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Abstract

The bubbles and spikes in cryptocurrency prices increase considerably the

risk on investments in these assets. In the traditional time series literature

bubbles are viewed as nonstationary and non-estimable components of a

process. In this paper, we adopt a different approach and consider the bubbles

as inherent features of a strictly stationary causal-noncausal (mixed) Vector

Autoregressive (VAR) process. This approach allows us to model and estimate

the common bubbles and spikes in cryptocurrency prices. It also provides

us linear combinations of cryptocurrencies that eliminate common bubbles

analogously to the cointegrating vectors eliminating common trends in unit

root processes. They are used to build cryptocurrency portfolios immune to

the risk of common bubbles that ensure stable investment strategies. The

mixed VAR model is estimated from the US Dollar prices of Bitcoin, Ethereum,

Ripple, and Stellar over the period 2017-2019. We document the common

bubbles and illustrate the behavior of bubble-free portfolios.
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1 Introduction

The cryptocurrency prices display bubbles and spikes that considerably

increase the risk associated with investments in these assets. The bubbles and

spikes, referred to short-lived, i.e. local explosive patterns in Gourieroux & Zakoian

(2017) are distinctive features of cryptocurrency prices due to their highly speculative

character, in addition to time varying volatility, a nonlinear characteristic they share

with fiat currency exchange rates and stock returns. Despite of high risks, the

cryptocurrencies continue to attract investors, with the recently introduced Exchange

Traded Funds (ETF) on Bitcoin and Ether contributing to further expansion of

cryptocurrency trading. At the beginning of 2024, Bitcoin and Ethereum are the

market leaders with respective capitalizations of over 1.3 Trillions and 300 Billions

US Dollars. Ripple and Stellar are medium and small size cryptocurrencies with

market capitalizations of over 30 and 4 Billions US Dollars, respectively.

In this paper, we study the comovements of US Dollar prices of these four

cryptocurrencies and document their common bubbles and spikes. Our objective

is to model and estimate the common bubbles in cryptocurrency, as well as to

reveal and estimate linear combinations of cryptocurrencies that eliminate them,

by analogy to the cointegrating vectors eliminating common trends in unit root

processes, or common features of Engle, Kozicki (1993). The linear combinations of

cryptocurrencies that eliminate common bubbles in cryptocurrency can be interpreted

as portfolios hedging against the systemic risk due to common bubbles and ensuring

the stability of investment strategy.

Under the traditional approach to time series analysis, bubbles are viewed

as nonstationary patterns to be detected by unit root-type tests and separated from

the stationary component of time series. There exists a variety of bubble models,

such as the Watson bubble for example Blanchard & Watson (1982), and tests for

bubbles such as those proposed in P. Phillips & Shi (2018), and P. C. B. Phillips et al.

(2015a) and P. C. B. Phillips et al. (2015b). In this paper, an alternative approach

is used. The cryptocurrency rates are modelled as a strictly stationary (mixed)
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causal-noncausal Vector Autoregressive (VAR) process. In this framework, bubbles

and local explosive patterns, in general, arise as the inherent features of this strictly

stationary multivariate process. This makes the common bubbles estimable and

allows us to model and trace out their dynamics, which cannot be done when bubbles

are considered nonstationary. In addition, linear combinations of cryptocurrencies

that eliminate common bubbles follow directly from the state-space representation of

the causal-noncausal VAR model and are estimable and predictable as well. Hence,

a common bubble in cryptocurrency rates can be interpreted as a ”common feature”,

in the sense of Engle & Kozicki (1993) and compared with bubble cointegration

of Cubadda, Giancaterini, et al. (2023). The bubble-free linear combinations of

cryptocurrency represent stable investment portfolios.

The comovements of cryptocurrency rates and the presence of common

bubbles in particular, can be explained not only by the speculative character of these

digital assets, but also by the integration of cryptocurrency market with traditional

financial markets, changes in the regulatory environment and investor sentiment about

blockchain technology. Investor sentiment with respect to blockchain technology in

general and cryptocurrencies in particular plays a significant role. Youssef & Waked

(2022) argues that cryptocurrencies exhibit evidence of herding effects, especially

in response to media coverage. The cryptocurrency markets are also influenced by

the global financial markets. When large institutions invest in cryptocurrencies,

they reveal increased interest in this entire asset class. Then spot market investors

follow by incorporating information from cryptocurrency futures markets which are

typically dominated by institutional investors [Doan B. & Nguyen Thanh (2022)].

In addition, the regulatory environment for cryptocurrencies is subject to abrupt

changes which impact the entire cryptocurrency market simultaneously. Bhatnagar

et al. (2023) has shown that news shocks have persistent and simultaneous effects on

volatility of large cap cryptocurrency returns.

The relationships between cryptocurrency returns have received a lot of

attention in recent years [see e.g. Cross et al. (2021), Antonakakis et al. (2019),

Bouri et al. (2021), Dunbar & Owusu-Amoako (2022) and Nyakurukwa & Seetham
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(2023). We model the rates with respect to the US Dollar (USD), i.e. cryptocurrency

prices rather than returns, because their variation is bounded and the explosive

patterns are local, i.e. are not infinitely lasting. Hence the rates seem to satisfy the

assumption of strict stationarity, whereas the assumption of second-order (weak)

stationarity appears too stringent. We examine the bivariate series of cryptocurrency

rates BTC/USD and ETH/USD, on the one hand, and XRP/USD and XLM/USD

on the other. Pairing up the cryptocurrencies this way is motivated by the fact that

Bitcoin and Ethereum are the market capitalization leaders while Ripple and Stellar

serve similar purposes and share similar technological features. Next, to detect the

common dynamic patterns in all four cryptocurrency rate series, we examine a single

multivariate process of cryptocurrency rates of dimension four.

So far, the applied literature on cryptocurrencies has employed the causal

i.e. past dependent models, often including nonlinear features. For example, Catania

et al. (2019) find that combinations of parameter varying models can improve the

inference. We accommodate the nonlinearities along with the explosive features in

cryptocurrency rates through the presence of a noncausal component in the mixed

VAR model.

A mixed causal-noncausal VAR process [ see Gouriéroux & Jasiak (2017),

Davis & Song (2020)] (henceforth referred to as the mixed VAR) has a representation

similar to the traditional VAR model in the sense that the current value of a

multivariate process is written as a linear function of the past values. However, unlike

the traditional VAR, the mixed VAR has an autoregressive matrix of coefficients with

eigenvalues of modulus either strictly smaller or greater than one. The eigenvalue(s)

strictly smaller than one are associated with the traditional past dependent i.e.

causal stationary behaviour of the series. The eigenvalue(s) strictly larger than

one are associated with locally explosive behaviour, generating the bubbles and

spikes. In addition, the errors of the mixed VAR have to be non-Gaussian, identically

distributed (i.i.d.) and serially independent to ensure that the dynamics of the mixed

process can be identified.

The assumption of Gaussianity, common in the traditional time series
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literature is not supported by the empirical evidence on the fat tails of sample

densities of cryptocurrency prices. This assumption imposed on the errors of a

traditional VAR model implies that the forward and backward dynamics of that

multivariate process are not distinguishable and, as a consequence the forward-

looking, or noncausal component(s) cannot be identified. As mentioned earlier, the

noncausal component captures the explosive features, and hence the assumption of

error Gaussianity is too restrictive for the modelling of cryptocurrency rates. Our

approach relaxes the traditional assumption of error Gaussianity and second-order

stationarity of the VAR process allowing for the presence of noncausal components

to accommodate the explosive and nonlinear patterns, including bubbles and spikes.

The mixed VAR model enables us to filter out and estimate the causal and noncausal

components, the latter one capturing the common bubbles in strictly stationary

multivariate time series.

The estimation of common bubble dynamics leads to the monitoring and

forecasting of these explosive patterns. Bubble monitoring can be beneficial for

the investors because large changes in cryptocurrency rates can either adversely

affect the returns or provide investment opportunities. The common bubble can

also be predicted [see Gouriéroux & Jasiak (2016) , Lanne et al. (2012) ]. Moreover,

as mentioned earlier, the estimated state-space representation of the mixed VAR

model provides us the linear combination eliminating the common bubbles i.e. a

cryptocurrency portfolio that is risk neutral and hedges the investors against the risk

of common bubbles and explosive patterns in general, ensuring a stable investment

strategy.

To estimate the mixed VAR model we apply the Generalized Covariance

estimator Gouriéroux & Jasiak (2017) which is a one-step, consistent semiparametric

estimator for mixed causal noncausal multivariate non-Gaussian processes. The

advantage of this approach is the possibility to study the cryptocurrency rates in a

semi-parametric setup, i.e. without imposing any distributional assumptions on the

errors of the VAR model, except for non-normality, which is justified by non-normal

sample distributions of cryptocurrency prices. In addition, we show that while the
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(mixed) causal-noncausal Vector Autoregressive (VAR) process provides a good fit

to the cryptocurrency rates, the traditional, i.e. past-dependent causal VAR model

is flawed and fails to detect the comovements of cryptocurrencies.

The paper is organized as follows: Section 2 discusses the causal-noncausal

Vector Autoregressive (VAR) model and the GCov estimator. Section 3 introduces the

time series of cryptocurrencies : Bitcoin (BTC), Ethereum (ETH), Ripple (XRP) and

Stellar (XLM) and shows the results on the empirical analysis of their respective USD

exchange rates. Section 4 concludes. The Appendix contains the VAR(1) estimation

results for Bitcoin and Ethereum. The summary statistics and supplementary graphs

are provided online in Supplementary Material file.

2 Methodology

A mixed causal-noncausal VAR process resembles the traditional VAR

model in that the current value of a multivariate process is written as a linear

function of the past values. However, unlike the traditional VAR, the mixed VAR

has an autoregressive matrix with eigenvalues of modulus either less or greater than

1.

The Vector Autoregressive of order p (VAR(p)) model representing the

dynamics of a weakly stationary multivariate process yt, t = 1, 2, ..., of dimension n

is:

yt = Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p + et, (1)

where Φi, i = 1, ..., p are n× n matrices of autoregressive coefficients, et is an error

vector of length n which follows a weak or strong white noise with mean zero and a
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positive definite variance matrix Σ. 1

Under the classical approach yt is also assumed causal, i.e. past dependent.

This condition implies that the roots of det(Id − Φ1z − Φ2z
2 − ... − Φpz

p) = 0 lie

outside the unit circle and eliminates potential noncausal components in the dynamics.

Even if the causality assumption were not imposed, the traditional normality-based

estimation methods such as the normality-based Maximum Likelihood (ML) and

Ordinary Least Squares (OLS) do not distinguish between the causal and noncausal

dynamics due to the lack of identification issue. The are routinely implemented in

practice under the standard Box-Jenkins approach for time series analysis, which is

adequate only for causal time-series which are normally distributed, stationary and

linear, admitting a moving average representation in weak white noise errors. The

reason is that it is based on the identification and estimation of time series from the

moments of order up to two only. Consequently, the normality-based methods are

unable to accommodate bubbles, spikes and local trends which involve higher-order

moments.

If a time-series is strictly stationary, noncausal and non-Gaussian, then we

are able to distinguish its two-sided moving average representation (including the past

present and future errors) written in terms of independent and identically distributed

(i.i.d.) non-Gaussian errors from a one-sided moving average representation including

only the current and lagged errors.

To model the mixed dynamics in multivariate processes, Lanne & Saikkonen

(2013) proposed a multiplicative model for strictly stationary non-Gaussian time

series: Π(L)Φ(L−1)yt = εt, where Π(L) = Id − Π1L − ... − ΠrL
r, and, Φ(L−1) =

Id− Φ1...− ΦsL
−s are n× 1 autoregressive causal and noncausal polynomials such

that detΦ(z) ̸= 0 for |z| ≤ 1 and detΠ(z) ̸= 0 for |z| ≤ 1, and εt is a n× 1 sequence

of independent and identically distributed (i.i.d.) non-Gaussian random vectors with

zero mean and finite positive definite variance-covariance matrix. A limitation of this

approach is that Π(L) and Π(L) do not necessarily commute [Cubbada et al. (2023)].

The multiplicative model representation with autoregressive orders r and s may not

1In equation (1) we assume that yt has zero mean.
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always exist for a mixed VAR(p) process and it may not be unique [Gouriéroux &

Jasiak (2017), Gouriéroux & Jasiak (2023), Davis & Song (2020), Swensen (2022)].

Gouriéroux & Jasiak (2017) and Davis & Song (2020) consider the classical

representation (1) under modified assumptions. More specifically Gouriéroux & Jasiak

(2017) assume that the errors et is a sequence of non-Gaussian i.i.d. vectors with

positive definite variance-covariance matrix Σ, and the roots of the autoregressive

polynomial lie either outside or inside the unit circle. Both articles discuss the

identification and estimation of the causal-noncausal VAR(p) models. Davis & Song

(2020) rely on the ML estimation which requires a distributional assumption on

the error terms entailing the risk of misspecification. Gouriéroux & Jasiak (2017)

introduce a semi-parametric estimator called the Generalized Covariance Estimator

(GCov hereafter) for mixed causal noncausal multivariate non-Gaussian processes.

The GCov estimator does not require an assumption of a specific parametric error

distribution and uses the nonlinear autocovariances for identification of causal and

noncausal components. Gouriéroux & Jasiak (2017) show that the GCov estimator

is consistent and asymptotically normally distributed.

The next Section presents the causal-noncausal VAR model (referred to as

the mixed VAR), recalls its representation in terms of purely causal and noncausal

components and summarizes the results on the GCov estimator.

2.1 The Mixed VAR(1) Model

Let us consider a strictly stationary n-dimensional mixed VAR(1) process:

Yt = ΦYt−1 + εt, (2.1)

where Φ is an n× n matrix and (εt) is a i.i.d. multivariate non-Gaussian sequence of
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dimension n. We assume that (εt) is square integrable
2 with zero mean E(εt) = 0, and

variance-covariance matrix V (εt) = Σ. Since (εt) is not assumed independent of the

lagged values of the process Yt−1, Yt−2..., it cannot be interpreted as an innovation.

The eigenvalues of matrix Φ are assumed to be of modulus different from 1 to

ensure the existence of a unique, strictly stationary solution to equation (2.1) with a

two-sided strong (i.i.d.) moving average representation.

2.2 State-Space Representation

This Section reviews the state-space representation of mixed VAR model

based on the representation theorem of Gouriéroux & Jasiak (2017) for mixed

processes that distinguishes their purely causal and noncausal latent components.

Let us consider the VAR(1) model for ease of exposition. In the mixed VAR(1)

model, if n1 (resp. n2 = n−n1) represents the number of eigenvalues of Φ of modulus

strictly less than 1 (resp. strictly larger than 1), then there exists an invertible n× n

matrix A, and two square matrices: J1 of dimension n1 × n1 and J2 of dimension

n2 × n2. The eigenvalues of J1 (resp. J2) with moduli strictly less than 1 (resp.

larger than 1) are such that :

Yt = A1Y
∗
1,t + A2Y

∗
2,t, (2.2)

Y ∗
1,t = J1Y

∗
1,t−1 + ε∗1,t, Y ∗

2,t = J2Y
∗
2,t−1 + ε∗2,t, (2.3)

ε∗1,t = A1εt, ε∗2,t = A2εt, (2.4)

where A1, A2 are the blocks in the decomposition of matrix A as : A = (A1, A2), and

2The assumption of square integrability can be satisfied by a nonlinear function of ε in the GCov
estimator.
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A1, A2 are the blocks in the decomposition of A−1 as A−1 =

 A1

A2

 . The matrices

J1 and J2 are derived from the real Jordan canonical form of Φ:

Φ = A

 J1 0

0 J2

A−1,

where the columns of matrix A correspond to an appropriate basis.

In a VAR(1) model, matrix Φ can be diagonalizable so that J1 and J2 are

diagonal matrices containing distinct eigenvalues. Then, matrices A1 and A2 contain

the eigenvectors. In general, however, this may not be the case and the eigenvalues

may not be distinct, and the dimension of the eigenspace may be strictly smaller than

the multiplicity order of the eigenvalue, especially when the number of component

series n is large. Then, matrix Φ can be written in the (real) Jordan canonical form

as Φ = AJA−1, where matrix J is block-diagonal and divided into sub-matrices J1

and J2 containing non-diagonal Jordan blocks associated to eigenvalues of modulus

less and greater than 1, respectively.

By premultiplying both sides of equation (2.2) and (2.4) by matrix A−1 we

can decompose Yt into its latent causal and noncausal components as follows :

Y ∗
t =

 Y ∗
1,t

Y ∗
2,t

 ≡ A−1Yt, ε∗t =

 ε∗1,t

ε∗2,t

 ≡ A−1εt.
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We get :

Y ∗
t =

 J1 0

0 J2

Y ∗
t−1 + ε∗t , and Y ∗

j,t = JjY
∗
j,t−1 + ε∗j,t, j = 1, 2,

In addition, equation Yt = AY ∗
t , is equivalent to Yt = A1Y

∗
1,t + A2Y

∗
2,t, which is the

decomposition (2.2).

Given that the eigenvalues of J1 are of modulus strictly less than 1, the set

of equations below is causal:

Y ∗
1,t = J1Y

∗
1,t−1 + ε∗1,t. (2.5)

It can be used to derive the causal one-sided moving average representation of Y ∗
1,t

where L denotes the lag operator: Y ∗
1,t = Σ∞

h=0J
h
1 ε

∗
1,t−h = (Id − J1L)

−1ε∗1,t with

(Id− J1L)
−1 ≡ Σ∞

h=0J
h
1L

h.

The second set of equations is noncausal :

Y ∗
2,t = J2Y

∗
2,t−1 + ε∗2,t. (2.6)

It can be written as Y ∗
2,t = J−1

2 Y ∗
2,t+1 − J−1

2 ε∗2,t+1 = (Id − J2L)
−1ε∗2,t, where (Id −

J2L)
−1 ≡ −Σ∞

h=1J
−h
2 L−h.

Processes (Y ∗
1,t) and (Y ∗

2,t) are purely causal and noncausal, respectively. They can be

interpreted as the causal and noncausal latent components of process (Yt) in a state-

space representation (2.2)-(2.5)-(2.6). Moreover, these components are deterministic

functions of (Yt) since : Y ∗
j,t = AjYt, j = 1, 2.
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The component Y ∗
2,t is the locally explosive component following a strictly

stationary noncausal (V)AR process. It represents the common bubbles, local trends

and spikes. It can be univariate or multivariate, depending on the dimension of the

process Y ∗
2,t.

The causal component Y ∗
1,t is the stationary linear combination Y ∗

1,t = A1Yt

of the observed multivariate process that eliminates its local explosive features, and

cov(Y ∗
1,t, Y

∗
2,t) = 0.

In this respect, the above approach can be compared with the ”common

features” representation of Engle & Kozicki (1993), as it satisfies the following

definition: ”A feature that is present in each of a group of series is said to be common

to those series if there exists a nonzero linear combination of the series that does

not have the feature”. This definition concerns the stationary time series, which is

consistent with the assumption of strict stationarity of yt. A common feature in Yt is

the locally explosive noncausal component along with its explosion rate determined

by J2.

The linear combination Y ∗
1,t = A1Yt can also be compared to the co-

integrating relation of Engle & Granger (1987), and interpreted as bubble ”coin-

tegration”. An important difference is that Yt is not a unit root process, but it

is nevertheless (locally) explosive. The explosive patterns of Yt are not global, i.e.

do not involve unbounded growth (decline) or oscillations. The strictly stationary

process Yt is characterized by local, i.e. short-lasting explosions that end more or

less suddenly.

If we were to impose an assumption analogous to the condition of equal

integration order I(1), it would be the assumption of equal, multiple eigenvalues of

modulus greater than 1 and a diagonalizable matrix Φ. Then, all local explosive

patterns would have the same rate of explosion and would be ”common” in the

sense analogous to the equal explosion rates of global trends in the cointegrated,

nonstationary processes, associated with and determined by the eigenvalues equal

to 1. Technically, this would require imposing a constraint on the Jordan canonical
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form of matrix Φ with a fixed multiplicity n2 of roots of equal values.

Alternatively, we could pre-test the series individually for noncausal roots

by fitting a univariate noncausal model to each of the processes. Then, we could

select the processes with one noncausal root and equal noncausal autoregressive

coefficients, to ensure an equal explosion rate. As a consequence, the joint VAR(1)

model of these series would have one noncausal component. Intuitively, we expect

that if each component series has at most n2 distinct noncausal, i.e. local explosive

features, the joint process will have at most n2 noncausal features.

An alternative approach to bubble cointegration is proposed in Cubadda,

Hecq, & Voisin (2023) Their method is based on the multiplicative representation of

the VAR(1) model of Lanne & Saikkonen (2013), written as a product of a lead and

lag vector autoregressive polynomials and discussed in the introduction to Section 2.

The linear combination introduced in Cubadda, Hecq, & Voisin (2023) eliminates

the coefficients on the future values of Yt in the factorized vector autoregressive

representation.

2.3 Bivariate VAR(1) - Example

To better understand the comovements of Yt components and their contri-

bution to the causal and non-causal components, let us consider a bivariate mixed

VAR(1) process with a diagonalizable matrix Φ. When matrix Φ is triangular, then

depending on the eigenvalues, one component of yt may not contribute to either the

explosive (i.e. noncausal) or regular (causal) dynamics.

Suppose that matrix Φ has the following spectral decomposition:

Φ = AJA−1

where J is the 2 by 2 matrix of real eigenvalues, A is the 2 by 2 matrix with columns,
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which are the eigenvectors of Φ. Suppose also that either ϕ12 = 0 or ϕ21 = 0, so

that matrix Φ is either upper or lower triangular. It is known that for any n × n

triangular matrix the following properties hold:

1) The eigenvalues of an upper or lower triangular matrix are the diagonal

elements of the matrix.

2) For any triangular matrix, a vector with all elements equal to zero, except

the first one is an eigenvector. There is a second eigenvector with all elements zero,

except the first two, etc.

Therefore, a triangular 2 by 2 matrix Φ has a triangular matrix A, with a triangular

inverse A−1. It follows that the past values of one component of yt do not contribute

to either the explosive dynamics y∗2t, or the regular dynamics y∗1,t.

Let the matrix J be written as J =

 J1 0

0 J2

 , where J1 < 1 < J2. Then matrix

A has entries A =

 a11 a12

a21 a22

 and its inverse is A−1 =

 a11 a12

a21 a22

 .

Accordingly, we have row vectors A1 = [a11 a12] and A2 = [a21 a22] corresponding to

the components y∗1t and y∗2t with regular and explosive dynamics, respectively.

Example 1: Upper triangular Φ

Suppose the element ϕ21 = 0 in matrix

Φ =

 ϕ11 ϕ12

ϕ21 ϕ22
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which makes it an upper triangular matrix

ΦU =

 ϕ11 ϕ12

0 ϕ22



If J1 = ϕ11, J2 = ϕ22 so that J2 > J1, we get a21 = 0

A−1 =

 a11 a12

0 a22


Then, both y1t and y2t contribute to the regular component y∗1t, but process y1t does

not contribute to the explosive component y∗2t = y2t:

y∗1,t = a11y1 + a12y2 =
+∞∑
j=0

λ1ε
∗
1,t−j, (2.7)

with ε∗1,t as the causal error ε∗1,t = a11ε1,t + a12ε2,t, and

y∗2,t = a22y2,t = −
+∞∑
j=0

[λ−j−1
2 a22ε2,t+j+1].

The noncausal error ε∗2,t = a22ε2,t is a function of ε2 only. We observe that y1,T affects

only the error term associated with y1,T+1, i.e. the non-explosive error.

If J1 = ϕ22, J2 = ϕ11 so that J2 > J1, we get a11 = 0
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A−1 =

 0 a12

a21 a22


In this case, process y1t is explosive and does not contribute to the regular component

y∗1t = y2t, while both y1t and y2t contribute to the explosive component y∗2t.

Example 2: Lower triangular Φ

Suppose the element ϕ12 = 0 in matrix

Φ =

 ϕ11 ϕ12

ϕ21 ϕ22


which makes a lower triangular matrix

ΦL =

 ϕ11 0

ϕ21 ϕ22



Then, if J1 = ϕ11, J2 = ϕ22 so that J2 > J1, we get a12 = 0

A−1 =

 a11 0

a21 a22


Process y2t does not contribute to the regular component y∗1t = y1t, but both processes

contribute to the explosive component y∗2t.
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y∗1,t = a11y1 =
+∞∑
j=0

λ1ε
∗
1,t−j,

where ϵ∗1,t is the causal error ϵ∗1,t = a11ϵ1,t and a function of ϵ1,t only. The explosive

component is

y∗2,t = a21y1,t + a22y2,t = −
+∞∑
j=0

[λ−j−1
2 (a21ε1,t+j+1 + a22ε2,t+j+1)].

If J1 = ϕ22, J2 = ϕ11 so that J2 > J1, we get a22 = 0 and

A−1 =

 a11 a12

a21 0


In this case process y2t does not contribute to the explosive component y∗2t = y1t,

while both y1t and y2t contribute to the regular component y∗1t.

Independence

The independence between y1 and y2 arises when ϕ12 = ϕ21 = 0 and the

joint density of errors can be written as: g(ε1,t, ε2,t) = g1(ε1,t)g2(ε2,t),∀t.

2.4 VAR(1) representation of the VAR(p) model

The mixed VAR(p) can be easily transformed into a mixed VAR(1) model for

estimation and inference purposes. In that context, the causal and noncausal
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components can be easily determined too. Consider the mixed VAR(p) process:

Yt = Φ1Yt−1 + ...+ ΦpYt−p + εt , (2.8)

where (εt) is a sequence of i.i.d. random vectors of dimension n with variance-

covariance matrix Σ. We can write this model as a VAR(1) model for Xt where Xt is

obtained by stacking the current and lagged values of Yt intoXt = (Y ′
t , Y

′
t−1, ..., Y

′
t−p+1)

′,

to get

Xt = ΨXt−1 + ut. (2.9)

The autoregressive matrix Ψ can be written as the augmented matrix:

Ψ =



Φ1 ... ... Φp

Id 0 ... 0

0 Id ... 0

0 ... Id 0


. (2.10)

and the errors in (2.9) are:

u′
t =

[
ϵ1,t · · · ϵn,t 0 · · · 0

]
.

By the representation theorem given in Section 2.2, matrix Ψ can also be written in

the Jordan canonical form:
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Ψ = B

 J1 0

0 J2

B−1.

Similarly to Yt in the VAR(1) case, Xt is the sum of causal and noncausal components

Xt = B1X
∗
1,t +B2X

∗
2,t,

where

X∗
1,t = J1X

∗
1,t−1 + u∗

1,t,

X∗
2,t = J2X

∗
2,t−1 + u∗

2,t,

and the causal and noncausal errors are deterministic functions of the process ut,

u∗
1,t = B1ut, u∗

2,t = B2ut.

Errors u∗
1,t and u∗

2,t satisfy n(p−1) linearly independent and deterministic relationships

since they both depend on εt, dim u∗
1,t + dim u∗

2,t = n1 + n2 = np and np is greater

than dim εt = n whenever p > 1.

Moreover, it follows that:

X∗
1,t = B1Xt, and X∗

2,t = B2Xt. (2.11)

The expression X∗
1,t = B1Xt, is the linear combination that eliminates the

local explosive patterns. Because Xt contains the present and past values of Yt, the

common bubble in a VAR(p) is not necessarily ”common and contemporaneous”.
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As one can see in Figure 1, for example, the bubble dynamics are quite

complex, and the bubbles are not always necessarily contemporaneous. The bubbles

in the component processes do not start and end at the same time, which justifies

the presence of lagged values in the non-explosive combination.

Suppose that the process of interest is VAR(2) for p=2, where n1+n2 = 2n.

Then we have n2 common bubbles X∗
2,t = B2Xt = B2

1Yt+B2
2Yt−1, which are functions

of the current and lagged Yt, up to a pre-multiplication by an invertible matrix of

dimension n2 × n2. Among these combinations, we can distinguish n21 combinations

that depend on Yt only and depict the ”common and contemporaneous” bubbles.

Then, there exists γ ∈ N(B2
2) = {γ′B2

2 = 0} such that γ′X∗
2,t = γ′B2

1Yt, where N(.)

denotes the null space. In addition, there can be n22 combinations involving Yt−1 only.

Then γ ∈ N(B2
1) so that γ

′X∗
2,t = γ′B2

2Yt−1. There are also n2−n21−n22 combinations

γ′X∗
2,t orthogonal to the previous ones that are mixed, and involve both the past and

present values of the process. Then, γ ∈ (N(B2
1) +N(B2

2))
⊥ = N(B2

1)
⊥ ∩N(B2

2)
⊥.

The ”contemporaneous” aspect of common bubbles can be easily tested by

estimating the matrix B2 and testing the null hypothesis of zero elements associated

to the lags of Yt.

There also exist n1 locally non-explosive combinationsX∗
1,t = B1Xt = B1

1Yt+

B1
2Yt−1 which are functions of the current and lagged Yt, up to a pre-multiplication

by an invertible matrix of dimension n1 × n1. By analogy to the cointegration,

these combinations eliminate the local explosive patterns, instead of common global

trends (nonstationarity). Among them, we can distinguish n11 combinations that

depend on Yt only and eliminate the ”common and contemporaneous” bubbles.

Then, there exists γ ∈ N(B1
2) = {γ′B1

2 = 0} such that γ′X∗
1,t = γ′B1

1Yt. In

addition, there can be n12 non-explosive combinations involving Yt−1 only, such

that γ ∈ N(B1
1) = {γ′B1

1 = 0} yielding γ′X∗
1,t = γ′B1

2Yt−1. Finally, there are

n1 − n11 − n12 non-explosive combinations γ′X∗
1,t orthogonal to the previous ones

that are mixed, and involve both the past and present values of the process with γ ∈
(N(B1

1) +N(B1
2))

⊥ = N(B1
1)

⊥ ∩N(B1
2)

⊥. Note that in the context of cointegration,

the lags of Yt appear in the cointegrating equation that eliminates the common trends,
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unless the VAR(1) dynamics and equal order of integration on all nonstationary

component series are assumed [ e.g. Engle & Granger (1987)].

In this context, the alternative approach to bubble cointegration proposed

in Cubadda, Hecq, & Voisin (2023) is also applicable. It is restricted to the ”common

and contemporaneous” bubbles only and does not involve the lags of Yt. However,

that method is based on the multiplicative representation of the VAR(p). The

factorization of the vector autoregressive polynomial of Yt into the causal and

noncausal polynomials may not always be feasible, or unique Davis & Song (2020),

Gouriéroux & Jasiak (2023).

2.5 Semi-Parametric Estimation

The semi-parametric estimation method for mixed causal noncausal pro-

cesses, called the Generalized Covariance Estimator was introduced by Gouriéroux

& Jasiak (2017). It follows from the nonlinear identification result in Ming-Chung

& Kung-Sik (2007) that there exist nonlinear covariance based conditions that can

be used to identify causal and noncausal components of a given series provided the

error terms εt are serially independent. The nonlinear covariance based conditions

for VAR(1) model (2.1), for example, could be the covariances between nonlinear

transforms of the error terms defined for a given set of functions as:

cj,k(h,Φ) = Cov[aj(Yt − ΦYt−1), ak(Yt − ΦYt−h−1)], j, k = 1, ..., K, h = 1, .., H,

for a given set of functions ak, k = 1, ...K, satisfying the regularity conditions given

in Gouriéroux & Jasiak (2017) and Gouriéroux & Jasiak (2023).

Let us denote by Θl(Y t, ϕ), l = 1, ..., KH, the function ak(Yt−h −ΦYt−h−1),
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k = 1, ..., K, h = 1, ..., H where ϕ = vecΦ. For each covariance ckl = Cov[Θk(Y t, ϕ)

,Θl(Y t, ϕ)], k, l = 1, ..., KH, we can write its sample counterpart: γ̂k,l,T = Ĉov[Θk(Y t, ϕ),

Θl(Y t, ϕ)], k, l = 1, ..., KH, where Y t contains the values of the process up to and

including time t.

The Covariance estimator ϕ̃T of ϕ = vecΦ minimizes the following objective function:

ϕ̃T = γ̂T ′(ϕ)Ωγ̂T (ϕ),

with respect to ϕ where γ̂T (ϕ) denotes the vector obtained by stacking γ̂k,l,T (ϕ) and

Ω is a (KH ×KH) positive definite weighting matrix.

Under the assumption that the model is well-specified, and the identification

condition given in Gouriéroux & Jasiak (2017), Gouriéroux & Jasiak (2023) there

exists a unique solution to the limiting objective function. Under mild regularity

conditions, the GCov estimator exists and is consistent and asymptotically nor-

mally distributed Gouriéroux & Jasiak (2017), Gouriéroux & Jasiak (2023). The

asymptotic efficiency of a Covariance estimator based on a given set of nonlinear

autocovariances depends on the matrix of weights Ω. The estimator is asymptotically

semi-parametrically efficient when the optimal weighting matrix is used. The optimal

weights Ω that ensure asymptotic semi-parametric efficiency are based on the inverse

sample variance matrices of a(Yt) [see, Gouriéroux & Jasiak (2023)].

For our implementation, we consider the sample autocorrelations ρ̂j,k(h,Φ) =

Corr[aj(Yt − ΦYt−1), ak(Yt−h − ΦYt−h−1)]. Then the GCov estimator can be rep-

resented as a weighted covariance estimator that minimizes a portmanteau-type

criterion [see e.g. Cubadda & A. Hecq (2011)]:

ϕ̂T = argmin
ϕ

K∑
j=1

K∑
k=1

[
H∑

h=1

ρ̂2j,k,T , (h, ϕ)] (2.12)

where H is the highest selected lag and the theoretical autocorrelations ρj,k are
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replaced by their sample counterparts ρ̂j,k,T , see Gouriéroux & Jasiak (2017). This

estimator is easy to implement, but is not optimally weighted.

The definition of the Generalized Covariance estimator is similar to the

definition of a Generalized Method of Moments (GMM) estimator since by analogy,

we can obtain a consistent covariance estimator with a simple weighting scheme

such as an identity matrix (although that first step estimator may not be fully

semi-parametrically efficient). The differences lie in 1) the use of the central moments

only in the GCov approach, 2) the reduced dimension of the objective function to be

minimized, and 3) the portmanteau statistic interpretation of the objective function

[see e.g. Cubadda & A. Hecq (2011)].

The choice of nonlinear covariances is a problem similar to choosing the

instruments in a GMM setting. One can choose a combination of quadratic and

linear transformations to capture the absence of leverage effect at lag h, h ≤ 0 for

example, or other nonlinear functions, such as higher powers or logarithms. The

choice of tuning parameters H and K has a limited impact on the variance of the

estimator 3.

The GCov estimator has no closed-form and is obtained numerically from a

minimization procedure. In general, the objective function of the GCov is not convex

and an algorithm, such as the commonly used BFGS or BHHH can converge to a

local minimum. In practice, the choice of initial conditions is important. For example,

using the OLS estimator as the initial condition may cause the algorithm to converge

to a local minimum associated to the inverse roots. The practical implementation

problems and their solutions are discussed in Cubadda, Giancaterini, et al. (2023) who

propose a Simulated Annealing (SA) procedure to eliminate potential computational

difficulties.

Gouriéroux & Jasiak (2017) show that GCov estimator ϕ̂ of ϕ = vec(Φ′)

is asymptotically normal with the asymptotic variance given by: Vasy[
√
T (ϕ̂T −

3See Gouriéroux & Jasiak (2017) and Gouriéroux & Jasiak (2023) for the discussion of choices
of H and K.
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ϕ)]=(D′Σ−1D)−1. The rows of matrix D are: Dk,l = − ∂
∂ϕ′ Ĉov[Θk(Yt, ϕ),Θl(Yt, ϕ)].

The elements of matrix Σ are:

σ(k,l),(k′,l′) = Covasy(
√
TĈov[Θk,Θl],

√
TĈov[Θk′ ,Θl′ ])

where Θi = Θi(Yt, ϕ) = ak(Yt−h − ΦYt−h−1) for i = (k, l, k′, l′).

In practice, the estimation of a (bivariate) VAR(p) from the GCov estimator

can be accomplished along the following steps:

1. Estimate Φ1, ...,Φp for a given autoregressive order p using the GCov estimator.

This can be done using linear and nonlinear functions of ϵt(ϕ) = Yt −Φ1Yt−1 −
...− ΦpYt−p.

2. Compute the residuals ϵ̂t = Yt − Φ̂1Yt−1 − ... − Φ̂pYt−p and their nonlinear

autocorrelation functions. If the residual autocorrelations are significant at

some lags, then re-estimate the model by increasing the autoregressive order p

and repeat until the residual autocorrelations are no longer significant.

3. Using the p estimated autoregressive coefficients Φ̂1, ..., Φ̂p compute Ψ̂ and

derive the Jordan canonical form of Ψ̂ The decomposition will yield n̂1 and Ĵi

and B̂i for i = {1,2}.

3 Empirical Analysis of Cryptocurrencies

3.1 Cryptocurrencies

We consider the US Dollar prices of the following cryptocurrencies: Bitcoin

(BTC), Ethereum (ETH), Ripple (XRP) and Stellar (XLM) over the period 2017-

2019, obtained from the Bitfinex exchange (www.bitfinex.com). The presence of
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common bubbles in cryptocurrency markets during that period is attributable to

several factors, such as herding behaviour among traders, regulatory changes and

news shocks.

Devenow & Welch (1996) defines herding as correlated patterns of behaviour

among traders. Herding behaviour occurs in financial markets when investors imitate

the investment decisions of others without reference to fundamentals [see Hwang

& Salmon (2004)]. Then, traders mimic the trading decisions of others instead of

relying on their own private information Yuan Zhao (2022). Since herding leads

to the adoption of similar investment strategies among traders, it can help explain

local trends and common bubbles in asset prices [see Corbet et al. (2019)]. Bouri

et al. (2019) investigate herding in cryptocurrency markets and find evidence of

herding over the period 2016 - 2018. Building on the work of Bouri et al. (2019), da

Gama Silva et al. (2019) examines 50 high liquidity cryptocurrencies between March

2015 and November 2018 and confirms the evidence of herding behaviour, which is

particularly strong in the down-market period of 2018. Esra Alp Coskun (2020) study

14 leading cryptocurrencies between 2013 and 2018 and find that cryptocurrencies

with smaller market capitalization generally herd with cryptocurrencies that have a

larger market capitalization.

The regulatory environment for cryptocurrencies also plays a role. The

global cryptocurrency regulation is not homogeneous and is subject to abrupt changes

in specific jurisdictions which can impact the entire cryptocurrency market. For

example, in February 2018 the People’s Bank of China blocked access to all domestic

and foreign cryptocurrency exchanges Perper (2018).

News events also contribute to the comovements of cryptocurrencies. For

example, Djogbenou et al. (2023) show that the appointment of Peter Warrack, a

veteran anti-money laundering specialist at Royal Bank of Canada, to the position

of CEO of Bitfinex on May 7th 2018 had an impact on the exchange rates of the

stable coin Tether. 4 More specifically, Tether hovered above its one dollar peg until

4A stable coin is a cryptocurrency that is pegged to another currency, commodity, or financial
instrument Hayes (2023). Tether aims to maintain a 1:1 peg to the US dollar.
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between May and September of 2018. During this same period there was a common

spike in the prices of Bitcoin, Ethereum, Ripple and Stellar in the US dollar which

lasted approximately until September 2018 as well.

3.2 Bitcoin (BTC) and Ethereum (ETH)

The sample of US Dollar (USD) prices of Bitcoin and Ethereum (BTC and

ETH hereafter) consists of T = 885 daily observations collected between January 01,

2017 and June 04, 2019.

Figure 1a displays the daily BTC/USD and ETH/USD rates over the entire

sampling period of 885 days. Both Bitcoin and Ethereum experienced a large increase

in value relative to the US dollar since early 2017. In 2018 they lost a large proportion

of that increase, compared to the peak in late 2017. In addition, both rates show

evidence of bubbles, i.e. local explosive trends with periods of explosive increases and

sudden declines. Figure 1b displays BTC/USD and ETH/USD rates with medians

subtracted. The BTC/USD rate is divided by a factor of ten for comparison and

further modelling. These rates are hereafter referred to as the adjusted series. In

Figure 1c the grey region indicates a sub-sample of T = 250 observations over the

period February 02, 2018 and October 10, 2018 selected for further analysis of the

series. This sub-sample is shown in Figure 1d again to document the comovements

between the series.

We chose this sub-sample with T = 250 because it displayed many spikes

in the late 2017 while the large bubble was bursting and the cryptocurrency prices

were decreasing. This sub-sample shown in Figures 1b and 1d is detrended using

Python package Scipy 5 using a spline of order 2 with a knot every 30 observations.

Alternatively, the Hodrick-Prescott (HP) filter could be used [see Paige & Trindade

(2010)]. Hecq & Voisin (2023) find that the Hodrick-Prescott filter does not introduce

significant distortions to the mixed causal-noncausal dynamics when applied to their

5More specifically we use LSQUnivariateSpline from the Scipy.interpolate package
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(a) 2017-01-01 to 2019-06-04 (b) Adjusted 2017-01-01 to 2019-06-04

(c) Sub-sample 2018-02-03 to 2018-10-10
in grey

(d) Sub-sample 2018-02-03 to 2018-10-10

Figure 1: BTC/USD and ETH/USD Rates. BTC/USD solid line, ETH/USD dotted
line.
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(monthly) data on oil. However, the HP filter requires the selection of a value for

the parameter lambda that is conventionally an increasing function of the sampling

frequency of the data. In our analysis of daily closing rates the value of lambda is

very large leading to computational errors, which motivates the use of a cubic spline

to detrend our data.

The original and detrended BTC and ETH rates are shown in Figures 2.

Figure 2c displays the detrended, adjusted BTC/USD rate as a solid line and the

detrended ETH/USD rate as a dotted line.

The autocorrelation function (ACF) of the detrended data in Figure B.1 in

Supplementary Material shows a finite range of serial dependence. The shaded region

in Figure B.1 marks the asymptotically valid confidence interval at 95%. Moreover,

the detrended data is not normally distributed, with excess kurtosis and skewness of

0.25 and 0.31, respectively in BTC, and of 2.15 and 0.34 in ETH.

3.3 VAR(3) Model of BTC and ETH

We estimate a mixed VAR(3) model for the BTC and ETH rates to improve upon

the fit of the mixed VAR(1) model summarized in the Appendix. We increase the

autoregressive order to eliminate the remaining serial correlation in the squared

residuals. The VAR(3) model is estimated by setting H in the objective function

(2.12) equal to 11 and minimizing it with respect to Φ. We obtain the following

augmented matrix of estimated autoregressive coefficients:
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(a) BTC (Adjusted) Detrended by Spline (b) ETH (Adjusted) Detrended by Spline

(c) BTC/USD: solid line, ETH/USD: dotted line

Figure 2: BTC and ETH (Adjusted) Detrended by Spline
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Ψ̂GCovBTC/ETH
=



−0.792 2.059 1.717 −1.439 −0.497 0.242

−1.268 2.06 −1.268 2.06 0.087 −0.099

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



This autoregressive augmented matrix has two eigenvalues outside the unit

circle equal to 1.42 and -1.079. Inside the unit circle, there are two real valued

eigenvalues 0.4 and -0.09 and a pair of complex conjugate eigenvalues 0.576+0.4i

and 0.576-0.4i, both of modulus 0.7.

Figures B.7 and B.8 in Supplementary Material shows that there remains no

statistically significant serial correlation in the residuals and in the squared residuals,

and the VAR(3) model provides a good fit to the data. The histograms of VAR(3)

residuals for BTC and ETH are given in Figure B.5 of Supplementary Material. The

sample densities of both residual series display large tails indicating non-normality.
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(a) BTC and ETH Series with Causal and
Noncausal Components

(b) Causal and Noncausal Components

Figure 3: BTC and ETH Series with Causal and Noncausal Components, VAR(3)

There are two noncausal components in the VAR(3) model of BTC and

ETH. Figure 3 presents the data and the highest variance causal and noncausal

components. Panel 3a displays the original series along with the causal and noncausal

components while Panel 3b contains only the causal and noncausal components. The

causal components are graphed as solid blue lines while the noncausal components

are graphed as dotted red lines.

The dynamics of the causal components represents the portfolios of cryp-

tocurrency that are immune to local explosions and ensure stable investment paths.

The Noncausal 1 component is the most explosive stationary combination of

the two processes while the Causal 1 is the highest variance non-explosive combination.

The dynamics of the Noncausal 1 match the bubbles and spikes, such as those between

observations 200 and 230.

We observe that the dynamics of noncausal component of the VAR(1) model

of BTC and ETH rates displayed in Figure 11b in the Appendix is similar to the

dynamics of Noncausal 1 component of VAR(3) shown in Panel 3b above. A linear

regression of the noncausal component of the VAR(1) model of BTC/ETH on the

two noncausal components of the VAR(3) model of BTC/ETH reveals a strong linear

relationship with an R-squared of 0.92.
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3.4 Comparison of Mixed VAR(3) and Causal VAR(3) for

BTC and ETH

Let us compare the fit of the mixed VAR(3) and pure causal VAR(3)

models for BTC and ETH rates. The augmented matrix of OLS estimated VAR(3)

coefficients is shown below:

Ψ̂OLSBTC/ETH
=



0.867 −0.166 0.108 0.0574 −0.172 0.006

−0.066 0.677 0.143 0.029 −0.057 −0.104

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



The eigenvalues for the augmented matrix are, 0.943, 0.456+0.43i, 0.456-

0.43i (modulus 0.627), 0.463, -0.55, -0.23. The values of autoregressive coefficients of

the causal and mixed VAR models are different, as well as their statistical significance.

In the equation of BTC in the OLS estimated causal VAR(3) model, the only

statistically significant coefficient is on BTC at time t− 1. In the ETH equation the

only statistically significant coefficient is on ETH at time t− 1. No other coefficients

are statistically significant. The results show no evidence of a feedback effect or

comovements.

The ACF in Figure B.7 in Supplementary Material, reveals the presence of



THIS VERSION: April 8, 2024 34

serial dependence in the squared residuals of the causal VAR(3) model estimated by

the OLS estimator from the same sample. The mixed causal noncausal VAR is able

to capture nonlinear serial dependence in the data whereas a standard linear causal

VAR model is unable to accommodate it. We observe that the autocorrelation of

the squared residuals at lags one to three are statistically significant for the causal

VAR(3) while they were not for the mixed VAR(3).

The OLS-estimated causal VAR model fails to capture the comovements

and feedback effects accommodated by the mixed causal-noncausal model. This is

because the causal VAR model assumes that all eigenvalues lie within the unit circle

and is therefore misspecified.

3.5 XRP (Ripple) and XLM (Stellar)

Figure 4a shows the full sample of 882 daily observations on US Dollar

prices of Ripple and Stellar, referred to as XRP and XLM hereafter, between 2017

01 and 2019 06. Figure 4b displays the same two time series with their medians

subtracted (referred to as the adjusted series henceforth). The grey region in Figure

4c indicates the sub-sample of T = 250 observations between 2018 03 25 and 2018 11

29 used for analysis and Figure 4d shows the adjusted sub-sample.

We observe that the series display explosive features with the presence of

common bubbles and spikes. The summary statistics for the two series are given in

Supplementary Material, Table A.1. and provide evidence that the series are not

normally distributed.

The XRP and XLM rates are detrended by using a spline of order three

and with a knot at every 25 observations using Python package Scipy 6. Figures 5a

and 5b show the original and detrended series of XRP and XLM rates, respectively.

Figure 5c shows the adjusted and detrended sub-sample for XLM and XRP

6More specifically we use LSQUnivariateSpline from the Scipy.interpolate package
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(a) 2017-01-01 to 2019-06-04 (b) Adjusted 2017-01-01 to 2019-06-04

(c) Sub-sample 2018-03-25 to 2018-11-29
in grey

(d) Sub-sample 2018-03-25 to 2018-11-29

Figure 4: XRP/USD and XML/USD Rates. XRP/USD solid line, XML/USD dotted
line.
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(a) XRP (Adjusted) Detrended by Spline (b) XLM (Adjusted) Detrended by Spline

(c) XRP/USD: solid line, XLM/USD: dotted line

Figure 5: XLM and XRP (Adjusted) Detrended by Spline
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with XRP as the solid line and XLM as the dotted line. The detrended data is

not normally distributed, with non-zero excess kurtosis and skewness equal to 0.48

and 0.102, respectively in XRP and equal to 0.017 and 0.28 in XLM. Figure B.2 in

Supplementary Material shows the ACF of the detrended series for XRP and XLM.

We observe that the autocorrelations of the detrended XRP and XLM series are

decaying gradually to 0 at a slow rate.

3.6 VAR(3) Model of XRP and XLM

The mixed VAR(1) model estimated from the XRP and XLM rates does

not completely remove the serial correlation in the residuals 7. Hence, to account for

the serial correlation in the squared residuals, we increase the autoregressive order

of the model as it was done in Section 3.3 for the BTC and ETH series. We set H

in the objective function (2.12) equal to 6 and minimize it with respect to Φ. We

obtain the augmented autoregressive matrix of coefficients given below.

Ψ̂GCOVXRP/XLM
=



1.52 0.04 −2.19 1.61 1.66 −1.35

1.7 0.67 −4.01 2.97 3.33 −2.53

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


7We estimate a mixed VAR(1) model for the XRP and XLM rates by setting the starting values

for the minimization procedure to zero and using the BFGS algorithm.
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All coefficients are statistically significant according to the standard Wald test. The

augmented matrix Ψ̂GCOVXRP/XLM
has one eigenvalue of 1.8 outside the unit circle

and the following eigenvalues inside the unit circle 0.75, -0.64+0.2i and -0.64-0.2i

(of modulus 0.67) 0.46+0.52i 0.46-0.52i (of modulus 0.69) which is consistent with

mixed causal noncausal dynamics.

The autocorrelation functions of the residuals and squared residuals from

the VAR(3) model for XRP and XLM rates are shown in Figures B.10 and B.11

of Supplementary Material. These plots indicate that the noncausal VAR(3) has

captured the linear and nonlinear serial dependence in the residuals. The histograms

of VAR(3) residuals for XRP and XLM are given in Figure B.6 of Supplementary

Material. The sample distributions of both residual series have large tails indicating

non-normality.

(a) XRP and XLM Series with Causal and
Noncausal Components

(b) Causal and Noncausal Components

Figure 6: XRP and XLM Series with Causal and Noncausal Components, VAR(3)

Figure 6 above displays the real causal and noncausal components of the

XRP/XLM pair of cryptocurrencies. There is only one noncausal component of the

VAR(3) model which closely mimics the bubbles and spikes of the series.

The dynamics of the causal component depicts the behavior of a portfolio

of cryptocurrency that is free of locally explosive patterns.
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Linear regressions of the noncausal component of the XRP/XLM VAR(1)

on either the noncausal component of the BTC/ETH VAR(1), or those of VAR(3)

reveal strong linear relationships with high R-squared. This motivates our joint

analysis of all four series in Section 3.8.

3.7 Comparison of Mixed VAR(3) and Causal VAR(3) for

XRP and XLM

Let us compare the mixed VAR(3) model estimated by the GCov estimator

with the results obtained from a causal VAR(3) model estimated by the OLS on the

XRP and XLM data. The OLS estimated coefficients of a causal VAR(3) model are

as follows:

Ψ̂OLSXRP/XLM
=



0.867 −0.166 0.108 0.0574 −0.172 0.006

−0.066 0.677 0.143 0.029 −0.057 −0.104

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



In the OLS estimated equation ofXRPt there are two statistically significant

coefficients on XRPt−1, and XLMt−2. In the equation of XLMt there is only one

statistically significant coefficient on XLMt−1 at time t− 1. No other coefficients are
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statistically significant.

The ACF of the squared residuals in Figure B.12 of Supplementary Material

shows that the causal VAR(3) model estimated by OLS, fails to remove serial

correlation from the squared residuals. We observe that the autocorrelation of

the squared residuals at lags one to three are statistically significant. In contrast,

the mixed causal noncausal VAR(3) model is able to remove the nonlinear serial

dependence.

As it was the case for the BTC/ETH pair, the causal VAR model fails to

capture the feedback effects because of the misspecification due to the assumption of

causality.

3.8 VAR(1) of Bitcoin, Ethereum, Ripple and Stellar

We now consider a noncausal VAR(1) model of all four cryptocurrencies

estimated from 200 observations recorded between March 5 2018 and October 10

2018, with the values of BTC and ETH divided by a factor of 1000 in order to adjust

the data to a closer range of values. The data adjusted by subtracting the median

and rescaling are displayed in Figure 7.
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Figure 7: BTC, ETH, XRP, and XLM Rates Spline Detrended (adjusted)

Figure 7 suggests that the cryptocurrency series display comovements. The

local explosive patterns of the series resemble one another, indicating the presence

of bubbles common to all of them, which motivates the modelling of the series

jointly as a mixed model. Because there is a trade-off between the lag order and

the dimension of the series in Markov processes 8, we expect the VAR(1) model to

provide a satisfactory fit to the data.

By setting H=14 in the objective function (2.12) and minimizing it with

respect to Φ with powers two as the nonlinear functions, we obtain the following

estimated autoregressive matrix:

8The mixed VAR(1) models are Markov of order 1 in both the calendar and reverse time.
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Φ̂GCOVBTC/ETH/XRP/XLM
=



0.69 0.075 0.099 0.56

−0.094 0.918 −0.15 0.588

−0.2 0.0979 0.995 0.295

0.306 −0.326 −0.0115 1.068


.

The eigenvalues of the autoregressive matrix given above are as follows: 1.16, 0.79,

0.79+0.23i, 0.79-0.23i with one eigenvalue outside the unit circle and three eigen-

values inside the unit circle (the complex eigenvalues have modulus 0.832). This

result implies a mixed VAR(1) process containing three causal and one noncausal

components.

The histograms and QQ plots of the residuals given in Supplementary

Material in Figures B.13 and B.14 respectively, show large tails of sample densities,

consistently with non-normal distribution of the VAR(1) residuals. The Jarque-Bera

and Shapiro Wilk test statistics both indicate that the residuals for BTC, ETH, XRP

and XLM are not normally distributed.

The Figures B.15 Panel (a) and B.15 Panel (c) in Supplementary Material

display the autocorrelation functions of the residuals and squared residuals for BTC

and ETH respectively, while Figures B.13 Panel (b) and B.13 Panel (d) display the

autocorrelation functions of the residuals and squared residuals for XRP and XLM.

We observe that the model removes the serial correlation in the residuals and squared

residuals, and provides a good fit to the data.

There is one common noncausal component representing the common

bubble and local explosive pattern of the four cryptocurrency series. The noncausal

component is displayed in Figure 8 below.
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Figure 8: Common Noncausal Component of VAR(1) with four Cryptocurrencies

The noncausal component of the VAR(1) model of the four cryptocurrencies

is closely related to the noncausal components of the bivariate processes. A linear

regression of the noncausal components of the VAR(1) of dimension four on the

noncausal components of the two bivariate VAR(1) and VAR(3) models shows a

close relationship between the noncausal components of all series with an R-squared

of 0.88.

4 Conclusion

In this paper we examined the prices of the following cryptocurrencies:

Bitcoin, Ethereum, Ripple and Stellar in US dollars, documented their comovements

and displayed the common bubbles. We modelled the pairs Bitcoin/Ethereum

and Ripple/Stellar as bivariate mixed VAR(1) and VAR(3) processes and all four

cryptocurrency rates as a mixed VAR(1) process of dimension four.
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The mixed causal-noncausal modelling allowed us to decompose the pro-

cesses into their causal (i.e. ’regular’) and noncausal (i.e. ’explosive’) components.

The noncausal component can be estimated and monitored over time to provide

inference on the common bubbles and local explosive patterns, in general. It can

be also predicted by using the prediction methods for noncausal processes given in

Gouriéroux & Jasiak (2016). The causal component eliminates the common local ex-

plosive dynamics of the series depicted by the common bubbles and spikes. Therefore,

the common bubble can be interpreted as a common feature in the sense of Engle &

Kozicki (1993). The causal component itself is a portfolio of cryptocurrencies, which

is immune to the risk of common bubbles and provides a stable investment strategy.

We compared the results from the OLS estimation of causal VAR models

with the semi-parametrically estimated mixed causal noncausal models. We found

that modelling the cryptocurrency rates as processes with causal and noncausal

components enables us to detect nonlinear dependencies within and between these

series as well as their comovements, which cannot be captured by the standard linear

causal VAR models.
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Appendix: Mixed VAR(1) Model of BTC and ETH

This Appendix summarizes the estimation results for the VAR(1) model

of Bitcoin and Ethereum 9. The VAR(1) model is estimated by minimizing the

objective function (2.12) with respect to Φ with H equal to 11 and power two as the

nonlinear function. We obtain the following estimates of the autoregressive matrix:

Φ̂GCOVBTC/ETH
=

 0.12 1.18

−0.56 2.08

 .

The eigenvalues for this matrix are 0.55 and 1.6 respectively, which is

consistent with a mixed causal-noncausal process. The standard errors for the first

row are 0.059, 0.093, respectively and the standard errors for the second row are

0.064 and 0.1, respectively. The coefficients are statistically significant based on the

standard Wald test.

The residual variance covariance matrix estimated for the BTC/ETH

VAR(1) model is

Σ̂BTC/ETH =

 1002.37 676.4

676.4 650.1

 .

The ACF of the residuals and squared residuals of the VAR(1) model are

shown in Supplementary Material in Figures B.3 and B.4 respectively. .

We find that most serial correlation has been removed, but there still exists

evidence of slight autocorrelations at lags 1 and 2, especially in the squared residuals.

9Setting the starting values for the minimization procedure to zero and using the BFGS algorithm.
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The histograms and QQ plots shown in Figures 9 and 10 respectively,

display the sample distributions of the residuals for the VAR(1) BTC and ETH

providing evidence of their non-Gaussian distributions. The residual densities have

long left tails indicating departures from normality.

Figure 9: Histograms of Residuals from VAR(1) for BTC and ETH

(a) BTC QQ Plot of Residuals VAR(1) (b) ETH QQ Plot of Residuals VAR(1)

Figure 10: BTC and ETH Plot of Residuals VAR(1)
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In order to further investigate the normality of the residuals we employ a

battery of statistical tests: JB - Jarque-Bera, KS - Komolgorov and Smirnoff, DP -

D’Agostino and Pearson, Sh - Shapiro whose test statistics and p-values are given in

Table 1, where ’p’ stands for ’p-value’.

JB JB-p KS KS-p DP DP-p Sh Sh-p
BTC 35.03 0.0 0.514 0.0 0.97 0.0 19.2 0.0
ETH 312.5 0.0 0.485 0.0 48.04 0.0 0.93 0.0

Table 1: BTC and ETH Normality Tests for VAR(1) Residuals

The non-normality is also evidenced by the skewness and the excess kurtosis of 1.63

and -0.42, respectively for the BTC residuals, and of 5.38 and -0.53, respectively for

the ETH residuals.

The estimated autoregressive matrix has distinct eigenvalues and is diago-

nalizable. Having decomposed the autoregressive coefficient matrix Φ̂ = ÂĴÂ−1 (i.e.

into Jordan normal form) we can use the blocks of matrix Â−1 to obtain the causal

and noncausal components of the process:

Ŷ ∗
1,t = Â1Yt, Ŷ ∗

2,t = Â2Yt, where Â−1 =

Â1

Â2

.

Below, we plot the two series of cryptocurency rates along with their causal and

noncausal components representing the regular and explosive common dynamics in

Figure??. The causal and noncausal components are shown separately in Figure 11b.
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(a) Detrended Series with Causal and
Noncausal Components

(b) Causal and Noncausal Components

Figure 11: BTC and ETH Series with Causal and Noncausal Components, VAR(1)

Figure 11a shows the dynamics of the causal and noncausal components of

the multivariate process for the sub-sample of BTC and ETH without the original

series. We see that the causal component of the model is more smooth compared to

the noncausal component. It is the combination that eliminates the common bubbles

from the cryptocurrency and provides the investor with a portfolio that is immune

to the local explosive patterns, ensuring a stable investment strategy.

Figure 11b shows that the noncausal component displays more volatility

than the common causal component. This is because the noncausal component

represents the common bubble or explosive local trend in the series. It can be

monitored in practice to provide insights to investors, for example when the explosive

component exceeds in absolute value a predetermined threshold.

Since the process shows autocorrelation in the squared residuals at lag 1

we increase the number of lags in the VAR model to remove the remaining serial

correlation in the squared residuals. This autocorrelation appears to be removed by

lag 3, i.e. when the VAR(3) model is fitted to the time series.
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