a.895 Rbar-squared: a2.894
Residual 55: 169@5.724 Std error of est: 11.424
F{2,13@): 555.829 Probability of F: o.oea
Durbin-kWatson: 1.57@

Standard Prob Standardized Cor with
Variable Estimate Error t-wvalue >t Estimate Dep Var
CONSTAMNT 2.535298 2.622297 2.966820 8.335 -—- -—-
X1 2.958855 2.829383 32.208995 a2.oea a.95a777 2.945956
X2 1.15148@ 1.799521 8.6839881 8.523 a.elssee -8.2250814
Valid cases: 1232 Dependent wariable: Y
Missing cases: 5] Deletion method: MNone
Total S5: 42988 Degrees of freedom: 13
R-sguared: a.211 Rbar-squared: 2.199
Residual 55: 33.842 S5td error of est: 8.51a

F(2,13@): 17.396 Probability of F: 0.000

Durbin-Watson: 2.1286

Standard Prob Standardized Cor with
Variable Estimate Error t-walue >t Estimate Dep War
CONSTANT B.731832 8.117326 6.237568 @.oe0 --- ---
X1 -@.e84524 8.8e81315 -3.440987 e.eal -@.277323 -8.354787
x2 8.381778 g.88a514 3.748142 a.o8a a.382ar78 8.373194

Figure 5: Results of OLS estimation of VAR(1) with price levels
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VWalid cases: 1323 Dependent wariable: Y
Missing cases: a Deletion method: Mone
Total S5: 8.625 Degrees of freedom: 138
F-squared: 2.e4a Rbar-squared: 2.831
Residual 55: 2.596 5td error of est: 8.868
F(2,13@): 3.099 Probability of F: 0.048
Durbin-Watson: 1.92@

Standard Prob Standardized Cor with
Variable Estimate Error t-wvalue >t Estimate Dep Var
COMNSTANT -8.ea7812 2.ees3969 -8.871@63 2.3385 --- -—--
x1 8.153936 8.a856580 1.777968 8.878 8.155994 8.188885
x2 8.813962 2.a1a578 1.319963 8.189 8.11581& 8.149338
YWalid cases: 133 Dependent wariable: Y
Missing cases: a Deletion method: Mone
Total 55: 42 .98 Degrees of freadom: 1328
R-squared: 2.141 Rbar-squared: e.128
Residual 55: 36.859 5td error of est: e.532
F(2,13@): 18.653 Probability of F: 2.eee
Durbin-Watson: 2.166

Standard Prob Standardized Cor with
Variable Estimate Error t-value >t Estimate Dep Var
COMNSTANT 2.393880 a2.a7a589 5.586242 a.0ea -—- -—-
x1 -8.328474 2.680670 -8.482575 2.63e -8.240171 2.2841897
X2 2.381448 2.e83159 4.586962 e.eee 2.381828 2.373194

Figure 6: Results of OLS estimation of VAR(1) with diff log prices

The first regressor z1 is the lag 1 of differenced logarithm of oil price. The second
regressor z2 is the lagged GDP rate.
The ACF of the € of this model is given below.
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Figure 7: Power ACF of ¢, diff-log prices, VAR(1)

We observe that the residuals of differenced logarithms of oil prices show significant
autocorrelation at high lags and an ARCH effect at lag 2. There also remains significant
correlation at lag 2 in powers 3 of the residuals. This motivates extending the lag up
to lag 4, as in Kilian, Vigfusson (2017) and adding a comtemporaneous difference log of
oil prices to the GDP rate equation as regressor x9, which gives this model a structural

interpretation.
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Figure 8:

The ACF of the residuals of this SVAR model are shown below.

File Edit Format View Help
Valid cases: 138 Dependent wariable: h 4
Missing cases: a Deletion method: Mone
Total S5: 8.588 Degrees of freedom: 121
R-squared: a.l1es Rbar-squared: a.e49
Residual 55: 8.524 Std error of est: a.866
F(8,121): 1.838 Probability of F: a.e76
Durbin-Watson: 2.812

Standard Prob Standardized Cor with
Variable Estimate Error t-value >t Estimate Dep Var
CONSTANT -2.224545 2.elllel -2.429448 2.683 -—- -—-
X1 2.166449 2.28923142 1.787239 e.e7c 2.166437 2.143128
X2 2.e17744 2.e11516 1.54@842 2.126 2.151291 2.162358
X3 -2.2604640 2.e943a6 -2.826189 e.e2c -2.264952 -2.22123230
xa -g.ealeas e.e120a9 -8.891452 a._927 -8.289374 -2.ea2212
X5 ©.es861a5 ©.892240 ©.933485 8.352 ©.e88086 -8.ea4685
X6 -8.ee7252 2.e11947 -8.686970 8.545 -8.e61769 -2.e36153
X7 -8.855362 ©.e89832 -8.621817 8.535 -8.857529 2.ease6l
X8 e.eels7e 2.e11489 2.136642 8.892 2.e13385 ©.ea7l18s8
Valid cases: 138 Dependent wariable: h 4
Missing cases: a Deletion method: Mone
Total S5: A2 752 Degrees of freedom: 128
R-squared: 8.247 Rbar-squared: a.19e
Residual 55: 32.291 Std error of est: e.518
F(9,128): 4.369 Probability of F: a._gee
Durbin-Watson: 2.8l

Standard Prob Standardized Cor with
Variable Estimate Error t-value >t Estimate Dep Var
CONSTANT 2.2923411 2.e87426 3.356889 e.eal -—- -—-
X1 -2.887984 2.742475 -1.195979 e.234 -2.1e415@ 2.249279
x2 a.272869 a.e91494 2.982377 a.aa3 a.272897 a.378264
X3 2.183911 8.765787 e.24el160 e.811 ©.821598 2.839145
XA e.2437a1 2.894494 2.579e81 e.el11 ©.243989 8.334491
X5 -8.654226 ©.728378 -8.898196 e.371 -8.878584 -8.849393
X6 -8.e89933 2.894145 -2.1e55a9 e.916 -8.e89925 2.159895
X7 -8.864326 ©.701648 -1.231852 e.220 -2.185358 -e.120046
X8 ©.e3ec86 e.ese4as ©.338536 e.736 ©.e3ec88 2.123363
59 1.759285 8.715295 2.459418@ e.e15 2.286348 ©.230292

Results of OLS estimation of SVAR(4) with diff-log prices
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(b) ACF of ¢

Figure 9: Power ACF of ¢, diff-log prices, SVAR(4)

The residuals are contemporaneously uncorrelated. There is a significant autocorrela-
tion in the squared oil residuals at lag 2 that was also observed in the ACF of the previous
VAR(1) model. This nonlinear effect has not been removed by extending the lags in the

model.

1.4 Analysis of the threshold VAR model, OLS
Next, we estimate model (1) on page 1753 of Kilian, Vigfusson (2017) by adding the

terms representing the differences between the log oil prices and its maximum over the
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14

past 3 years. These terms at lags 0 to 4, appear in the model below as regressors x11 to

x13.

The model contains 22 regressors and accounts

Nalid cases:
Missing cases:
Total 55:
R-squared:
Residual 55:
F(8,121):
Durbin-Watson:

NROO®
")
o
&

.e12

Standard

Error

Dependent wvariable:
Deletion method:
Degrees of freedom:
Rbar-squared:

5td error of est:
Probability of F:

Prob Standardized

Cor with
Dep Var

Variable Estimate
CONSTANT -8.084545
x1 8.166449
x2 2.e17744
X3 -8.264648
x4 -8.081e98
x5 2.886185
X6 -8.ea7252
x7 -8.855362
X8 2.eal157e

Valid cases:
Missing cases:
Total 55:
R-squared:
Residual 55:
F{14,115):
Durbin-Watson:

0000000

Lelllel
.@93142
.@11516
.@94386
.@128e9
.B92248
.@11947
.@39832
211489

Standard

Error

.143128
.16@358
.221238
.8e2212
. 884685
.@36153
.8e5861
.Be71ss

Cor with
Dep Var

Variable Estimate
COMNSTANT 8.339777
xel1 8.862649
xez 9.186963
xe3 8.899285
xed 8.293871
xas -1.977873
X6 B.e7e69@
xev -1.165629
xes 8.823176
X9 3.634342
xX1e -8.8432280
X111 -8.118458
X112 1.762945
x13 4.574759
x14 -3.842489

Figure 10: Results of OLS estimation of Kilian-Vigfusson model

NNNNNODOODOOAORDAE®

.122689
. 996867
.B95677

992394
a971e2
284666

.896619
.884278
.@91962
.981947
.422159
-492389
.461134
. 286989
.@75715

|
NEDWRAORPONWERLRON

|
[

t-value >t Estimate
409448 B.683 ---
787839 8.e76 8.166437
548842 2.126 2.151291
. 886189 a.eas6 -8.264952
.891452 @.927 -8.889374
.933485 B.352 2.888886
.6869782 8.545 -8.861769
.621817 @.535 -8.a57529
136642 @.892 2.813385

Dependent wvariable:

Deletion method:

Degrees of freedom:

Rbar-squared:

5td error of est:

Probability of F:

Prob Standardized
t-value >|t] Estimate
LFF1227 a.ea7 ---
.B6289%6 @.95e 2.ea7348
. 954896 2.853 8.186982
.leesds 8.92e 2.811659
.@18183 a.eas3 @.293417
186382 2.e31 -8.237335
731642 8.466 8.a78630
.318181 2.19e -8.142875
.252821 a.881 2.e23178
.B29440 2.e06 8.426295
.228681 2.ea1 -8.371893
.B44319 B.965 -8.8a5896
. 716314 @.475 @.e81338
.eead411 2.e48 8.211e67
.465716 8.145 -8.148521

QO

.849279
. 378264
.839145
.334491
. 849393
.159895
.12e846
.123363
.238292
.@3e453
.B43937
.B62859
.B25177
.175162

for the simultaneity and nonlinear

effects. Moreover, the model is structural and the current value of oil appears in the

growth rate equation 2. The oil is modelled as the first differences in log prices. The

ARCH effect in the residuals at lag 2 is not removed when the additional regressors are

added to the model. This nonlinear effect remains, as shown in the residual ACF below.
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(b) ACF of é2

Figure 11: Power ACF of ¢, OLS estimation

We conclude that the mixed causal-noncausal VAR(1) model with 4 autoregressive
coefficients fits the data equally well as the above model with 24 coefficients.

It is interesting to see if the residuals of the model remain uncorrelated when the
normality assumption is relaxed and the GCov estimator is used instead of the OLS
estimator.

The Shapiro test of normality applied to the residuals of the oil equation does not
reject the null (p-value of 0.8387). However, the normality is strongly rejected in the
residuals from the second equation (p-value of 0.01711).

The autocorrelations of the residuals and their squares are plotted below:
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Figure 12: Power ACF of ¢, GCov estimation

We observe that unlike the OLS residuals, the GCov residuals of the Kilian-Vigfusson
model are contemporaneously correlated. Their squares are contemporaneously correlated

too. The normality assumption and the use of OLS has an effect on the estimates.

2. Predictive Densities
We first provide the predictive densities of the estimated models of Section 6.2 for
additional dates between T=112 and T=118.
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Figure 13: VAR(1) based predictive density estimation, T=112
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Figure 14: VAR(1) based predictive density estimation, T=114
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Figure 15: VAR(1) based predictive density estimation, T=115
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Figure 16: VAR(1) based predictive density estimation, T=116

20
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Figure 17: VAR(1) based predictive density estimation, T=118

2.2. One step-ahead path forecasting

We perform a sequence of 1 step ahead forecasts, where the series is re-estimated at
each step on a subsample of observations from time 1 up to the forecast origin. The first
forecast is performed at time T=100 and the values of both component series at time
T+1=101 are predicted. Next, the sample is increased by 1 observation and extended up
to time T=101. Then the value of the series at time T+1=102 is forecast, and so on,
until the end of the path.

At each step, the estimated parameters are the sample means and the parameters of
matrix @, which are used in the forecast computation. The forecast is evaluated each
time over a grid of 200 values equally spaced by 0.1, below and above the last values of

latent components of the series.
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The first sequence of forecasts is based on the estimates from 4 nonlinear transforms
in the objective function of the GCov estimator. Only the powers 1 and 2 of the errors
are considered. The forecasts (black lines) and the true values of the processes (red lines)

are given below.

1.0

05
|

0.0
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Figure 18: VAR(1) based path of growth rate (4 transforms), T=101-135
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Figure 19: VAR(1) based path of 0il/10 (4 transforms), T=101-135

We observe that the path of oil prices is well fitted. However, the VAR(1) has a difficulty
fitting small variations in the growth rate. The MSFE (Mean squared Forecast Error) is
0.184 for the rate and 1.582 for the oil.

For this reason, we increase the number of power transforms in the objective function,
by considering powers 1, 2, 3 and 4 of the errors. The Figures below show that this refined

estimation approach helps to forecast the small changes in the growth rate.
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Figure 20: VAR(1) based path of growth rate (8 transforms), T=101-135
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Figure 21: VAR(1) based path of 0il/10 (8 transforms), T=101-135

We observe that it takes a few steps for this method to start improving the forecast of the
series. Over the entire subset of 34 forecasts, the MSFE is higher under this approach, as
compared to the previous one. More specifically, the MSFE of growth rate is 0.201. The
MSFE of oil is 1.904. An improvement appears over the set of last 14 observations.

Over the last 14 observations, when 4 additional power functions are added to the
GCov estimation, the MSFE of growth rate decreases from 0.071 to 0.068 and the MSFE
of oil decreases from 0.727 to 0.645

For comparison, we compute the IN-SAMPLE fitted values of the structural model of
Kilian, Vigfusson model with 22 parameters estimated by the OLS. It is specified for the
differences of logarithmic values of oil and accounts for the nonlinearity in oil series and
simultaneity in the growth rate. As mentioned earlier,the current value of the oil variable
determines the growth rate simultaneously et each point in time (regressor 9). In our
computation, the true values of oil, rather than the predicted ones are used to compute

the fitted values of growth. Moreover, the levels of oil prices are computed by adding the



THIS VERSION: May 21, 2023 26

fitted difference to the true past value of the oil price levels rather than from the random

walk representation involving the initial value.
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Figure 22: Kilian-Vigfusson: fitted values of 0il/10), T=101-135

The MSE of fitted values of oil over the same period of 34 forecasts is 1.934 and is
higher than the oos MSFE of noncausal VAR(1). Over the subset of last 14 observations,
the MSE of oil is 0.867 and is also higher than the mean forecast error of the VAR(1)

model.
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Figure 23: Kilian-Vigfusson: fitted values of growth, T=101-135

The MSE of the fitted values of growth rate is 0.204 and is marginally higher /equal, as
compared to the oos MSFE of noncausal VAR(1). Over the subset of last 14 observations,
the MSE of growth rate is 0.140 and is higher than the mean forecast error of the VAR(1)
model. Importantly, we observe that the fitted series does not accommodate local changes
in the trend of the rate.

In the table below the forecasts are computed for the levels of the variables (oil divided
by 10), with the mean added to the forecast. The previous tables were forecasting the

deviations from the mean.
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Forecast with 8 power transforms

T forecast interval growth interval oil true values
growth oil qll ql2 q21 q22 growth oil
110 | 0.507 | 14.025 | -11.192 | 1.407 | -2.174 | 15.825840 | 0.139 | 12.684
112 | 0.502 | 14.427 | -10.997 | 1.402 | -2.872 16.027 0.711 | 11.998
114 | 0.150 | 12.455 | -7.849 | 1.050 | -3.144 | 14.055 1.284 | 12.586
115 | 0.853 | 12.844 | -11.346 | 2.053 | -3.155 14.444 1.164 | 11.944
116 | 0.833 | 12.169 | -11.066 | 1.933 | -2.630 13.869 0.448 | 9.114
118 | 0.766 | 5.911 | -9.633 | 1.666 | -0.188 7.711 0.580 | 7.152
133 | 0.542 | 6.679 | -8.457 | 1.442 | -2.320 8.479 0.542 | 6.606
134 | 0.619 | 6.653 | -9.180 | 1.519 | -3.546 8.453 0.673 | 7.452
Forecast with 4 power transforms
T forecast interval growth interval oil true values
growth oil qll ql2 q21 q22 | growth oil
110 | 0.385 | 13.367 | -11.814 | 1.285 | -2.432 | 15.167 | 0.139 | 12.684
112 | 0.360 | 13.879 | -11.639 | 1.260 | -3.020 | 15.579 | 0.711 | 11.998
114 | 0.235 | 13.182 | -6.764 | 1.135 | -3.817 | 14.882 | 1.284 | 12.586
115 | 0.571 | 12.665 | -13.128 | 1.471 | -2.234 | 14.565 | 1.164 | 11.944
116 | 0.581 | 12.005 | -12.518 | 1.481 |-2.394 | 13.905 | 0.448 | 9.114
118 | 0.712 | 5.942 | -9.887 | 1.712 | 0.042 | 7.842 | 0.580 | 7.152
133 | 0.581 | 7.010 | -7.618 | 1.481 | -2.589 | 8.810 | 0.542 | 6.606
134 | 0.666 | 6.777 | -9.033 | 1.566 | -3.322 | 8.577 | 0.673 | 7.452
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