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1 Introduction

There has been a growing interest in applications involving the mixed causal-noncausal

Vector Autoregressive (VAR) models 3 and their theoretical properties [Gourieroux, Jasiak

(2017),(2022), Davis, Song (2020), Lanne, Luoto (2016),(2021), Swensen (2022)]. In ap-

plied research, the stationary mixed VAR models can replicate local trends, spikes and

bubbles characterizing, e.g. the commodity prices, which are interpreted as nonstationary

features in the traditional literature on causal, i.e. past dependent processes. In terms of

theoretical properties, the main differences between the mixed VAR’s and the traditional

causal VAR’s are in the assumptions concerning the eigenvalues of the autoregressive ma-

trix coefficients and the errors of the model. More specifically, in the mixed model the

roots of the autoregressive characteristic equation can be in modulus either greater or

smaller than 1, as opposed to being only greater than 1 in the causal VARs. While the

errors of a causal VAR are assumed to be normally distributed, the errors of a mixed

VAR need to be non-Gaussian for the identification of causal and noncausal dynamics.

The traditional Gaussian Maximum Likelihood (ML) and Least Squares estimators are

flawed in applications to mixed VAR’s, as these methods are constrained to the Gaussian

and causal dynamics. Under parametric distributional assumptions, the ML estimators

based on non-Gaussian likelihood functions can be used for the mixed VAR models, as

shown in Davis, Song (2020). When the error distribution is left unspecified, the Gen-

eralized Covariance (GCov) estimator is available, providing consistent, asymptotically

normally distributed and semi-parametrically efficient parameters estimates in one step

[Gourieroux, Jasiak (2022)].

There is an important difference between the errors of a causal and mixed VAR models,

other than non-Gaussianity. Unlike the errors of causal VARs, those of mixed VAR’s

are not uncorrelated / independent from the past values of the process. Hence, they

cannot be interpreted as innovations. For this reason, innovation-based inference, such as

impulse response analysis and variance decomposition routinely conducted in the causal

VAR models cannot be applied to the mixed VAR models. So far, the nonlinear causal

innovations of a mixed VAR model have not been defined in the literature.

Another difficulty arises with the fore- and backcasting of the mixed VAR mod-

3Referred to as mixed VAR models, henceforth.
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els. A mixed VAR model with non-Gaussian errors cannot be forecast directly from

its conditional expectation, unlike the traditional causal VAR model. For out-of-sample

(oos) forecasting of mixed causal-noncausal VAR processes, there exist in the literature a

simulation-based method of forecasting given in Nyberg, Saikkonen (2014) and a Bayesian

method of Lanne, Luoto (2016), which are valid for a constraint multiplicative mixed VAR

representation. An operational causal predictive density in closed-form for the multivari-

ate mixed VAR models has been deemed infeasible in Fries, Zakoian (2019) 4.

Moreover, the backcasting, which is straightforward for the time reversible linear Gaus-

sian causal VAR processes, is complicated in this context as well. The mixed VAR does

not satisfy the assumption of Gaussianity ensuring the time reversibility, which underlies

the commonly used time series and machine learning methods of backcasting [Twumasi,

Twumasi (2022)]. A closed-form formula of (oos) backcasting for mixed VAR models has

not been introduced in the literature yet.

This paper addresses the two problems of i) the lack of closed-form oos predictive

density for (oos) forecasting and backcasting and ii) the lack of a definition of nonlinear

causal innovations for the mixed VAR model.

We provide closed-form formulas of backward and forward predictive density for out of

sample (oos) forecasting and backcasting of mixed causal-noncausal VAR processes. This

approach is built upon the results on noncausal processes in Gourieroux, Jasiak (2016).

For fore(back)casting, we show that the mixed VAR is a nonlinear Markov process in

both calendar and reverse time and it is time-irreversible. The closed-form expression of

predictive densities for fore- and backcasting the mixed causal-noncausal VAR processes

are given at horizon 1. They can be used sequentially to predict at any horizon. The pro-

posed oos forecasting and backcasting methods are applicable to the structural (S)VAR

models, which can be seen as the mixed causal-noncausal VAR models satisfying an ad-

ditional assumption of cross-sectional error independence. From the predictive densities,

we infer the point forecasts and prediction intervals. A post-estimation inference method

for assessing the forecast interval uncertainty due to the preliminary estimation step is

introduced too. A confidence set of the predicted set is proposed as a post-estimation

inference method to capture the effect of the preliminary estimation step on the prediction

interval.

4”The predictive density is generally not available under closed form”, Fries, Zakoian (2019)
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The nonlinear causal innovations are discussed in the context of the mixed causal-

noncausal SVAR model. The additional cross-sectional independence condition, com-

monly used in macroeconomics [see, e.g. Guay (2021)], helps identify the autoregressive

parameters and a suitable error orthogonalization method in a SVAR model. We show

that, in a (S)VAR model, it is possible to define the nonlinear causal innovations by

extending the results in Koop, Pesaran, Potter (1996), Potter (2000), and Gourieroux,

Jasiak (2005), which are in line with those in Gonzalves et al.(2022). We define the non-

linear causal innovations for a mixed causal-noncausal (S)VAR model, determine their

relationship with the model errors and discuss their identification and in-sample filtering.

The oos forecast performance and nonlinear causal innovations analysis are illustrated

by simulations and empirical applications. We use the one-step semi-parametric GCov

estimators introduced in Gourieroux, Jasiak (2022) for (S)VAR models. This approach

to (S)VAR analysis does not require any distributional assumptions on the errors of a

(S)VAR model. The semi-parametric estimation method distinguishes our approach from

the existing literature employing maximum likelihood-based methods [Davis, Song (2020),

Swensen (2022)], which are consistent provided that the distributional assumptions are

satisfied.

The paper is organized as follows. Section 2 describes the causal-noncausal VAR model

and the structural SVAR model in which the errors depend linearly on the cross-sectionally

independent sources. Section 3 presents the closed-form formulas of the multivariate pre-

dictive density for forecasting and backcasting. Section 4 defines the nonlinear causal

innovations and discusses their identification and filtering. Section 5 reviews the semi-

parametric estimation of the mixed (S)VAR model and introduces a filtering algorithm

and post-estimation inference on the prediction set. Two empirical applications are pro-

vided in Section 6. The first application considers the joint dynamics of oil prices and

GDP growth rates. The second application studies a bivariate process of Bitcoin/USD and

Ethereum/USD exchange rates. Section 7 concludes. The technical results are given in

Appendices 1-3. Appendix 1 contains the proof of the forward and backward predictive

density formula. Appendix 2 explains the incompatibility of the multiplicative repre-

sentation of a causal-noncausal VAR model with the structural SVAR representation.

Appendix 3 discusses the (under)-identification of nonlinear innovations in a multivariate

framework.
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Additional information is provided in the online Appendices B, C and D, which include

a discussion of the identification conditions for Independent Component Analysis (ICA),

the closed-form expression of the kernel-based semi-nonparametric estimator of predictive

density, and additional results for the empirical applications.

2 Mixed Causal-Noncausal Processes

The causal-noncausal VAR(p) model has been studied in Gourieroux, Jasiak (2016),(2017),

Davis, Song (2020), Swensen (2022) and Cubbada, Hecq, Voisin (2023).

2.1 The Model

The multivariate causal-noncausal VAR(p) process is defined by:

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p + εt, (2.1)

where Yt is a vector of size m, Φj, j = 1, ..., p are matrices of autoregressive coefficients of

dimensionm×m and (εt) is a sequence of errors, which are serially independent, identically

distributed (i.i.d.) random vectors of dimension m with mean zero and finite variance-

covariance matrix Σ. Errors (εt) are assumed to have a non-Gaussian distribution. Since

(εt) is not assumed independent of past Y s, this error process cannot be interpreted as

an innovation process.

We also assume that the roots of the characteristic equation of the autoregressive

polynomial matrix det(Id−Φ1λ− · · ·Φpλ
p) = 0 are of modulus either strictly greater, or

strictly less than one, i.e. are either outside, or inside the unit circle. Then, there exists

a unique strictly stationary solution to the VAR model (2.1).

The strictly stationary solution (Yt) to model (2.1) can be written as a two-sided

moving average in errors εt:

Yt =
+∞∑
j=−∞

Cjεt−j. (2.2)

This is a linear time series, according to the terminology used in Rosenblatt (2012). The

matrices of coefficients on the past and future terms of this MA representation are uniquely

defined when εt is non-Gaussian, which is an identifying assumption. Yt is said to be causal
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in εt, if Yt =
∑+∞

j=0 Cjεt−j, or noncausal in εt, if Yt =
∑−1

j=−∞Cjεt−j =
∑+∞

j=1 C−jεt+j, or

mixed causal-noncausal, otherwise.

In the presence of a noncausal component, the assumption of strict stationarity of Yt

implies the nonlinear causal dynamics of Yt with E(Yt|Yt−1) being nonlinear in Yt−1 =

(Yt, Yt−1, ...) and past-dependent conditional heteroscedasticity V (Yt|Yt−1). Then, the

process (Yt) can be characterized by a possibly complex conditional distribution of Yt+h

given Yt = (Yt, Yt−1, ...) for h = 1, 2, .., that provides nonlinear oos predictions. The

objective of this paper is to derive this conditional distribution under closed form.

A process (Yt) with nonlinear causal dynamics may display local trends, spikes and

bubbles similar to those observed in the time series of commodity (oil) prices, exchange

rates, or cryptocurrency prices [Gourieroux, Zakoian (2017), Gourieroux, Jasiak (2017),

Gourieroux, Jasiak, Tong (2021)].

2.2 Multiplicative VAR

An alternative multiplicative Mixed Autoregressive (MAR) representation of the mixed

causal-noncausal VAR model was proposed by Lanne, Saikkonen (2008),(2013):

Φ(L)Ψ(L−1)Yt = ε∗t ,

where the matrices of autoregressive polynomials Φ and Ψ have both roots outside the unit

circle and ε∗t is an i.i.d. sequence of errors. Davis, Song (2020), Swensen (2022), Cubbada,

Hecq, Voisin (2022), point out that the multiplicative representation of a mixed causal-

noncausal VAR model does not always exist. In addition, Appendix 2 shows that the

multiplicative representation may not be compatible with the SVAR model given below.

2.3 Structural VAR (SVAR) Model

A structural mixed causal-noncausal VAR model (henceforth referred to as mixed) sat-

isfies an additional assumption of errors (εt) being linear functions of cross-sectionally

independent sources. The Structural SVAR model is defined by:

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p +Dut, (2.3)
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where the components (u1t), (u2t)..., (umt) (called the sources, later in the text) are serially

i.i.d. and are also cross-sectionally independent of one another. The mixing matrix D

is an invertible (m × m) matrix 5 The cross-sectional independence condition on ut is

necessary to identify the matrix D in addition to parameters Φ1, ...,Φp, and the nonlinear

causal innovations introduced in Section 4. The SVAR model is a semi-parametric model

with the true distribution P0 depending on the true parameters Φ10, ...,Φp0, D0 and the

true functional parameters of source distributions, i.e. the true densities f0,j, j = 1, ...,m

of the sources. Alternatively, the SVAR model can have a parametric specification when

the distributions of sources are assumed to be f0,j(u) = f0,j(u, γj,0), where γj,0 is the true

value of parameter γj.

Identification Issues in SVAR Models

The classical normality-based ML and least squares estimation methods are applicable

to the traditional causal SVAR models. They are flawed in application to the mixed

(S)VAR models because they are based on the first and second-order moments, i.e. the

means, variances and autocovariances/autocorrelations, which is equivalent to assuming

Gaussian error distributions. As mentioned earlier, the causal and noncausal dynamics

cannot be distinguished at second-order. More precisely,

i) The roots of the characteristic equation of the autoregressive polynomial matrix

cannot be distinguished from their reciprocals.

In the mixed VAR model (2.1) and SVAR model (2.3), the assumption of non-Gaussian

errors is crucial for the identification of Φ1, ...,Φp.

ii) Matrix D is not identifiable

In a mixed SVAR model (2.3), and additional identification issues arise when the errors

εt = Dut are Gaussian. Then, if ut, t = 1, ..., T are standard normal variables, ut ∼
N(0, Id), where Id denotes the identity matrix, we can identify the error distribution

εt ∼ N(0, DD′) = N(0,Σ) and then the product DD′, but not the matrix D itself.

In a traditional causal SVAR model with Gaussian errors, this identification issue can

be solved by imposing identifying restrictions, such as the shock ”ordering” implemented

through the Cholesky decomposition [Sims (1980), (2002)] and criticized e.g. by Lutkepohl

5A causal SVAR model with a noninvertible matrix D (because of the number of observed variables
being larger than the number of shocks) is considered in Cordoni, Corsi (2019).
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(1990), or by imposing additional restrictions such as the equality restrictions [Rubio-

Ramirez, Waggoner , Zha (2010)], sign restrictions [Granziera, Moon, Schorfheide (2018)],

or long-run restrictions [see Blanchard, Quah (1989), Cochrane (1994), Section 2.1.5,

Faust, Leeper (1997), Leeper et al. (2013)].

It follows from the Independent Component Analysis (ICA) literature [Comon (1994),

Erikson, Koivunen (2004)] and the existence of two-sided moving average representation

[Chan, Ho, Tong (2006)] that the two identification issues i) and ii) can be solved in

the SVAR model simultaneously without imposing the above identifying restrictions if

the components uj,t of the source ut are non-Gaussian and independent of one another

[Gourieroux, Monfort, Renne (2017), Velasco, Lobato (2018), Velasco (2022)]. Then,

one can identify the autoregressive coefficient matrices Φ1, ...,Φp and matrix D. It is

also possible to identify non-parametrically (and then parametrically) the distributions

of sources uj,t, j = 1, ...,m. Moreover, their independence determining the structural

characteristic of the VAR model can be tested. The exact conditions on the distributions

of the components of ut, allowing us to solve the identification issues, are reviewed in the

on-line Appendix B.

3 Predictive Density

Let us consider a VAR(p) process of dimension m:

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p + εt, (3.1)

where the error vectors εt are i.i.d. and have a continuous distribution with probability

density function g. We assume that the roots of:

det(Id− Φ1z − · · · − Φpz
p) = 0, (3.2)

are not on the unit circle. Then, there exists a unique stationary solution of model (3.1)

with a two-sided moving average representation in εt.

By stacking the present and lagged values of process (Yt), model (3.1) can be rewritten

as a n = mp multidimensional VAR(1) model:
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(
Yt
Ỹt−1

)
=


Yt
Yt−1

...
Yt−p+1

 = Ψ

(
Yt−1
Ỹt−2

)
+

(
εt
0

)
, (3.3)

with

Ψ =


Φ1 · · · · · · Φp

Id 0 · · ·
...

. . . . . .
...

0 · · · Id 0

 . (3.4)

The eigenvalues of the autoregressive matrix Ψ are the reciprocals of the roots of the

characteristic equation (3.2).

Matrix Ψ has a real Jordan representation:

Ψ = A

(
J1 0
0 J2

)
A−1,

where J1 (resp. J2) are real (n1 × n1) (resp. (n2 × n2)) matrices where n2 = n− n1 with

all eigenvalues of modulus strictly less than 1 [resp. strictly larger than 1] and A is a

(n×n) invertible matrix [see Perko (2001), Gourieroux, Jasiak (2016), Section 5.2, Davis,

Song (2020), Remark 2.1. for real Jordan representations]. Then, equation (3.3) can be

rewritten as:

A−1
(

Yt
Ỹt−1

)
=

(
J1 0
0 J2

)
A−1

(
Yt−1
Ỹt−2

)
+ A−1

(
εt
0

)
. (3.5)

Let us introduce a block decomposition of A−1:

A−1 =

(
A1

A2

)
, (3.6)

where A1 is of dimension (n1 × n) and the transformed variables:

Zt =

(
Z1,t

Z2,t

)
= A−1

(
Yt
Ỹt−1

)
, ηt =

(
η1,t
η2,t

)
= A−1

(
εt
0

)
. (3.7)

Then, we get two sets of latent components of process Yt, written as the following functions

of current and lagged values of (Yt):
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Z1,t = J1Z1,t−1 + η1,t,

Z2,t = J2Z2,t−1 + η2,t. (3.8)

The first set of equations in system (3.8) defines a causal VAR(1) model. Thus, process

(Z1,t) has the causal MA(∞) representation:

Z1,t =
+∞∑
j=0

J1η1,t−j, (3.9)

with η1,t as the causal innovation of Z1,t.

The second set of equations in system (3.8) needs to be inverted to obtain a MA

representation in matrices with eigenvalues of modulus strictly less than 1. We get:

Z2,t = J−12 Z2,t+1 − J−12 η2,t+1,

= −
+∞∑
j=0

[J−j−12 η2,t+j+1]. (3.10)

Therefore, (Z2,t) is a noncausal process with a one-sided moving average representation in

future values εt+1, εt+2, ...,. This noncausal component is also a linear function of future

values of η2,t and has nonlinear dynamics in calendar time. Variable η2t is the noncausal

innovation of Z2t.

The expression of the predictive density of YT+1 given Y T = (YT , YT−1, ...) is given

below and derived in Appendix 1.

Proposition 1: The conditional probability density function (pdf) of YT+1 given Y T

is:

l(y|Y T ) =

l2

[
A2

(
y

ỸT

)]
l2

[
A2

(
YT
ỸT−1

)] | det J2| g(y − Φ1YT − · · · − ΦpYT−p+1), (3.11)

where l2(z2) is the stationary pdf of Z2,t = A2

(
Yt
Ỹt−1

)
, if n2 ≥ 1. In the pure noncausal

process, n2 = 0, we have:



THIS VERSION: June 6, 2023 11

l(y|Y T ) = g(y − Φ1YT − · · · − ΦpYT−p+1).

In the special case of VAR(1) process with p = 1, the predictive density becomes:

l(y|Y T ) = l(y|YT ) =
l2(A

2y)

l2(A2YT )
| det J2| g(y − ΦYT ). (3.12)

Proof: See Appendix 1.

This predictive density is constrained by the VAR representation (3.1). It is a semi-

parametric function of parameters Φ1, ...,Φp, determining A2 and J2, and of functional

parameters g, l2. These parameters are identifiable in the SVAR model (2.3) with non-

Gaussian sources.

In the SVAR model (2.3), the density g(ε) can be determined from the joint density

f(u) =
∏m

j=1 fj(uj) of the sources by the Jacobian formula. We have:

g(ε) = (1/|detD|)f0(D−1ε).

Corollary 1: Markov Property The mixed causal-noncausal process is a Markov

process of order p in calendar time for n2 ≥ 1.

This corollary extends to linear mixed causal-noncausal processes of any autoregressive or-

der, the result of Cambanis, Fakhre-Zakeri (1994), who show that a linear pure noncausal

autoregressive process of order 1 is a causal Markov process of order 1.

Since the mixed VAR process of order p is Markov of order p in both calendar and

reverse time, we can derive the closed-form expression of the backward predictive density

in reverse time for backcasting.

Corollary 2: Backcasting Let us consider a mixed VAR(1) model. The backward

predictive density of YT−1 given YT is:

lB(y|YT ) =
l1(A

1y)

l1(A1yT )
|det J2| g(YT − Φy),

where l1 is the stationary density of z1t and g is the density of ε.

Proof: See Appendix 1.
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By considering jointly Proposition 1 and Corollary 2, we can see that the mixed

VAR models have a nonlinear dynamic structure that allows for extending to nonlinear

framework the standard Kalman filter for linear Gaussian processes.

There exists a multiplicity of real Jordan representations and of matrices A built from

”extended” eigenspaces. However, det J2 =
∏n2

j=1 λj, where |λj| > 1, j = 1, ..., n2, is in-

dependent of the real Jordan representation. Similarly, the noncausal component Z2 is

defined up to a linear invertible transformation. Since the Jacobian is the same for the nu-

merator and denominator of the ratio

l2

A2

 y

ỸT


l2

A2

 YT
ỸT−1

 , it has no effect on the ratio. Thus,

the expression of l(y|Y T ) does not depend on the selected real Jordan representation.

In the VAR(1) model, we have dimZt = dimYt and Yt = AZt. Therefore, each compo-

nent of Yt is a linear combination of the latent causal and noncausal components Z1,t, Z2,t,

respectively. When p = 2, there exist more latent causal and non-causal components.

A mixed VAR process has nonlinear causal dynamics, which is captured by the pre-

dictive density. In this nonlinear and non-Gaussian framework, the predictive density

provides the oos prediction intervals at various horizons, replacing the linear pointwise

predictions and prediction intervals.

The closed-form expression of the predictive density is available at horizon 1. It can

be written at horizon h as a multivariate integral over h future values of the process and

estimated in practice as follows: The closed-form predictive density at horizon 1 allows

us to perform drawings of future values of the process, by using the Sampling Impor-

tance Resampling (SIR) method to transform the predictive density into a multivariate

cumulative distribution function (c.d.f)[Smith, Gelfand (1992), Tanner (1993)] (see Sec-

tion 6.1.4 for an illustration). To estimate the predictive density at horizon h > 1 we need

S independent future paths of the process. Each path s = 1, ..., S is obtained by fore-

casting sequentially Y s
T+1|YT , followed by Y s

T+2|Y s
T+1, ..., Y

s
T+h|Y s

T+h−1, from the predictive

densities. This provides a drawing Y s
T+1, ..., Y

s
T+h of a future path s. By replicating inde-

pendently for s = 1, ..., S, we get Y s
T+h, s = 1, ..., S and can use their sample distribution

as an estimator of the predictive distribution at horizon h.
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4 Nonlinear Causal Innovations

Let us recall that the SVAR models (2.3) are VAR models (2.1) satisfying the additional

assumption of errors being linear functions of cross-sectionally independent sources. In

macroeconomics and finance, the inference on the traditional causal SVAR model com-

monly includes the impulse response functions (IRF) and variance decompositions, which

are important tools for the economists and financial policy makers. This inference needs

to be consistent with the structural interpretation of the model. More specifically, the

”structural” IRFs have to be based on shocks applied to the ”structural” nonlinear causal

innovations that need to be identified. These causal innovations have to satisfy both the

serial and cross-sectional independence conditions [Gourieroux, Jasiak (2005), Gourieroux,

Monfort, Renne (2017), Gonzalves, Herrera, Kilian, Pesavento (2022)]. As mentioned ear-

lier, errors εt of mixed VAR models (or the sources ut of mixed SVAR models) cannot

be interpreted as innovations and then used to define the shocks and IRFs. We discuss

below the filtering and identification of nonlinear causal innovations in the framework of

mixed SVAR models.

4.1 Definition of Nonlinear Innovations

Several types of disturbances can be defined from the mixed causal-noncausal (S)VAR

models, such as the model errors (εt), (sources (ut)) and the causal and noncausal latent

component errors (η1,t) and (η2,t), respectively. These disturbances have closed form

expressions in the parameters and observations and can be easily filtered. Among them,

only (η1,t) can be interpreted as causal innovations, being the causal innovations of Z1,t =

A1Yt.

The remaining errors (η2,t) and components of (εt) (sources (ut)) do not have causal

interpretation. Therefore, they should not be used directly to define and examine the

impulse response functions [Davis, Song (2020), Figure 1.7].

The nonlinear causal innovations are defined below for any pure noncausal or mixed

(S)VAR model.

Definition 1: A nonlinear causal innovation is a process (vt) of dimension m such

that:

i) the vectors vt are serially i.i.d.
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ii) the strictly stationary process (Yt) can be written in a nonlinear autoregressive

form:

Yt = a(Ỹt−1, vt). (4.1)

It is easy to see that this condition is equivalent to the Markov of order p property

of (Yt) with a continuous distribution, and can be applied to the mixed model (3.1) by

Corollary 1. The nonlinear causal innovations follow from the Volterra representation

of a multivariate strictly stationary process, providing the basis of nonlinear impulse

response functions [Potter (2000), Gourieroux, Jasiak (2005)]. If function a is invertible

with respect to v, then vt is a nonlinear function of Yt given its past.

The Markov dynamics has to be compatible with the (S)VAR model. Therefore, the

Markov transition probability derived in Proposition 1 is constrained and depends on the

matrix parameters Φ, (D) and the common distribution of independent errors εt (sources

ut). The following section discusses the identification of nonlinear causal innovations,

referred to as nonlinear innovations for simplicity.

4.2 Identification of Nonlinear Innovations

The nonlinear innovations are not defined in a unique way, even under an additional

cross-sectional independence condition of components (v1,t), ..., (vm,t), which is required

to appropriately define the notion of a shock to one innovation v2,t, say, which has no effect

on the remaining components of vt. This identification issue is examined in Appendix 3

in a functional framework. In particular, we get the following Proposition:

Proposition 2:

In a VAR(1) process, the dimension of under-identification in the functional space of

nonlinear innovations is finite and equal to 2m.

Therefore, the identification of nonlinear innovations and then of structural shocks

is an issue in the mixed (S)VAR models, similarly to the linear causal Gaussian VAR

models. However, by using the insights from the traditional causal VAR, it is easy to

derive the innovations of a mixed (S)VAR by extending the Sim’s approach of shock

”ordering” to nonlinear dynamic framework. For example, for m = 2, we can suppose

that the first variable to be shocked is Y1. Then, we consider the conditional cumulative
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distribution function (cdf) F1 of Y1,t given Yt−1 and define v1,t = Φ−1F1(y1,t|yt−1), where

Φ is the cdf of the standard Normal distribution. Then v1,t is a standard Gaussian

white noise. Next, we consider the conditional cdf F2|1 of Y2,t given Y1,t, Yt−1 and define

v2,t = Φ−1F2|1(y2,t|y1,t, yt−1). This provides us another standard Gaussian white noise,

which is independent of (v1,t), and as an outcome of the procedure, we get a causal

innovation vt with independent components.

Proposition 2 implies that there exists a multiplicity of Gaussian nonlinear innovations

that are not computed recursively, in general (see Appendix 3).

Additional restrictions could be introduced either on parameters Φi, i = 1, ..., p, (D),

or on the error (source) distributions to identify the Gaussian innovations and eliminate

their multiplicity.

Nevertheless, the applications of mixed models indicate that the noncausal order is

often equal to 1, i.e. n2 = 1 [see e.g. Gourieroux, Jasiak (2017), Hecq, Lieb, Telg (2016),

and Section 6.3 of this paper]. This is likely due to the type of nonlinear dynamics gener-

ated by noncausal roots capturing the speculative bubbles and local trends. For example,

in macroeconomic models, the noncausal component can be related to speculative bub-

bles in oil prices impacting jointly the GDP and other macroeconomic variables (see the

illustration in Section 6.2).

In practice it is more insightful to examine the consequences of a structural shock to

the latent noncausal component (Z2), which determines the nonlinear dynamics of the

model rather than to the observed variables. In the bivariate SVAR model, this can be

done by applying shock ”ordering” to the pure causal and noncausal components (Zt) and

selecting Z2 as the first variable to be shocked. Using obvious notation, we can proceed

as follows:

v2,t(Zt) = Φ−1[F2(Z2,t|Y t−1)] = Φ−1[F2(Z2,t|Zt−1)], (4.2)

where F2 is the conditional cumulative distribution function (c.d.f) of Z2,t. From equation

(a.5), it follows that the conditional density of Z2,t given Zt−1 has a closed form given by:

l(z2,t|zt−1) =
l2(z2,t)

l2(z2,t−1)
|det J2| gη2(z2,t − J2 z2,t−1), (4.3)

where gη2 is the marginal density of η2. The c.d.f. F2 is the integral of l(z2,t|zt−1) over the
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set of admissible values of z2,t.

Next, we can append it with:

v1,t(Z) = Φ−1[F1|2(Z1,t|Z2,t, Zt−1)], (4.4)

where F1|2 is the conditional cumulative distribution function of Z1,t given Z2,t, Zt−1. From

equation (a.5), we get the closed-form expression of the conditional density:

l(z1,t|z2,t, zt−1) = l(zt|zt−1)/l(z2,t|zt−1) =
gη(z1,t − J1z1,t−1, z2,t − J2z2,t−1)

gη2(z2,t − J2z2,t−1)
. (4.5)

The c.d.f. F1|2 is the integral of l(z1,t|z2,t, zt−1) over the set of admissible values of z1,t.

Since the choice of the variable to be shocked, i.e. Z2 defines the selected ”ordering” it

is easy to check that v1,t(Z) differs in general from the causal innovation η1,t to the latent

causal component Z1,t.

Under the parameter identification condition of Section 2 and given a specific choice

of a Gaussian nonlinear innovation, the nonlinear residuals v̂1,t, v̂2,t can be computed after

replacing the conditional cdfs by their consistent nonparametric estimates 6. Next, these

residuals can be examined in residual plots and used for computing specification test

statistics.

5 Post-Estimation Inference

The parameters of a (S)VAR model need to be estimated before the forecasts and nonlin-

ear causal innovations are computed. The first part of this Section reviews the estimation

methods that exist in the literature and describes the prediction/filtering algorithm lead-

ing to the estimated nonlinear causal innovations. Next, we introduce a post-estimation

inference method for assessing the prediction interval uncertainty due to the preliminary

estimation step.

5.1 Estimation and Filtering

The mixed (S)VAR model can be estimated by the maximum likelihood method based on

an assumed parametric distribution of εt, or ut [see Breidt et al. (1991), Lanne, Saikkonen

6or parametric estimates if the error (source) distribution is parametric.
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(2010), (2013), Davis, Song (2020), Bec et al. (2020)]. This approach yields consistent

estimators provided that the parametric distributional assumption is valid.

Alternatively, the mixed (S)VAR model can be consistently estimated without any

parametric assumptions on the distribution of the sources by using the (Generalized) Co-

variance (GCov) estimator [Gourieroux, Jasiak (2022)]. The GCov estimator is consistent,

asymptotically normally distributed and semi-parametrically efficient 7. An alternative

covariance estimator has been used in Gourieroux, Monfort, Renne (2017), (2020), and

Gourieroux, Jasiak (2017). In addition, minimum distance estimators based on the cumu-

lant spectral density of order 3 and 4 have been proposed in Velasco, Lobato (2019) and

Velasco (2022). A two-step application of the continuum method of moments is developed

in Starck (2023). The method of moment estimators provide consistent estimators only

in applications to the SVAR models, i.e. to the VAR models satisfying the additional

cross-sectional independence condition [see, Guay (2021)], and are inconsistent otherwise

[Lanne, Luoto (2021)].

The prediction and filtering methods can be applied in a parametric or semi-parametric

framework. In the semi-parametric framework, it can be applied along the following lines:

step 1. Apply the GCov estimator based on zero auto-covariance conditions of nonlinear

error functions to obtain the estimators of matrices of autoregressive coefficients Φ̂1, ..., Φ̂p.

step 2. Use the Φ̂i, i = 1, ..., p, estimates to compute the roots of the lag-polynomial and

more generally an estimated Jordan representation: Â, Ĵ1, Ĵ2.

step 3. Compute the approximated model errors using the estimates obtained in Step 1:

ε̂t = Yt − Φ̂1Yt−1 − ...− Φ̂pYt−p.

step 4. Compute Ẑt = Â−1
(

Yt
Ỹt−1

)
, η̂t = Â−1

(
ε̂t
0

)
.

step 5. An Independent Component Analysis (ICA) analysis can be conducted by apply-

ing the GCov estimator based on cross-sectional zero covariance conditions of nonlinear

functions of ε̂t to obtain in two-steps a consistent estimate D̂ of matrix D, and next the

approximations ût of sources ut
8.

step 6. The following densities can be estimated by kernel estimators applied to the

approximated series:

7See Gourieroux, Jasiak (2022) for regularity conditions.
8The matrices Φi, i = 1, ..., p and D can be also estimated in one step from a Gcov combining the

serial and cross-sectional zero covariance conditions.
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- the density g of εt can be estimated from ε̂t, t = 1, ..., T ;

- the density l2 of Z2,t can be estimated from Ẑ2,t, t = 1, ..., T ;

- the densities of errors uj,t, j = 1, ...,m can be estimated from the empirical distribu-

tion of ûj,t, j = 1, ...,m, t = 1, ..., T ;

step 7. The predictive density can be estimated by replacing in the formula of Proposition

2 l2 by l̂2, A
2 by Â2, and also J2 by Ĵ2, g by ĝ, and Φ1, ...,Φp by Φ̂1, ..., Φ̂p. The mode

(median) of the predictive density provides the point forecasts and the quantiles of the

predictive density can be used to obtain prediction intervals at horizon 1.

step 8. The nonlinear causal residuals v̂2,t(Z) can be computed from the estimated dis-

tributions as v̂2,t(Z) = Φ−1(F̂2,T (Ẑ2,t|Ẑt−1)) by applying the formula of predictive den-

sity (4.3) with l2 replaced by l̂2 and gη2 replaced by ĝη2 , i.e. the empirical density of

η̂2,t, t = 1, ..., T .

step 9. Next, they can be appended by the causal innovations independent of v̂2,t(Z) such

as

v̂1,t = Φ−1(F̂1|2,T (Ẑ1,t|Ẑ2,t, Ẑt−1)).

These causal innovations can be computed from the predictive density formula (4.5) with

gη2 and gη replaced by their empirical counterparts.

5.2 Uncertainty of the Estimated Prediction Set

The estimated model parameters and residuals ε̂t can be used to build oos forecast inter-

vals conditional on given values of the last observation in the sample, called the conditional

prediction interval. The estimation error associated with the scalar and functional pa-

rameters has an effect on the uncertainty of the conditional prediction interval. For ease

of exposition, let us consider the VAR(1) model, forecast horizon h = 1 and the future

value of the first component series Y1,T+1 to be forecast at date T out of sample (oos)

given YT = (y1,T , y2,T )′. Then, the true prediction interval at level 1− α1 for Y1,T+1 is:

PI(y, α1) = [Ql(y, α1;P0), Qu(y, α1;P0)], (5.1)

where P0 is the true predictive density function of Y1,T+1 conditional on YT = y and

derived from the joint multivariate predictive density l(y|Y T ) (see, Proposition 1 for the

closed-form expression of the predictive density). Let Ql and Ql denote the true α1/2 and
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1− α1/2 conditional quantiles of P0, respectively. Recall that under the semi-parametric

approach, the true distribution P0 is characterized by Φ0 and g0. By using the expression

of the prediction interval in a Gaussian framework, the asymptotically valid prediction

interval for Y1,T+1 can be equivalently written as:

PI(y, α1) = [m(y, α1;P0)± Φ−1(α1/2)σ(y, α1;P0)], (5.2)

with 9

m(y, α1;P0) = 0.5[Ql(y, α1P0) +Qu(y, α1;P0)], (5.3)

σ(y, α1;P0) = −[1/(2Φ−1(α1/2)][Qu(y, α1;P0)−Ql(y, α1;P0)]. (5.4)

This representation resembling the traditional Gaussian approach can be used even

if the conditional density function of (Yt) is not Gaussian. In particular, the functions

y → m(y, α1;P0), y → σ(y, α1;P0) are nonlinear in this case, in general.

In our framework, the unknown marginal predictive density function P0 can be con-

sistently estimated from its expression (3.11) as P̂ , given the estimated matrix of au-

toregressive parameters Φ̂ and the residuals ε̂t obtained from the semi-parametric GCov

estimator that provides the nonparametric estimator ĝ. Then, we can compute an esti-

mated prediction interval of Y1,T+1 :

P̂ I(y, α1) = [m(y, α1; P̂ )± Φ−1(α1/2)σ(y, α1; P̂ )] = [Ql(y, α1; P̂ ), Qu(y, α1; P̂ )]. (5.5)

where Ql(y, α1; P̂ ) and Qu(y, α1; P̂ ) are the α1/2 and 1 − α1/2 conditional quantiles of

the estimated predictive density P̂ .

This estimated prediction interval (5.5) is consistent of the true prediction interval

(5.2) when the number of observations tends to infinity. We need to distinguish:

a) the true prediction interval PI(y, α1) of Y1,T+1 that satisfies:

P0[Y1,T+1 ∈ PI(y, α1)|YT = y] = 1− α1, ∀y.
9Note that Φ−1(α1/2) is negative.



THIS VERSION: June 6, 2023 20

By construction, the true prediction interval has the correct conditional coverage proba-

bility of 1 − α1. However, it depends on the unknown true distribution, or equivalently

on Φ0, g0.

b) The estimated prediction interval P̂ I(y, α1) that does not satisfy the conditional

coverage condition:

P0[Y1,T+1 ∈ P̂ I(y, α1)|YT = y] 6= 1− α1, ∀y.

due to the estimation errors.

Since this estimated prediction interval is random, its asymptotic distribution can be

approximated by bootstrap, which is applied by replicating the trajectory of the process by

backcasting. More precisely, given Φ̂, ĝ and the residuals, we can generate by backcasting

the artificial data Y s
t , t = 1, ..., T such that, Y s

T = YT ,∀s = 1, ..., S, i.e. with the same

terminal condition YT = y for all the bootstrapped samples, i.e. paths replicated by

backcasting (see, Corollary 2 for the closed-form expression of the backward predictive

distribution). The backcasting can be performed as the following sequence of one-step

backcasts: starting from YT , we backcast Y s
T−1, conditional on YT , next we backcast Y s

T−2

conditional on Y s
T−1, and so on. By replicating the backcasted path S times, we end

up generating S bootstrapped series Y s
t , t = 1, ..., T of length T equal to the length of

the initial series and with the same terminal value YT . Next, from each replicated path

(Y s
t , t = 1, ..., T ) we estimate the model parameters Φs and ĝs, s = 1, ..., S. That allows

us for computing at YT the predictive density estimator P̂ s, s = 1, ..., S of YT+1 given YT

and S new prediction intervals of Y1,T+1 from each of the replicated paths.

The bootstrapped prediction interval obtained from a replicated path is:

P̂ I
s
(y, α1) = [m(y, α1; P̂

s)± Φ−1(α1/2)σ(y, α1; P̂
s)], (5.6)

where P̂ s is the semi-parametric estimate of P0 from the artificial path (Y s
t ), t = 1, ..., T .

Given P̂ s, s = 1, ..., S of YT+1 this bootstrapped PI of Y1,T+1 given YT can be replicated

independently s = 1, ..., S times.

The components of the prediction interval (5.6) are denoted by:

m̂s(y, α1) = m(y, α1; P̂
s), σ̂s(y, α1) = σ(y, α1; P̂

s), s = 1, ..., S. (5.7)
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For large S, the joint sample distribution of [m̂s(y, α1), σ̂
s(y, α1)] provides an approxima-

tion of the distribution of [m(y, P̂ ), σ(y, P̂ )], when T is large.

5.3 Confidence Interval of the Prediction Interval

The estimated prediction interval P̂ I(y, α1) is a pointwise estimator of PI(y, α1). Let us

now extend the method of pointwise estimation to confidence set estimation. Since there

does not exist a total ordering on intervals, we first constrain the confidence set to be of

the form:

P̂ I(y, α1, q) = [m(y, α1; P̂ )± q σ(y, α1; P̂ )]. (5.8)

This confidence set has the following coverage probability of the true prediction interval:

Π0(y, α1; q) = P0[P̂ I(y, α1, q) ⊃ PI(y, α1)|YT = y]

= P0[m(y, α1; P̂ )− q σ(y, α1; P̂ ) < m(y, α1;P0) + Φ−1(α1/2)σ(y, α1;P0),

m(y, α1; P̂ ) + q σ(y, α1; P̂ ) >

m(y, α1;P0)− Φ−1(α1/2)σ(y, α1;P0)|YT = y], (5.9)

because Φ−1(α1/2) < 0. For α2 ∈ (0, 1), possibly different from α1, there exists a value

q0(y, α1;α2) such that:

Π0[y, α1; q0(y, α1;α2)] = 1− α2. (5.10)

Asymptotically, we get the 1− α2 coverage probability of the true conditional prediction

interval, although the true predictive density P0 and the true distribution of P̂ remain

unknown.

Therefore, equations (5.9) and (5.10) can be replaced by their bootstrapped counter-

parts obtained from S replicated paths of the series. More precisely, the bootstrapped

conditional coverage probability is defined as:

Π̂s(y, α1, q) =
1

S

S∑
s=1

δs,

where
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δs =


1, if m̂s(y, α1)− q σ̂s(y, α1) < m̂(y, α1) + Φ−1(α1/2) σ̂(y, α1),

and m̂s(y, α1) + q σ̂s(y, α1) > m̂(y, α1)− Φ−1(α1/2) σ̂(y, α1),
0, otherwise.

Then, we consider a solution q̂(y, α1, α2) of:

Π̂s[y, α1, q̂(y, α1, α2)] = 1− α2. (5.11)

ensuring the 1− α2 coverage probability. The bootstrap confidence set of the prediction

interval is:

ĈSPI(y, α1, α2) =
{
m(y, α1, P̂ )± q̂(y, α1, α2)σ(y, α1, P̂ )

}
. (5.12)

This bootstrap confidence set is such that:

lim
T→∞

lim
S→∞

P0[ĈSPI(y, α1, α2) ⊃ PI(y, α1)|YT = y] = 1− α2, ∀P0. (5.13)

Hence, the length of the estimated P̂ I(y, α1) is enlarged by a factor q̂(y, α1, α2)/|Φ−1(α1/2)|,
that depends on the observed value y, in general. In practice, we can choose α1 = α2 =

0.05 corresponding to the standard levels for prediction intervals and confidence intervals.

One could also choose α1 different from α2, including α1 = 1.0, which would correspond

to the confidence set of point prediction equal to the median of the predictive density.

The analysis of a confidence set of the prediction set is related to research on a con-

fidence set of the identified set in models under partial identification. The partial iden-

tification literature considers a parametric model with a parameter γ, say, that is partly

identifiable 10. The objective is to determine either the confidence set under the classical

approach, or the credible set under the Bayesian approach. In our framework, we have

two types of ”parameters”, P and Y1,T+1, say. The second one is not identifiable, although

its conditional distribution is estimated, and plays the role of a conditional prior.

10See Imbens, Mansky (2004) for confidence intervals of identified intervals in the framework of partial
identification and confidence intervals that asymptotically cover the true interval with a probability larger
or equal to 1− α2.
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6 Illustration

We illustrate the nonlinear forecasts from the causal-noncausal VAR model. The first part

of this Section, presents a simulation study that examines the out of sample forecasts from

the model. Next, the semi-parametric GCov estimation and forecasts are illustrated in

applications to the joint analysis of GDP growth rate and oil prices and a bivariate series

of Bitcoin/USD and Ethereum/USD exchange rates.

6.1 Simulation Study

6.1.1 The Artificial Data Set

We consider a simulated trajectory of a bivariate causal-noncausal VAR(1) process

with the following matrix of autoregressive coefficients:

Φ =

(
0.7 −1.3
0 2

)
,

with eigenvalues 0.7 and 2, located inside and outside the unit circle, respectively 11. The

errors follow a bivariate noise with independent components both t-student distributed

with ν =4 degrees of freedom, mean zero and variance equal to ν/(ν − 2) = 2. The true

DGP is such that D = Id and then εt is equal to the sources ut. The matrix A is as

follows:

A =

(
1 −1
0 1

)
.

The simulated paths of the series of length 600 are displayed in Figure 1. The solid (black)

line represents process Y1t and the dashed (red) line represents process Y2t.

[Insert Figure 1: Trajectory of the Bivariate Causal-Noncausal VAR(1) Process]

Next, we calculate the error series defined as εt = Yt − Φ1Yt−1. The bivariate series is

plotted in Figure 2. The sequence of spikes in the noncausal component Z2t = Y2t impacts

the component Y1t through the recursive form of matrix Φ.

[Insert Figure 2: Trajectory of Error Processes]

11This process was examined and illustrated in Gourieroux, Jasiak (2017).
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The solid (black) line represents process ε1 and the dashed (red) line represents process

ε2.

6.1.2 Estimated Predictive Density, Point and Interval Forecasts

Let us now consider forecasts based on the estimated model parameters. The General-

ized Covariance (GCov) estimate of matrix Φ is obtained by minimizing the portmanteau

statistic computed from the auto- and cross-correlations up to and including lag H = 10

of the errors εt = Yt − Φ1Yt−1 and their squared values [see Gourieroux, Jasiak (2022)].

The following estimated autoregressive matrix is obtained:

Φ̂ =

(
0.724 −1.452
−0.030 1.993

)
,

with eigenvalues λ̂1 = 0.690, λ̂2 = 2.027 close to the true values λ1 = J1 = 0.7 and

λ2 = J2 = 2.0. The standard errors of Φ̂ obtained by bootstrap are 0.023, 0.308, for the

elements of the first row, and 0.009, 0.120 for the elements of the second row.

After estimating Φ, the GCov estimated errors ε̂t = Yt − Φ̂Yt−1 are computed and used

for forecasting.

Matrices A and A−1 are identified from the spectral (Jordan) representation of matrix

Φ, up to scale factors. The estimated matrix Â−1 computed from the normalized Jordan

decomposition of Φ̂ is

Â−1 =

(
0.022 0.025
−0.022 0.974

)
. It corresponds to matrix A−1 =

(
1 1
0 1

)
up to scale

factors of about 0.02 and 0.97 for each column.

We use these estimates to approximate the causal and noncausal components displayed

in Figure 3.

[Insert Figure 3: Trajectory of Components: Ẑ1: solid line, Ẑ2: dashed line ]

Let us now consider the oos nonlinear forecast one step ahead performed at date

T = 590. At time T=590, the process takes values -3.367 and -0.239. The true values

of Y1 and Y2 at T+1=591 are -2.260 and -0.331, respectively. The nonlinear forecasts

are summarized by the theoretical predictive density that can be used to compute the

pointwise predictions of Y1,T+1 and Y2,T+1. The predictive bivariate density is given in

Figure 4 along with the predictive marginal densities of Y1,T+1 and Y2,T+1, respectively.

The predictive density is estimated from formula (3.12) one-step ahead oos by using a
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kernel estimator over a grid of 100 values below and above Y1 and Y2, with Gaussian

kernels and bandwidths h2 = 1 and h11 = s.d.(ε1), h12 = s.d.(ε2) (see On-Line Appendix

C for kernel density estimators).

[Insert Figure 4: Joint and Marginal Estimated Predictive Densities ]

The estimated point forecast are obtained from the mode of the predictive density. The

forecast of Y1,591 based on the GCov estimated parameters is -2.80 and the point forecast

of Y2,591 is -0.30. The estimated prediction intervals at level 0.80 determined from the

predictive density are as follows: The estimated prediction interval for Y1,591 at level 0.80

is [-4.80, -0.80] and the prediction interval for Y2,591 is [-2.60, 2.10]. The rationale for

choosing level 80% is to ensure a sufficiently large number of observations in the tails for

computing the quantiles of predictive density. Both prediction intervals contain the true

future values of the process.

Next, we compute oos one-step ahead forecasts based on the sub-sample of 500 observa-

tions on Yt. The series of 100 one-step ahead forecasts along the trajectory is displayed

in Figure 5.

[Insert Figure 5: Estimation-Based One-Step Ahead Forecasts]

6.1.3 Unconditional Coverage of the Estimated Prediction Interval

We consider two data generating (DGP) processes. The first one is the bivariate

VAR(1) illustrated in 6.1.1 with the autoregressive matrix:

Φ =

(
0.7 −1.3
0.0 2.0

)
,

eigenvalues λ1 = 0.7 and λ2 = 2.0 and an identity variance-covariance matrix of errors

εt. In this experiment, the errors have t-student distributions with 3, 6 and 9 degrees

of freedom, respectively. The second process is a bivariate VAR with the autoregressive

matrix:

Φ =

(
0.9 −0.3
0.0 1.2

)
and eigenvalues λ1 = 0.9, λ2 = 1.2, which are closer to the unit circle 12. The errors εt

12This process was examined and illustrated in Gourieroux, Jasiak (2022).
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have an identity variance-covariance matrices and t-student distributions with 3, 6 and 9

degrees of freedom.

The simulated bivariate series are of length 100, 500 and 1000 and each DGP is

replicated 500 times. The last observation form each simulated path is set aside. It is

forecast and used for forecast coverage assessment. The autoregressive parameters Φ̂ are

estimated by the GCov estimator from the errors εt = Yt−Φ1Yt−1, their second, third and

fourth powers, and their lags up to H = 10. The objective function maximizing algorithm

is each time initiated at the starting values 0.1, 0.1, 0.5, 0.5. The oos predictive density

given in (3.12) of y(1000) is evaluated, given the parameter estimates, over a grid of 100

possible future values for each of the components series. We use Gaussian kernels and

bandwidths h2 = s.d.(Y2,t) h11 = s.d.(ε1) and h12 = s.d.(ε2) (see On-Line Appendix C for

kernel density estimators). The mode of the predictive density estimated from formula

(3.12) with Gaussian kernels provides the point forecast. The oos prediction intervals

at horizon 1 are obtained from the 10th and 90th percentiles of the bivariate predictive

density. As before, the rationale for choosing level 80% is to ensure a sufficiently large

number of observations in the tails for computing the quantiles of predictive density.

The unconditional coverage of the prediction interval is reported in Table 1 below for

the two DGPs described above, sample sizes T=500 and T=1000 and t-student error εt

distributions with 3, 6 and 9 degrees of freedom.

Table 1: Coverage of GCov Estimated Prediction Interval at 80%

T=100 T=500 T=1000
VAR(1) with eigenvalues 0.7, 2.0

component t(3) t(6) t(9) t(3) t(6) t(9) t(3) t(6) t(9)
y1(T + 1) 90.0 91.0 92.6 91.4 92.8 92.0 91.4 90.8 93.2
y2(T + 1) 92.2 93.8 91.8 93.4 94.0 94.8 95.2 93.2 94.5

VAR(1) with eigenvalues 0.9, 1.2
component t(3) t(6) t(9) t(3) t(6) t(9) t(3) t(6) t(9)
y1(T + 1) 80.2 82.8 87.4 82.2 86.0 84.2 84.6 84.4 88.6
y2(T + 1) 90.4 89.4 90.8 90.6 91.6 92.40 91.4 91.0 92.8

We observe that the coverage is either greater or close to the theoretical size of the

prediction interval for both DGPs and sample sizes.

6.1.4 Estimated Prediction Set Uncertainty



THIS VERSION: June 6, 2023 27

This Section illustrates the conditional prediction interval uncertainty described in

Section 5.2.

We consider the simulated trajectory of length T=200 of the bivariate VAR(1) process

with autoregressive matrix:

Φ =

(
0.9 −0.3
0.0 1.2

)
with eigenvalues λ1 = 0.9, λ2 = 1.2 and t(6) distributed errors with an identity variance-

covariance matrix.

We are interested in the conditional prediction interval out-of-sample of the first com-

ponent Y1,T+1 = Y1,200 given the past and current values of the two series.

The VAR(1) model is estimated by the GCov estimator from the observations t =

1, ..., 199 with four power transforms of model errors and lag H = 10, providing the

following estimates of the autoregressive parameters: 0.8931, -0.2146, 0.0180, 1.2797, and

the following estimates of eigenvalues: 0.903 and 1.269.

The estimated predictive density of Y200 conditional on Y199 is computed from formula

3.12 by using kernel smoothed density estimators. More specifically, we employ Gaussian

kernels and bandwidths h2 = s.d.(Y2), h11 = s.d.(ε1), h12 = s.d(ε2) (see On-Line Appendix

C for kernel density estimators). For α1 = 0.2 and Φ−1(α1/2) = −1.28, the estimated

prediction interval of Y1,T+1 = Y1,200 is

P̂ I(y, α1) = [−6.954, 0.360].

It contains the true value of Y1,200 = −0.696.

In the next step, we replicate the initial paths S = 50 times by backcasting from the

bivariate terminal condition Y199 = [−1.188, 0.473]. We use the backcasting formula given

in Corollary 2, evaluated from estimated model parameters and kernel density estimators.

We employ Gausian kernels and bandwidths h1 = s.d.(Y1,t), h11 = s.d.(ε1) and h12 =

s.d.(ε2).

The randomness of the backcasted paths is generated as follows: i) We first draw 100

values as if the components Y1,T−1, Y2,T−1 were independent conditional on YT . This is

done by inverting the estimated conditional c.d.f.s of Y1,T−1 and Y2,T−1 given YT . This

provides the sampling with the importance (misspecified) density; ii) Next, we re-sample
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in the set of values obtained in step i) above, with the weights proportional to the ratio of

the joint backward predictive density divided by the product of the two marginal backward

predictive densities. This procedure adjusts for the omitted cross-sectional dependence in

step i).

The parameters Φ and g are re-estimated from each replicated path, and then the

values of m̂s, σ̂s are computed from the quantiles of 50 predictive densities of YT+1 con-

ditional on YT . They are next used to compute the bootstrap confidence interval at level

α2 = 0.1

ĈSPI(y, α1, α2) = [−11.839, 5.246],

with the solution q̂(y, α1, α2) = 2.99. The interval ĈSPI is much larger than the interval

P̂ I. This result illustrates the importance of taking into account the estimation risk on

Φ, g when providing a prediction interval, especially that the estimator of the functional

parameter g converges at a lower speed than the parameter estimator. The effect of

estimation risk is twofold: i) the length of the interval has almost doubled, ii) the interval

became less symmetric with respect to 0.

6.2 Application to Real Oil Prices and Real GDP Growth Rates

We examine the quarterly series of oil prices and US GDP growth rate over the period: Q1

1986 - Q2 2019. The real US GDP growth rate series is calculated from the series of Real

Gross Domestic Product, Quarterly, Seasonally Adjusted Annual Rate. It is an on-line

data set from the Federal Reserve Economic Data available at at https://fred.stlouisfed.org.
13

The oil prices are provided on-line by the US Energy Information Administration under

the Short-Term Energy Outlook Real and Nominal Prices, March 2023. The selected series

is the Quarterly Average Imported Crude Oil Price/barrel, Real Price, deflated by the

US Consumer Price CPI index. It approximates ”the price of oil paid by US refiners for

crude oil purchased from abroad” examined by Kilian, Vigfusson (2017).

13Other measures of global real economic activity could be used, especially to distinguish the global
business cycle fluctuations from fluctuations on the global commodity markets [See, Kilian (2009), (2019),
Kilian, Zhou (2018), Hamilton (2018) for the indexes of real economic activity].
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The series of GDP rate and oil price (divided by 10) are displayed in Figure 6. The

length of this bivariate series is 134.

We estimate the causal-noncausal VAR(1) from the demeaned series of GDP growth

(series 1) and demeaned oil price divided by 10 (series 2). The sample mean of growth

is 0.640 and the mean of rescaled oil is 6.348. The estimated VAR(1) model has the

autoregressive matrix Φ̂ =

[
0.2987 −0.0229
−0.1527 1.0690

]
with standard deviations of autore-

gressive coefficients of 0.014, 0.001, 0.032, 0.004. The eigenvalues are 0.294 and 1.073.

The densities of estimated errors provided in online Appendix D are non-Gaussian.

The presence of a noncausal root reflects the nonlinear dynamic features corresponding

to the sequence of speculative bubbles. The bubbles in oil prices are accommodated

by the stationary mixed VAR(1) model of GDP rate and oil price levels.14 The mixed

causal-noncausal modelling is an alternative to the modelling of bubbles by threshold

autoregressive models for first differences of oil price logarithms [see e.g. Herrera, Lagalo,

Wada (2015), Kilian, Vigfusson (2017)]. The comparison with these alternative nonlinear

models is discussed below.

We find that that the approximated errors, their squares and third powers are serially

uncorrelated. The variance-covariance matrix is Σ̂ =

[
0.262 0.184
0.184 1.506

]
and contempora-

neous correlation is statistically significant equal to 0.28.

We perform out-of-sample (oos) predictions from the mixed VAR(1) at the points

indicated in Figure 7 below.

During the selected period, both series displayed several sudden changes, while the oil

price was slowly decreasing. More specifically, the oil prices at times T=110, 112, 114,

115, 116 and 118 were 126.84, 119.98, 125.86, 119.44, 91.14 and 71.52. The growth rate

spiked briefly and took the values: 0.13, 0.71, 1.28, 1.16, 0.44 and 0.58. These changes

are reflected in the values of demeaned growth rate and rescaled and demeaned oil price.

From the technical point of view, we chose a period when a fair number of observations is

available at the end of the trajectory to evaluate the predictive density reasonably well.

The predictive density is evaluated over a grid of 200 points, equidistant by 0.1 below

and above the last observed value, except for the density for T=110, which is evaluated

14The analysis of oil prices is often performed on log-differences. This approach could lead to over-
differencing if the trend (bubble) is a local explosive patterns in a strictly stationary process.
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over a grid of 100 values. We use again Gaussian kernels and bandwidths h2 = s.d.(Z2,t)

h11 = s.d.(ε1) and h12 = s.d.(ε2) to estimate one-step ahead oos predictive density (3.12)

(see On-Line Appendix C for kernel density estimators). The point forecasts are the

highest modes of the predictive density, and the forecast intervals are the quantiles of the

predictive density. The forecast interval is at level 80% to ensure a sufficient number of

observations to estimate the quantiles of the predictive density and to alleviate the effect

of bimodality as much as possible.

Table 2 : Prediction Intervals

T forecast interval growth interval oil true values
growth oil q11 q12 q21 q22 growth oil

110 -0.037 6.937 -1.437 0.962 4.337 8.537 -0.501 6.335
112 -0.015 7.333 -1.315 0.784 4.933 8.833 0.070 5.649
114 -0.359 6.221 -1.559 0.540 3.921 7.921 0.643 6.237
115 0.145 6.451 -1.054 1.045 4.051 8.251 0.524 5.595
116 0.121 5.862 -1.078 1.021 3.562 7.562 -0.191 2.765
118 0.077 -0.379 -0.922 1.077 -2.479 1.420 -0.060 0.803

The times of predictive density estimation are indicated in Figure 7.

[Insert Figure 7: Predictive Density Estimation Points]

The estimated predictive density at T=110 is plotted in Figure 8.

[Insert Figure 8: Predictive Density Estimation]

We observe deformations and bimodality associated with the fall in oil prices and

spike in the growth rate. The deformations disappear when both processes approach

their sample mean of 0 values at time T=118 (see On-Line Appendix D).

The observed deformations in the bivariate predictive density are in line with those

observed in the univariate predictive density estimators for noncausal processes introduced

in Gourieroux, Jasiak (2016) and examined in Gourieroux, Hencic, Jasiak (2020) and

Cubbada, Hecq, Voisin (2023).

Let us now consider the predictions of the last 2 points in the trajectory. They are

computed according to the procedure described earlier.

The conditioning last observed values at time T=132 are growth -0.458 and oil 0.268.
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Table 3 : Predictions at T = 132 and T = 133 .

T forecast interval growth interval oil true values
growth oil q11 q12 q21 q22 growth oil

133 -0.099 0.340 -1.099 0.800 -1.759 2.140 -0.097 0.257
134 -0.020 0.307 -1.020 0.879 -1.792 2.007 0.032 1.103

We encounter a difficulty in predicting the trend reversal at time T=134. We use the

approach outlined in Section 5.2 to estimate the confidence set of the prediction interval

for the forecast of the first variable at T = 134. It is based on 100 backcasted replications

of the series of length 100. The confidence set of prediction interval for the demeaned

growth rate at level 1 − α2 = 0.9 is: ĈSPI(y, α1, α2) = [−1.546, 1.405]. This interval

accounts for the estimation risk and is larger than the one in Table 3.

The nonlinear causal innovations are estimated from the kernel density estimator, cu-

mulated and transformed by the quantiles of the standard Gaussian distribution. The

density l(z2,t|zt−1) is first is estimated from formula 4.3 using Gaussian kernel smoothed

estimators of the densities and bandwidths equal to the standard errors of the latent

component z2,t and of the residuals. Next, the density is cumulated into a conditional

c.d.f and transformed by the quantile function of the standard normal variable, providing

v̂2,t. The density l(z1,t|z2,t, zt−1) is estimated from formula 4.5 by using Gaussian kernels

as well and bandwidths equal to the standard errors of model residuals. It is cumulated

and transformed by the quantile function of standard normal, to obtain v̂1,t.

The values of v̂1,t and v̂2,t are computed from the last 80 observations, to ensure

sufficiently many observations for the nonparametric estimation of both densities. v̂1,t

and v̂2,t are displayed in Figure 9.

[Insert Figure 9: Nonlinear Causal Innovations]

The instantaneous correlation of nonlinear causal innovations is equal to 0.143 and is not

statistically significant. Both nonlinear innovations are not significantly serially corre-

lated.

The On-Line Appendix D provides a comparison of our estimated causal-noncausal

model with the threshold autoregressive models that have been used in the literature.

These models are VAR models with multiple lags and different types of threshold effects

for the oil price [see e.g. Herrera et al. (2015) for a discussion of these thresholds]. This

comparison shows that :
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i) a better fit is obtained with the mixed VAR model even with a much smaller number

of lags. This means that the noncausal root captures the bubbles better than arbitrary

thresholds.

ii) The ”causal” innovations deduced from the threshold autoregressive representation

estimated by OLS are serially dependent and non-Gaussian. This can be seen when we

plot the ACF of their squares and third powers. In contrast, these nonlinear ACF’s are

not significant in the mixed VAR model estimated by the GCov.

iii) The ”causal” innovations of the threshold autoregressive model are non-Gaussian

and significantly instantaneously correlated. This creates a difficulty when analyzing the

effect of a shock on oil price and interpreting the associated impulse response functions,

when this dependence is disregarded.

6.3 Application to Cryptocurrency Prices

Let us now consider the bivariate series of Bitcoin and Ethereum prices in US Dollars.

The Bitcoin (BTC) and Ethereum (ETH) are the main cryptocurrencies with market

capitalizations of about 765 and 364 trillions of Dollars, respectively. The bivariate series

of 257 daily adjusted closing BTC/USD and ETH/USD exchange rates recorded between

July 21, 2021 and April, 04, 2022 15 are displayed in Figure 10.

[Insert Figure 10: BTC/USD and ETH/USD exchange rates]

We observe that both series display comovements over time and their dynamics are char-

acterized by spikes and local trends/bubbles.

The bivariate VAR model is estimated from the data rescaled and adjusted by a

polynomial function of time of order 2 for the hump-shaped pattern in the middle of

the sampling period. The estimation is performed without imposing any distributional

assumptions on the errors. We use the semi-parametrically efficient GCov estimator with

nonlinear transformations including powers two, three and four of the errors summed up

to lag 10. The estimated matrix Φ̂ is:

Φ̂ =

(
−0.0901 1.1998
0.4183 0.7724

)
,

15Data Source: Yahoo Finance Canada https://ca.finance.yahoo.com/
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with eigenvalues -0.488 and 1.171. Hence, there is a single noncausal component that

captures the codependent successive bubbles observed in Figure 9. The standard errors

of Φ̂1,1 and Φ̂1,2 are 0.014 and 0.013. For Φ̂2,1 and Φ̂2,2 the standard errors take values

0.022 and 0.019, respectively. The autocorrelations of the approximated errors and their

square indicate that the error is close to a bivariate white noise and the model provides

a satisfactory fit as shown in Figures 11, 12.

[Insert Figure 11: ACF on ε̂t]

[Insert Figure 12: ACF on ε̂2t ]

The Jordan decomposition of matrix Φ̂ is:

Φ̂ = ÂĴÂ−1

with

Â =

(
−3.013 0.951

1 1

)
, Ĵ =

(
−0.488 0

0 1.171

)
, Â−1 =

(
−0.252 0.240
0.252 0.759

)
.

We forecast the adjusted closing BTC/USD and ETH/USD exchange rates on April

4, 2022 16 equal to 46622.67 and 3521.24, respectively. The point forecast of demeaned

and rescaled y1,T+1 is -740.00, and the forecast of demeaned y2,T+1 is 105.00. The forecast

interval of y1 at 0.90% is [-940.00 and -150.00] and contains the true value -844.81. The

forecast interval of y2 at 0.90% is [57.00, 174.00] and contains the true value 126.68. After

adjusting for the mean and scale, we obtain forecasts of 46727.0 for Bitcoin and 3499.56

for Ethereum prices, which are off by 105 and 22 Dollars, respectively, outperforming a

combined ”no-change” forecast based on the previous day values.

7 Concluding Remarks

This paper considers the oos nonlinear forecasting and backcasting in the causal-noncausal

mixed (S)VAR model. It introduces the closed-form expression of the causal (past-

dependent) predictive distribution for forecasting a mixed (S)VAR model.

A definition of causal (past-dependent) nonlinear innovations for VAR models is also

given. Since the causal nonlinear innovations are not uniquely defined, their identification

16This last observation is excluded from the estimation.
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is examined. As a post-estimation inference method, the confidence set of prediction set

is introduced.

The proposed approach is applied to the analysis of the joint dynamic of oil price and

GDP growth rate, and a bivariate series of cryptocurrency exchange rates. In both cases

a noncausal component is revealed and the nonlinear forecast and confidence intervals are

computed.
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Figure 1: Trajectory of the Bivariate Causal-Noncausal VAR(1) Process: Y1: solid line,
Y2: dashed line
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Figure 2: Trajectory of Error Processes: ε1: solid line, ε2: dashed line
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Figure 3: Latent Components: Ẑ1: solid line, Ẑ2: dashed line
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Figure 4: Estimated Predictive Joint and Marginal Densities
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Figure 5: Estimation-Based oos One-Step Ahead Forecasts true:solid line, forecast:dashed
line
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Figure 6: Quarterly Real GDP rate (black) and Oil Price (red), Q1 1986 -Q2 2019
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Figure 7: VAR(1) based predictive density estimation points
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Figure 9: Nonlinear causal innovations for T=51 to 134
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Figure 10: BTC/USD and ETH/USD Daily Closing Rates, July 21, 2021 to April 04,
2022 BTC/USD: solid black line, ETH/USD (times 30): dashed red line



THIS VERSION: June 6, 2023 49

0 5 10 15 20

0
.0

0
.4

0
.8

Lag

A
C

F
Series 1

0 5 10 15 20

0
.0

0
.4

0
.8

Lag

Series 1 & Series 2

−20 −15 −10 −5 0

0
.0

0
.4

0
.8

Lag

A
C

F

Series 2 & Series 1

0 5 10 15 20

0
.0

0
.4

0
.8

Lag

Series 2

Figure 11: ACF of ε̂t
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Figure 12: ACF of Squared ε̂t

APPENDIX 1

Proof of Proposition 1

The proof follows the same lines as in Gourieroux, Jasiak (2016), (2017).

1) Let us consider the information set:

IT+1 = (Y1, ..., YT , YT+1).

This set is equivalent to the set generated by (Z1, Z2, ..., ZT+1) and the set gener-

ated by (Z1,2, η3, η4, ...., ηT , η1,T+1, Z2,T , Z2,T+1) by using the recursive equations (3.9).

Since (η1,T+1, Z2,T , Z2,T+1) is independent of εT , we see that the conditional density

l(η1,T+1, Z2,T , Z2,T+1|εT ) = l(η1,T+1, Z2,T , Z2,T+1) is equal to the marginal density.
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It follows that the conditional density is:

l(η1,T+1, Z2,T+1|Z2,T , εT ) = l(η1,T+1, Z2,T+1|IT ) = l(η1,T+1, Z2,T+1|Z2,T ). (a.1)

The last conditional density needs to be rewritten with a conditioning variable being the

future Z2. From the Bayes theorem, it follows that:

l(η1,T+1, Z2,T+1|IT ) =
l2(Z2,T+1)

l2(Z2,T )
l(η1,T+1, Z2,T |Z2,T+1), (a.2)

where l2 is the marginal density of Z2,t.

2) Let us now consider the vector ηt = A−1
(
εt
0

)
. This random vector takes values

on the subspace E = A−1(IRm × 0n−m). Its distribution admits a density gη(η1, η2) with

respect to the Lebesgue measure on subspace E. Moreover, we have:

ηT+1 =

(
η1,T+1

Z2,T+1 − J2Z2,T

)
=

(
Id 0
0 −J2

)(
η1,T+1

Z2,T

)
+

(
0

Z2,T+1

)
. (a.3)

Then, conditional on Z2,T+1, vector

(
η1,T+1

Z2,T

)
takes values in the affine subspace

F =

(
Id 0
0 −J2

)−1 [
E −

(
0

Z2,T+1

)]
with a density with respect to the Lebesgue mea-

sure on F . Since the transformation from ηT+1 to

(
η1,T+1

Z2,T

)
is linear affine invertible,

we can apply the Jacobian formula to get:

l(η1,T+1, Z2,T |Z2,T+1) = | det J2| gη(η1,T+1, Z2,T+1 − J2Z2,T ). (a.4)

Then from (a.2), (a.4) and Z1,T+1 = J1Z1,T + η1,T+1, it follows that:

l(Z1,T+1, Z2,T+1|IT ) =
l2(Z2,T+1)

l2(Z2,T )
| det J2| gη(Z1,T+1 − J1Z1,T , Z2,T+1 − J2Z2,T ). (a.5)

Let us now derive the predictive density of YT+1 given IT . We get a succession of affine

transformations of variables with values in different affine subspaces (depending on the

conditioning set) along the following scheme:
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(
εT+1

0

)
A−1

→ ηT+1
Id→ ZT+1

A→
(
YT+1

ỸT

)
.

(given ZT ) (given ỸT )

Then, we can apply three times the Jacobian formula on manifolds. Since | detA−1|| detA| =
|detA|
|detA| = 1, the Jacobians cancel out and the predictive density becomes:

l(y|Y T ) =

l2

[
A2

(
y

ỸT

)]
l2

[
A2

(
YT
ỸT−1

)] | det J2| g(y − Φ1YT − · · · − ΦpYT−p+1),

which yields the formula in Proposition 1.

Proof of Corollary 2

To keep the notation simple, let us assume a mixed VAR(1) model. Then, from

Corollary 1, it follows that (Yt) as well as (Zt) are Markov processes of order 1 in both

calendar and reverse time. The distribution of process (Zt) is characterized by the pairwise

distribution of (Zt−1, Zt).

From the proof of Proposition 1, it follows that this joint distribution is:

l(zt−1, zt) = l1(z1,t−1)l2(z2,t) |det J2| gη(z1,t − J1z1,t−1, z2,t − J2z2,t−1).

Then, the conditional distribution of Zt−1 given Zt = zt is:

l(zt−1|zt) = l(zt−1, zt)/l(zt)

= l(zt−1, zt)/[l1(z1,t) l2(z2,t)] ,because Z1,t and Z2,t are independent,

=
l1(z1,t−1)

l1(z1,t)
|det J2| gη(z1,t − J1z1,t−1, z2,t − J2z2,t−1).

The result in Corollary 2 follows by applying the transformations: Yt = AZt, εt = Aηt.

APPENDIX 2

The Causal-Noncausal Model in Multiplicative Form
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The multiplicative causal-noncausal model is:

Φ(L)Ψ(L−1)Yt = ε∗t ,

where both autoregressive polynomials have roots outside the unit circle and i.i.d. errors

ε∗t . This model is used in Lanne, Luoto, Saikkonen (2012), Lanne, Saikkonen (2013)

and Nyberg, Saikkonen (2014). While the multiplicative representation is equivalent to

the general AR(p) model for univariate time series, it is not the case in the multivariate

framework.

As pointed out in Davis, Song (2020), p. 247, this decomposition implies restrictions

on the autoregressive coefficients Φ1, ...,Φp of the past-dependent representation.

Moreover, it is not compatible with the SVAR specification (2.1). To illustrate this

problem, let us consider the multiplicative bivariate model:(
1− φL 0

0 1

)(
1 0
0 1− ψL−1

)
Yt = ε∗t .

It follows that:

Y1,t − φY1,t−1 = ε∗1,t,

Y2,t − ψY2,t+1 = ε∗2,t,

or equivalently:

Y1,t − φY1,t−1 = ε∗1,t,

Y2,t −
1

ψ
Y2,t−1 = − 1

ψ
ε∗2,t−1,

⇐⇒ Yt =

(
φ 0
0 1

ψ

)
Yt−1 + εt,

where εt =

(
ε1,t
ε2,t

)
with ε1,t = ε∗1,t and ε2,t = − 1

ψ
ε∗2,t−1.

We observe that, if ε∗1,t, ε
∗
2,t are correlated, then ε1,t and ε2,t+1 are correlated too.

Therefore the condition of i.i.d. errors in the SVAR model (2.1) cannot be satisfied.
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This major difficulty is a consequence of a different normalization. For example, if

Φ(L) = Id− ΦL and Ψ(L−1) = Id−ΨL−1, then the multiplicative model is such that:

Φ(L)Ψ(L−1)Yt = −ΨYt+1 + (Id+ ΦΨ)Yt − ΦYt−1 = ε∗t ,

which cannot be transformed into:

Yt = Φ1Yt−1 + Φ2Yt−2 + εt,

if matrix Ψ is not invertible.

APPENDIX 3

Identification of Nonlinear Causal Innovations

For ease of exposition, let us consider a bivariate VAR(1) model, which is a Markov

process. By analogy to the recursive (i.e. causal) approach for defining the shocks, we

start from the first component.

i) Let F1[y1|YT−1] denote the conditional c.d.f. of Y1,T given YT−1 and define:

v1,T = F1[Y1,T |YT−1]. (a.6)

Then, v1,T follows a uniform distribution U[0,1] for any YT−1. In particular, v1,T is inde-

pendent of YT−1.

ii) Let F2[y2|Y1,T , YT−1] denote the conditional c.d.f. of Y2,T given Y1,T , YT−1, and

define:

v2,T = F2[Y2,T |Y1,T , YT−1]. (a.7)

It follows that v2,T follows a uniform distribution on [0,1], for any Y1,T , YT−1, or equiva-

lently for any v1,T , YT−1. Therefore, v2,T is independent of v1,T , YT−1.

iii) By inverting equations (a.6)-(a.7), we obtain a nonlinear autoregressive represen-

tation: YT = g(YT−1, vT ), where the vT ’s are i.i.d. such that (v1,T ), (v2,T ) are independent.

This approach resembles the shock ”ordering” used in linear Gaussian models to solve

the identification issue. Alternatively, one can use an alternative ordering: Y2,T followed
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by Y1,T given Y2,T . More generally, for any invertible nonlinear transformation Y ∗T = c(YT ),

the above approach can be applied first to Y ∗1,T and next to Y ∗2,T conditional on Y ∗1,T .

Let us now describe in detail all the innovation identification issues. First, we can

assume that v1,T , v2,T are i.i.d and independent of one another with uniform distributions

on [0,1]. We need to find out if there exists another pair of variables w1,T , w2,T , which are

independent and uniformly distributed such that:

g(YT−1, wT ) = g(YT−1, vT ), ∀ YT−1,

or, equivalently, a pair of variables wT that satisfy a (nonlinear) one-to-one relationship

with vT . Let w = a(v) denote this relationship. We have the following Lemma:

Lemma A.1:

Let us assume that a is continuous, twice differentiable and that the Jacobian matrix

∂a(v)/∂v has distinct eigenvalues. Then, the components of a are harmonic functions,

that is:

∂2aj(v)

∂v21
+
∂2aj(v)

∂v22
= 0, j = 1, 2.

Proof:

i) We can apply the Jacobian formula to get the density of w given the density of v. Since

both joint densities are uniform, it follows that | det ∂a(v)
∂v
| = 1, ∀v ∈ [0, 1]2.

ii) Let us consider the eigenvalues λ1(v), λ2(v) of the Jacobian matrix ∂a(v)
∂v

. The eigen-

values are continuous functions of this matrix, and therefore continuous functions of v

(whenever these eigenvalues are different). Then, two cases can be distinguished:

case 1: The eigenvalues are real.

case 2: The eigenvalues are complex conjugates.

iii) In case 1, we have λ2(v) = 1/λ1(v) ( or −1/λ1(v)), where λ1(v) is less or equal to 1 in

absolute value for any v, and then λ2(v) is larger than or equal to 1 in absolute value for

any v. Since a(v) ∈ [0, 1]2 for any v ∈ [0, 1]2, it follows that λ2(v) cannot be explosive.

iv) Therefore case 2 is the only relevant one. Let us consider the case det ∂a(v)
∂v

= 1,

∀v ∈ [0, 1]2 (the analysis of det ∂a(v)
∂v

= −1 is similar). Then, the Jacobian matrix is a

rotation matrix:
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∂a(v)

∂v
=

(
∂a1(v)
∂v1

∂a1(v)
∂v2

∂a2(v)
∂v1

∂a2(v)
∂v2

)
≡
(

cos θ(v) − sin θ(v)
sin θ(v) cos θ(v)

)
.

We deduce that:

∂a1(v)

∂v1
=

∂a2(v)

∂v2
,

∂a1(v)

∂v2
= −∂a2(v)

∂v1
. (a.8)

Let us differentiate the first equation with respect to v1 and the second one with respect

to v2. We get:

∂2a1(v)

∂v21
=
∂2a2(v)

∂v1∂v2
and

∂2a1(v)

∂v22
= −∂

2a2(v)

∂v1∂v2
, (a.9)

and by adding these equalities:

∂2a1(v)

∂v21
+
∂2a1(v)

∂v22
= 0. (a.10)

Therefore a1 is a harmonic function that satisfies the Laplace equation (a.10). Similarly,

a2 is also a harmonic function. QED

Harmonic functions are regular functions: they are infinitely differentiable and have

series representations that can be differentiated term by term [Axler et al. (2001)]:

a1(v) =
∞∑
h=0

∞∑
k=0

(a1hkv
k
1v

h
2 ),

a2(v) =
∞∑
h=0

∞∑
k=0

(a2hkv
k
1v

h
2 ). (a.11)

Moreover, these series representations are unique. Then, we can apply the conditions

(a.8) to these expansions to derive the constraints on the series coefficients and the link

between functions a1 and a2.

Let us define:

∂a1(v)

∂v1
=
∂a2(v)

∂v2
≡

∞∑
h=0

∞∑
k=0

(chkv
h
1v

k
2).
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Then, by integration, we get:

a1(v) ≡
∞∑
h=0

∞∑
k=0

[chk
vh+1
1

h+ 1
vk2 ] +

∞∑
k=0

d1kv
k
2 ,

a2(v) ≡
∞∑
h=0

∞∑
k=0

[chkv
h
1

vk+1
2

k + 1
] +

∞∑
h=0

d2hv
h
1 ,

where the second sums on the right hand sides are the integration ”constants”. Equiva-

lently, we have:

a1(v) ≡
∞∑
k=0

d1kv
k
2 +

∞∑
h=1

∞∑
k=0

[ch−1,k
vh1
h
vk2 ],

a2(v) ≡
∞∑
h=0

d2hv
h
1 +

∞∑
h=0

∞∑
k=1

[ch,k−1v
h
1

vk2
k

].

Let us now write the second equality in (a.8), i.e.

∂a1(v)

∂v2
= −∂a2(v)

∂v1
.

This yields:

k + 1

h
ch−1,k+1 = −h+ 1

k
ch+1,k−1, h ≥ 1, k ≥ 1, (a.12)

1

h
ch−1,1 = −(h+ 1)d2,h+1 h ≥ 1,

1

h
c1,k−1 = −(k + 1)d1,k+1 k ≥ 1,

d11 = −d21.

The set of restrictions (a.12) provides information on the dimension of underidentification.

As the dimension concerns functional spaces, we describe it from the series expansions

(a.11) and the number of independent parameters a1,h,k, a2,h,k with h + k ≤ m. This

number is equal to (m+ 1)(m+ 2)/2.

Proposition A.2

The space of parameters (a1,h,k, a2,h,k, h+ k ≤ m) is of dimension 2m.
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Proof:

Let us consider an alternative parametrization of (a.12) with parameters ch,k, d1,h, d2,h.

The parameters a1,h,k, a2,h,k with h+k = j are linear functions of parameters ch,k, h+k =

j + 1, d1,j+1d2,j+1. The restrictions (a.12) imply a degree of freedom equal to 2 on this

subset. The result follows.

QED

Other identification issues can arise if transformation a is not assumed twice contin-

uously differentiable. Let us consider the first component v1 that follows the uniform

distribution on [0, 1] and introduce two intervals [0, c] and [1 − c, 1] with c < 0.5. Then,

the variable w1 defined by:

w1 =

{
v1, if v1 ∈ (c, 1− c),
2v1 − 1, if v1 ∈ (0, c) ∪ (1− c, 1),

also follows the uniform distribution and, similarly to v1, variable w1 is independent of

v2 = w2.

Note that this transformation is not monotonous. Therefore, the size δ of a shock to

v1 is difficult to interpret in terms of a magnitude of a shock to w1.

We conclude that, in a nonlinear dynamic framework, the assumption of independence

between the components of vt is insufficient to identify the structural innovations to be

shocked.


