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New flexible-form and semi-parametric autoregressive non-linear count models for panel data
are developed to analyse the spread and containment of the COVID-19 pandemic. The
models are based on a discrete time form of the SIR model. These methods lead naturally to
estimators of the infection process and daily reproduction numbers by jurisdiction. Two semi-
parametric versions of the reproduction numbers are developed corresponding to currently
popular parametric estimators. The estimators are applied to a large international data set
to estimate these parameters for some 200 jurisdictions at both national and subnational
levels.

1 Introduction

Anyone who has followed the reporting of the COVID-19 pandemic is familiar with the
graphical presentation and comparison of the data from a variety of jurisdictions, the char-
acterization of the growth rates as potentially “exponential” and efforts to “flatten” the
curves of new infections. A common, but not uniform, initial characteristic across juris-
dictions was a roughly log-quadratic trend of new infections, although this seems to have
been belied by numerous resurgences of the virus. The similar, but by no means identical
time-paths2 seem to reflect a certain homogeneous underlying structure. In fact, although
the time paths across jurisdictions may be eventually quite distinct, it would seem that since
all spring from what is (basically) a common virus, there should be some homogeneity that
can be exploited for better estimation. This paper seeks to add to this discussion by devel-
oping a number of panel and count data techniques based on an underlying epidemiological
model and applying them to international data available on the pandemic. A central focus
of this study are the basic or effective reproduction numbers which we show are naturally
defined with respect to the parameters of the count data models we develop. By pooling the
data we are able to obtain more efficient estimates, all the while allowing for heterogeneity
across different jurisdictions. We allow for various assumptions regarding homogeneity of
the pandemic processes across jurisdictions and time and explore the implications of these
for our understanding of the pandemic. In doing so, we introduce some new statistical

1*York University, ** University of Toronto, Toulouse School of Economics and CREST, Correspondence
to Rilstone at pril@yorku.ca .

2Linton (2020) categorizes international data as falling into one of five groups: Early stages, Middle Age,
Over the Hill, Twin Peaks, Resurgence.
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techniques, including variations of the basic exponential count model and flexible-form and
semi-parametric modelling of the different deterministic trends across jurisdictions.

At writing, the pandemic has been ongoing for many months with many jurisdictions
accumulating daily data. This would seem to provide a substantial amount of data for each
jurisdiction, commonly with one hundred or more observations. Nevertheless, estimates
based on jurisdiction data have been criticized for their unreliability, notably in terms of
poor forecasts. Unfortunately, there is substantial noise in daily data3

We focus in this paper on the infections equation. Most of the published aggregate level
forecasts are based on deterministic trend (albeit sophisticated) analysis. Linton (2020)
reports a variety of country-level estimates of models using a non-parametric local polynomial
approach. We refer back to this below. Many public and public health organizations have
analysed the data using a variety of local trends to estimate and forecast. It is difficult
to determine exactly the methods they use from any publicly available information. We
model the infections equation as having stochastic and deterministic components. A non-
linear long auto-regressive series can exhibit behaviour which appears to be moving along a
log-quadratic deterministic trend. Simple examination of patterns in the data can lead to
misleading conclusions. The notion of “flattening” the curve can be interpreted as referring
to the raw moments of the reduced form projection of infections on a time trend. While
this may be a pleasing from a policy perspective, it reflects the fact that the pandemic is
evolving and that forecasts built on an estimated trend may be inaccurate.4

Count models and panel data have been used extensively in empirical health economics
and epidemiology. Most of the aggregate data available on the pandemic is by definition
count data and is collected at a variety of jurisdictional levels, i.e., panel data. The principal
advantage of panel data is the potential it has for providing more information than a single
series. This usually entails a presumption of some poolability across units. There are various
ways to incorporate homogeneity, from assuming all jurisdictions are identically distributed,
to allowing certain forms of heterogeneity, to modelling each jurisdiction separately. If we
maintain that biologically the disease is largely time and location invariant, then it makes
sense to exploit the fact that certain key parameters of the process should be alike in different
jurisdictions5

One important consideration makes panel data especially appropriate here. The infec-
tions (or renewal) equation, at least as modelled using daily observations, is a long autore-
gressive process requiring the estimation of many parameters. There is scant information
available with individual time series to allow for estimation of a large number of parameters
with a high level of accuracy. By assuming a certain homogeneity of the disease across juris-
dictions, we are able to estimate these common parameters with a high degree of accuracy.

We develop/apply a number of count data estimators to examine some of the main ag-

3It is common to see rolling averages reported, these smooth out the noise but do not really impart more
information. In fact, this may have a substantially harmful effect on inferences in that if the time-path of
infections is non-linear, a rolling average may tend to obscure this.

4The popular initial work used log-quadratic functional form of the pandemic in part to forecast “peaks”
in the virus’ spread which is immediate with a quadratic model. Subsequent waves of the virus belie any
such simple trend.

5There is some evidence that there are various strains or mutations of the virus. While this is quite
possible, small differences in the virus across outbreaks should have minimal effects on the estimation.
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gregate features of the pandemic including basic regression models and maximum likelihood
estimators. The count models are used to estimate the parameters of the “renewal equation”
popular in epidemiology. These are particularly amenable for constructing a model which
is both epidemiologically and statistically sound. Much of the focus is in a Poisson frame-
work and its extensions. This is done largely for mathematical convenience and coherence.
Its extensions allow for a wide variety of assumptions. The Poisson assumption can be re-
laxed substantially, retaining its main components. Poisson estimators are known to have
certain robust properties even when the underlying distribution is not Poisson.6 The panel
Poisson model was perhaps first used by Hausman, Hall and Griliches (1984). There are
various textbook discussions of the basic estimator including Cameron and Trevidi (2005)
and Wooldridge (2010). The data is effectively an unbalanced panel with observations com-
mencing with first reported incidence.

One of the standard methods of incorporating heterogeneity is through allowing for un-
observed heterogeneity, either random or fixed effects. We estimate the fixed effects version
as one way of allowing for heterogeneity across jurisdictions. This of course only allows for
time-invariant tilting in the regression function. To allow for differences in the trend between
jurisdictions we introduce a flexible version of the fixed-effects model and a variant of Robin-
son’s (1988) semi-parametric estimator. If we assume that the autoregressive component of
the reproduction equation is effectively homogeneous across jurisdictions, we can estimate
this by a similar method.

Some consideration should be given to the issue of stationarity of the pandemic process.
On the one hand, plots of individual incidents often appear explosive at the beginning of
most of the outbreaks. (If they were not we clearly would not have locked down good parts
of the national economies of the world.) On the other hand, many if not most outbreaks have
become under control and infection levels have decreased (at writing) in most jurisdictions.
Thus, it is arguable that the contagion processes are stationary, either around a trend, or
conditional on other factors. From an inferential perspective non-stationarity is problematic
for various reasons, not the least of which is that standard asymptotic critical values based
on stationarity may be invalid. Our implicit assumption is that the processes are stationary
around some trend, albeit the specific form of which is unknown. We thus make use of
standard asymptotic results using George Box’ caveat that any statistical model is at best
an approximation. Hopefully our results can provide some useful insights. An additional
argument for stationarity is that the usual tests for stationarity would not necessarily refute
the hypothesis of non-stationarity if endogenous measures were taken such as to keep the
spread of the pandemic in check to the side of explosiveness. Many countries have taken
measures on an incremental basis, slowly ratcheting up off-setting measures. So (and this of
course may sound self-serving on the side of stationarity), the “flattening of the curve” can
be seen as a shifting of the trend line. Another argument for stationarity follows from the
so-called herd-effect. At a certain point the percentage of the population at risk naturally
diminishes which eventually puts a damper on disease propagation. The immediate extent
of a herd-effect is a disputed topic. At time of writing, the introduction of various successful

6The textbook derivation of a Poisson distribution corresponds to situations of aggregated observations
on binary events in which the individual probability of an infection is very small and the number at risk
is very large. This is not a completely inaccurate characterization of the data used here on the COVID-19
pandemic.
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vaccines would imply that the number of individuals at risk who are exposed to COVID-19
is decreasing.

The standard models of COVID-19 incidence, while insightful, overlook a couple of im-
portant elements which can lead to misleading results. The analyses are typically presented
on a country by country basis and are based on fitting data mid-spell. They are often largely
descriptive in nature, fitting what we could call a reduced form trend to the data without
allowing for direct and accumulated feedback from existing infections. This can result in
spurious correlations. Ignoring this and fitting a rolling trend can exaggerate the effect of a
trend and potentially lead to what appears to be a flattening of the curve. While govern-
mental policies most certainly had an impact on the spread of the disease, it is not clear to
what extent this was the case, or whether individuals may have been collectively changing
their behaviour regardless of government fiat.

The discussion is organized as follows. In the next section we discuss the data used in the
study. Section 3 develops the simple discrete infections model linking this in a transparent
way to the notion of a basic or effective reproductive number in epidemiology7. Section 4
develops corresponding econometric estimators for this model, provides identification and
asymptotic distributional results and discusses a number of other estimation issues. Section
5 provides a summary of our empirical results. Section 6 concludes.

2 Data

The principal source of data used in this study is the Johns Hopkins githubsite. This has
data on over 260 jurisdictions. Some jurisdictions have been removed from this version. We
retained only those that had observations from their first reported infection (i.e. no left
censoring). The data for this version is up to June 29, 2021. The earliest observation is
January 22, 2020. The data is an unbalanced panel data set due to the differences between
the first reported infections in different jurisdiction.

One of the issues of debate in the current COVID-19 pandemic literature is over the
relation between reported and actual infection rate. This has an impact on the study in
several ways.

Reported infections are most certainly an understatement of actual infections. There
already has been a number of studies on this and there will certainly to be many more
studies of this issue. While we would most certainly prefer to work with actual infections, if
we consider the proportion of observed to actual cases to be largely constant, then we can
make inferences in terms of elasticities. For this study we are using reported infections. As
more information becomes available this could be incorporated. We note that changes in
reported infections brought on, say, by increased testing in most jurisdictions, are allowed
for in the flexible form and semi-parametric approached developed below.

A second, not-unrelated issue is the period between infection of an individual and the
date when that case is reported. We may think of this an an incubation period, although
incubation as referring to the time between infection and manifestation of symptoms has a

7Since the reproductive numbers defined in this paper vary by jurisdiction and time, they are more
appropriately referred to as effective reproduction numbers or ratios.
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slightly different meaning. Some individuals may stay completely asymptomatic through-
out their infection or some may not find their symptoms sufficiently extreme to warrant
reporting/diagnosis so will not appear as infected.8 Through testing, some who are in this
category (and this may be increasing) may now show in this category. At any rate there is
most typically a lag between infection and recorded infection. The renewal equation includes
all infectious individuals. In principle this can generate a very long autoregressive process,
from the date of infection, through the period of incubation and to the date of recovery (or
death), or quarantine, with the latter being imperfect and of variable effectiveness.

It is difficult to think of a situation in which data has been such a contentious political
issue amidst claims of under or over-reporting and so on. We simply take the data as they
are. It is certainly the case that there have been some administrative issues. We have,
with minimal caveats used the data as collected by third parties and publicly available.
Perhaps the one caveat, apart from deleting left-censored observations, is that in a few
cases (probably) due to updates, cumulative numbers decreased resulting in negative counts.
These were recoded as zeros when minimal; we deleted jurisdictions (including Italy and the
UK) which had more than 10 negative counts. We also omitted a few obviously anomalous
cases such as the Island Princess.

The cases used in the study thus correspond (caveats mentioned above) to the data
freely available at the Johns Hopkins website. Most of the cases or jurisdictions are at the
national level of aggregation. Some, such as Canadian (province), Australian (state) and
some Chinese data9 are at a subnational level. These could be aggregated in various ways
either by country or region. We have left as is for transparency and to allow for more
heterogeneity10. The heterogeneity in the cases in the data thus almost mirrors that of most
international data sets. Thus, there are large differences between observations. This we
view as a benefit as our analysis allows for a separation of the biological component of the
pandemic from the environmental component. Conversely, the techniques in this paper could
be applied to other data sets in which the collection is less aggregated, say at a county level.
In this case, there would arguably be much more dependence between observations and this
would need to be incorporated into the modelling strategy.

3 Infections, R0 and Count Models

Much of the modern literature on the spread of pandemics is based on the original SIR
differential model of Kermack and McKendrick (1927, 1932, 1933). The SIR model and
its extensions are useful for conceptualizing the characteristics of disease spread within a
deterministic setting, but may be somewhat limited to characterize the observational, het-
erogeneous and discretely sampled data which is typically available. The simplest idea in the
study of contagious diseases is that of a reproduction number or ratio. As per Heesterbeek
and Dietz (1996), “R0 is the expected number of secondary cases produced by a typical
infected individual during its entire infectious period, in a population consisting of suscepti-

8The Stanford (Bendavid and Bhattacharya, 2020) and other studies emphasize this.
9Note that since the data set begins January 22, 2020, a number of the Chinese provinces and other

sub-national jurisdictions are unfortunately excluded.
10It could also lead to more violations of the independence assumption. See below for a discussion of this.
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bles only”. “R0” is a convenient and familiar generic term. For the most part we allow the
reproduction number to vary by jurisdiction and jurisdiction and time and accordingly use
the notations Rj and Rj(t).

There are numerous versions of the continuous-time SIR model (see Heesterbeek and Di-
etz, 1996) with correspondingly somewhat varying definitions of R0 which lead to somewhat
different estimates (Chowell, Gerardo, Nishiura and Bettencourt, 2006 and Li, Blakeley and
Smith, 2011). In its most basic form, R0 ignores or holds constant certain time factors
(including a specific individual’s infectiousness), exposure intensity factors and responses to
the infection, either medical or social. Nevertheless it is a useful place to start. An infection
is seen as the event of being contaminated by the virus. The probability of such an event
varies across individuals and each individual’s infectiousness will vary randomly. We develop
a discrete version commonly (see, e.g. Allen, 1994 and Champredon et al, 2018) referred to
in the epidemiology literature as the renewal equation.

The discrete version of the renewal equation as in Allen (1994) is derived from a first-
order difference equation which can be seen as a time-discrete version of the corresponding
first-order differential renewal equation in the original SIR model. Chowell and Nishiura
(2008) and Li, Blakeley and Smith (2011) survey various methods to estimate reproduction
numbers including those from survival methods and imputation from empirical growth rates.

Two alternative approaches to defining the reproduction number are reviewed by Fraser
(2007). The first, the “case reproduction number” conforms with the above definition and
which we develop for count models here. The second, the “instantaneous reproduction num-
ber” can be obtained from the case approach by imposing a constraint. The instantaneous
number has been popularized by e.g. Cori et al. (2013) and has been widely adopted by
public health authorities. It is numerically simpler to implement. We show at the end of
this section how to adopt the methods here to obtain a semi-parametric version of it. We
develop a discrete infections equation in an alternative manner from simple first principles
and the concept of the effective reproduction number, which varies across jurisdictions and
time. This leads directly into an estimable autoregressive count model. We first assume a
constant (over time) exposure rate so that a random individual i who becomes infected in a
jurisdiction j is considered to have the same number and kind of encounters with uninfected
(susceptible or at-risk) individuals in jurisdiction j each day. This is a classic statistical
experiment in a laboratory setting with exact replication each day. The assumption of a
constant exposure rate is effectively plausible if a population is sufficiently large that those
who become infected represent a small proportion of the at-risk set. Note that this excludes
in a sense a “herd” effect which diminishes the exposure rate in terms of exposure to at
risk individuals. Allowing for a herd effect is one way of thinking of subsequent draws with-
out replacement. We want to connect this to an autoregressive framework. Note that in
continuous time an individual may be immediately contagious and the disease’s virulence
within that individual would be changing continuously over time. However, this needs to be
modified for discrete time. Here, everything is framed within the context of the impact of
new infections and allows that their case may be “primary”, “secondary” or otherwise.

Consider an individual i who becomes infected in time t. In each subsequent period, t+s,
individual i is introduced into an environment (call it jurisdiction j) which we first assume
is homogeneous over time. A person is infectious up to a maximum of m periods. Individual
i will directly cause Ij(t + s) infections in jurisdiction j in periods t + s, s = 1, . . . ,m. The
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Ij(t+ s) are independent, which we assume is plausible with a fairly large population. Note
that the Ij(t+ s) are random: they depend primarily on the amount of the dosage ingested
by i and the toxicity of i. Thus the number of (secondary) infections caused by individual i
in jurisdiction j is

∑m
s=1 Ij(t+ s).

If we decompose transmission into the product of time-varying virulence, rs with a con-
stant (over time) exposure factor we have E[Ij(t + s)] = rsAj, where Aj is exposure rate in
jurisdiction j. Normally, but not necessarily, we expect rs to be decreasing in s. There may
be a hump corresponding to initial infectiousness. After m (m finite) periods a person is no
longer infecting others (they may be still sick, completely quarantined, recovered or dead,
but not infecting others so that rs = 0, s > m. Following Heesterbeek and Dietl (1990) we
refer to rs as the reproduction function which may be seen as the product of a measure of the
infectivity of an individual s days from infection and the survival function of the infection.
In our context these are not separately identifiable. We have that the basic (perhaps better
referred to as the effective) reproduction number in jurisdiction j is

Rj = Aj

m∑
s=1

rs. (3.1)

We have changed indexes to indicate that the reproduction number varies by jurisdiction.
We connect this to an autoregressive process as follows. In period t −m suppose there are
yj,t−m new infections, then this contributes in conditional expectation to Ajrmyj,t−m new
infections in period t. In t−m+ 1 if there are yj,t−m+1 new infections, then this contributes
in conditional expectation, to Ajrm−1yj,t−m+1 new infections in t. In t− 1 if there are yj,t−1
new infections, then this contributes in conditional expectation to Ajr1yj,t−1 new infections
in period t. So, adding these together, in terms of conditional expectations, if infectiousness
lasts m periods we have

E[yj,t|yj,t−1, . . . , yj,t−m] = Aj

m∑
s=1

rsyj,t−s. (3.2)

Consider now if the exposure rates, which we now indicate by Aj(t), change by jurisdiction
and time period. It’s useful to walk through a chain of examples.

� If an individual i (in jurisdiction j) gets ill in period t−m,

– in period t − m + 1 individual i is expected to directly infect r1Aj(t − m + 1)
individuals (these may go on to infect others),

– in period t−m+ 2 individual i is expected to infect r2Aj(t−m+ 2) individuals,

– in period t− 1 individual i is expected to infect rm−1Aj(t− 1) individuals and so
on until

– in period t individual i is expected to infect rmAj(t) individuals and

– in period t+ 1 individual i is expected to infect 0 individuals.

� If an individual i gets ill in period t−m+ 1,
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– in period t−m+ 2 individual i is expected to infect r1Aj(t−m+ 2) individuals,

– in period t−m+ 3 individual i is expected to infect r2Aj(t−m+ 3) individuals

– in period t individual i is expected to infect rm−1Aj(t) individuals,

– in period t+ 1 individual i is expected to infect rmAj(t+ 1) individuals and

– in period t+ 2 individual i is expected to infect 0 individuals and none thereafter.

� If an individual i gets ill in period t− 1.

– in period t individual i is expected to infect r1Aj(t) individuals,

– in period t+ 1 individual i is expected to infect r2Aj(t+ 1) individuals,

– in period t+m− 1 individual i is expected to infect rmAj(t+m− 1) individuals,

– in period t+m individual i is expected to infect 0 individuals.

Noting which previous infections cause infections in period t and by which factor, we
have, in terms of conditional expectations,

E[yj,t|yj,t−1, yj,t−2, yj,t−m, t] =
(
r1yj,t−1 + r2yj,t−2 + · · ·+ rmyj,t−m

)
Aj(t) (3.3)

≡ Y ′j,t−mrAj(t)

noting that all terms are positive, where Y ′j,t−m ≡
(
yj,t−1, . . . , yj,t−m

)
and r =

(
r1, . . . , rm

)′
.

We also have that the effective reproduction number, denoted here Rj(t), varies by jurisdic-
tion and time period so that

Rj(t) =
m∑
s=1

rsAj(t+ s) (3.4)

with the same parameters as from the autoregression. Note that, from a count data perspec-
tive, the reproductive number can be seen as simply a weighted sum of upcoming exposure
factors, wherein the weights are corresponding measures of a typical person’s infectivity at
those times.

Note the formal similarity of this to the renewal equation in Cori et al. (2013) and Cham-
predon et al. (2018)11 Cori et al. (2013) use a Poisson distribution for the yt with conditional
mean Rt(θ2)

∑t−1
i=1 wi(θ1)yj,t−i where Rt(θ2) and the wi’s are parametrically specified (e.g, as

Gamma and serial interval distribution.) Champredon et al. (2018) use a variation specified
as (adapting for our notation)

yj,t =
Sjt
Nj

R0Bjt

m∑
i=1

γ(i)yj,t−i (3.5)

where Sjt, Nj and Bjt represent susceptible (at risk) individuals, population and other factors
such as distancing. Champredon et al. (2018) have the same variables with two differences.

11This is a discrete time form of their equation as presented by Champredon (2020).
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First, in our case, the effective reproduction numbers are directly derived as functions of the
autoregressive parameters of the process. In their studies γ is a distribution function whose
parameters are estimated. Second, although in principle at-risk population density could
be introduced, there are identification and normalization issues involved when multiplying
these different factors.

Note here that we are implicitly assuming independence across jurisdictions. An alter-
native multivariate time series count model introduced by Held and Paul (2012), also Meyer
and Held (2014) allow for interdependence across jurisdictions (or regions). They allow for
only one lag in their approach and their focus is more on transmission across jurisdictions
rather than the dynamics of the process. A gravity model similar to this would be an in-
teresting extension of this study, but beyond its scope. We note that the almost global ban
on international travel some weeks into the pandemic effectively imposed a high degree of
independence across jurisdictions. 12

Many writers have been critical of the notion of a constant reproduction number param-
eter, although the concept has seen widespread use and it certainly makes sense to assign
some sort of measure to the transmissibility of a disease. In a laboratory setting it is useful
to consider factors by which different diseases will be transmitted by a single person over the
course of their infection (this itself is unlikely to be constant for various reasons) for given
rates of exposure. There are numerous secondary factors which can be held constant. Where
the problems really arise is in maintaining a constant exposure rate. We use Equation 3.3
as the basis for estimation. Note that rs ≥ 0. In the empirical work we parametrize so that
the rs =’s are positive.

An important consideration is the multifaceted relationship between true infections (largely
unobservable) and administratively recorded infections (observable with some error). That
infections show up with a lag is one issue. That increasing numbers are being tested over
the sampling is another. In our autoregressive models, if true and recorded infections are
proportional and with a constant factor of proportionality, then the parameters of the au-
toregression are the same for the observed and unobserved models.

Much is unknown about the corona virus and different mutations of it are likely to have
somewhat different transmission properties and manifest themselves with somewhat different
symptoms. Another issue is the incubation period (from initial transaction to manifestation
in human symptoms). Indeed the extent to which the virus manifests itself is itself an
important topic. From an estimation perspective we allowed for the length of infectiousness
to be up to two weeks which seems quite adequate in most cases.

To close off this section we consider the interdependence of observations across jurisdic-
tions and how that effects the analysis here, which it potentially does in two ways. First,
ipso facto, infections across jurisdictions are clearly not independent due to migration. The
above model could be modified to allow for individuals to cross from one jurisdiction to
another during their infectiousness period. This kind of adjustment (not possible using the
data set employed here) could have some effect on the analysis, but in our case the effects
of such an adjustment would be small for a number of reasons. First, although the initial

12There is also an implicit assumption that a (secondary) person is only infected by one (primary) person.
This assumption is made in the original SIR work, the argument being that the initial contamination swiftly
dominates any subsequent contamination.
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cases of the pandemic for any jurisdiction were introduced by individuals from a different
jurisdiction (typically midstream of that individual’s infectiousness period), the ensuing sec-
ondary cases follow the modelling above and the relative contribution of the primary cases to
secondary cases is soon dwarfed by domestically infected individuals. So while allowing for
inter-jurisdictional transmission of the pandemic would be important to a study focused on
that, it has little relative impact here. Moreover, the enhanced controls on travel introduced
by almost all countries (and many sub-national jurisdictions) by March, 2020 virtually elim-
inated this concern as an issue for our purposes here. It is commonly reported that foreign
sources account for no more than one or two per cent of total direct infections. A second
indirect way in which the independence issue impacts here is a concern in many statistical
studies that there are unobservable effects which impact on all observations making them
in some way dependent. We choose, at this point, to address these kind of concerns by
appropriate adjustment to standard errors.

4 Econometric Models and Issues

This section deals with a number of estimation issues. We first consider a number of econo-
metric models and corresponding estimators which are consistent with the basic epidemiolog-
ical count model of Section 3 for a range of assumptions regarding the time trend component.
We show how new estimators of the reproduction numbers can be computed for each of these
models. We provide discussions of identification of the parameters in each model as well as
basic asymptotic results for the estimators. Finally, we consider a number of other estimation
considerations that arise in this context.

Since we are modelling count variables it is convenient to specify a conditional Poisson
distribution for the infections, yj,t. This framework allows for incorporation of the non-
negative integer nature of yj,t and provides simple intuitive ways to capture heterogeneity
and dependence. The approach can then simply be subsequently modified to allow for
non-Poisson features while retaining the basic intuition. Poisson estimates are also robust
to departures from the Poisson distribution. We first state a few well-established results
regarding the standard fixed-effects Poisson model and then extend this in a couple of ways
to flexible-form estimation and semi-parametric estimation.

4.1 Fixed Effects

The basic fixed-effects model can be written such that the conditional mean for an observa-
tion yj,t can be written as hjt(r)e

αj where hjt(r) is a function of conditioning variables and
a parameter r. The log-likelihood function for observation j, t is written as

ljt(Zjt;αj, r) = yj,t log λjt − λjt − log yjt! (4.1)

where λjt = hjt(r)e
αj and Zjt denotes yj,t and any conditioning variables. An equivalent

parameterization which we also use sets cj = eαj .
In this paper we primarily use the specification 13 hjt(r) = Y ′j,t−mr, although certain

13When yj,t−s = 0, s = 1, . . . ,m we set ljt = 0.
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other specifications, including introduction of additional covariates, can be accommodated.
For now we assume that all jurisdictions are infected on the same date, i.e., a balanced
panel. This is modified below to allow for different first infection dates. The pooled Poisson
estimator sets αj = α for all j = 1, . . . , N . The standard fixed-effects estimator of r can be
obtained in a couple of ways. For distributional results it is simplest to follow Anderson’s
(1970) (adopted by Hausman, Hall and Griliches, 1984, for the Poisson case) method of
deriving the likelihood of yj,1, . . . , yj,T conditional on ȳj =

∑T
t=1 yj,t/T which leads to a

multinomial distribution for the yj,1, . . . , yj,T ’s. For modelling purposes we find it convenient
to first maximize with respect to each αj, for given r, and concentrate out the αj’s. The
distributional results may be more difficult to derive directly in this case, but we find the
interpretation of the model simpler in this form and also more readily extendable. For given
r, the maximizers of

∑
t ljt(Zjt;αj, r) with respect to αj solve

eαj =
ȳj

h̄j(r)
≡ cj, j = 1, . . . , N (4.2)

where ȳj and h̄j(r) represent averages for jurisdiction j. Summing over t, the single obser-
vation concentrated log-likelihood (up to a constant ) is written

lj(r, αj(r)) =
∑
t

ljt(r, αj(r)) =
∑
t

yj,t ln

(
hjt(r)∑
t hjt(r)

)
+ const (4.3)

It is common in count analysis to adjust for “exposure rates” by scaling each hazard by
a measure of the jurisdiction’s population or population density. This is typically redundant
with a fixed-effects model as multiplicative time invariant variables are absorbed into the
fixed effects. Standard exposure rate adjustments do not affect the slopes of the fixed-effects
estimators.

Under wide ranging conditions the Maximum Likelihood Estimator of r is known to be
consistent and asymptotically normal. The score can be written as

sj(r) =
T∑
t=1

(
yjt −

ȳj
h̄j(r)

hjt(r)
)5hjt(r)
hjt(r)

(4.4)

where 5hjt ≡ ∂hjt/∂r. Note that this holds for as few as T = 2 although it does fall apart
if T = 1.

The fixed-effects estimator is useful as a benchmark to compare against other estimators
and also as a segue to understanding a class of flexible-form estimators we now look at.

4.2 Time-Varying Fixed Effects

From the renewal equation we allow for the autoregressive component to be homogeneous
across individuals, but the deterministic component is allowed to vary across jurisdictions.
We propose a variety of flexible form and semi-parametric approaches for which the asymp-
totics are straightforward. Consider first a count variable whose mean over an interval is
proportional to a common factor. Denote the intervals as
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Ijl =


[0, T1), l = 1

[Tl−1, Tl), 1 < l < L

[Tl−1,∞) l = L

(4.5)

where over interval Ijl we have

E[yj,t|t ∈ Ijl] = hjt(r)e
αjl (4.6)

We will use somewhat of an oxymoron and refer to this as a time-varying fixed-effects model.
We write the single observation log-likelihood as

lj(r, αj) =
L∑
l=1

∑
t∈Ijl

(yj,t ln(hjte
αjl)− hjt(r)eαjl) + const

where αj(r) =
(
αj1(r) · · · αjL(r)

)
. Let njl denote the number of observations in Ijl, ȳjl,

h̄jl denote the corresponding averages of the yjt and hjt over those intervals. We see simply
that with cjl = ȳjl/h̄jl, maximizing the corresponding likelihood over the αjl’s results in
estimators: eαjl = cjl and the single observation concentrated log-likelihood is written

lj(r, αj(r)) =
L∑
l=1

∑
t∈Ijl

(
yjt ln

(
hjt(r)

ȳjl(r)

h̄jl(r)

)
− hjt(r)

ȳjl
h̄jl(r)

)
+ const (4.7)

=
L∑
l=1

∑
t∈Ijl

yjt ln
(hjt(r)
h̄jl(r)

)
+ const

with the middle term on the first line being absorbed into the constant since∑
t∈Ijl

(
hjt

ȳjl
h̄jl

)
= njlȳjl (4.8)

and we also note that we may interpret ȳjl and h̄jl as method of moments estimators of
E[yj,t|t ∈ Ijl] and E[hjt|t ∈ Ijl].

We obtain the usual fixed effects estimator by setting L = 1 in which case the ȳjl and h̄jl
are the averages over all the observations for jurisdiction j.

Corresponding to the standard fixed-effects case we can write down the single observation
score for this extension thereof as

sj(r) =
T∑
t=1

(
yjt − 1jlt

ȳjr
h̄jl(r)

hjt(r)
)5hjt(r)
hjt(r)

(4.9)

where

1jlt =

{
1, t ∈ Ijl
0, otherwise

. (4.10)
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Note that for the estimator to work we need at least two observations to fall within each
interval, although presumably more is better. Also note that we are dividing the observations
up into intervals along the line, but in a more general sense we could divide the observations
up into different subgroups or “clusters” so long as these are known.

We note that for given r
ȳjl

h̄jl(r)
= eα̂jl (4.11)

provides estimates of the αjl’s, although without specifying the number of elements in Ijl we
need to be careful when using these individually for inferences. If the number of observations
in an interval is large, then we may be fairly comfortable using asymptotic theory to make
inferences about the αjl’s.

Note that for fixed L, this is a straightforward extension of the fixed-effects estimator.
Its statistical properties follow from the Anderson set up. It can be seen as a multinomial
estimator with the likelihood conditional on the ȳjl, l = 1, . . . , L. This may be seen as a
step-wise constant approximation to a time trend. We stay agnostic with respect to the
choice of knots. Some authors have already effectively considered specific dates for these.
We estimate these models for fixed values of L (actually modified to Lj, j = 1, . . . , N to
allow for different initial pandemic starting dates). We could also incorporate some curvature
within regions, but stay simple leaving the fixed effects constant over each interval.

It is important to link this variable fixed effects specification to the infections equation.
Note here that the conditional mean of yj,t can be written as

E[yj,t|Yj,t−m, t] = Y >j,t−mrAj(t) (4.12)

where

Aj(t) =

Lj∑
l=1

eαjl1[t ∈ Ijl] (4.13)

where 1[] is the usual indicator function. Thus, in this set up we allow for a flexible ap-
proximation to the time trend via a step function. Note that the fixed-effects estimator is a
special case with Aj(t) = eαj , the deterministic trend being constant for all j.

In our empirical work we considered various choices for the length of these intervals.
If these are too long, the trend effect is washed out; choosing intervals too short results
in over-fitting and nonsensical values for the autoregression parameters. We found a good
compromise was between 21 and 31 days. We rounded up the number of periods in the first
interval for each jurisdiction (i.e. each Ijl contained L observations with the first interval
containing at least L observations). We return to this estimator after the following discussion.

4.3 Semi-Parametric Modelling

The semi-parametric literature has generalizations that effectively allow for smoothing of
the step-wise function. One is to allow for curvature over each interval such as having
quadratic or cubic splines over the knots. The other is to allow L to increase. The latter
can be problematic for technical reasons but also because of what we are willing to assume
regarding the size of T : whether it is fixed or growing and at what rate. We touch briefly on
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this but given our interest here is on applications we keep the discussion and assumptions
at a high level. Introducing smoother functions via splines is one method of approximation
which has been used by some analysts of the pandemic. We find a simpler way is through
kernel and local polynomial estimators14, which will lead to a more sophisticated estimation
approach than the time-variant fixed effects estimator.

To do so we consider a variation of Robinson’s (1988) semi-linear regression model. Semi-
parametric estimators for other similar non-linear models have been proposed so we keep
the asymptotics fairly high level. The idea is as follows. We can tautologically decompose a
count (or other) random variable into its regression (conditional mean) and residual and do
non-linear regression noting that the count feature restricts the regression to be positive (and
puts an inequality constraint on the residual). We maintain a Poisson-type framework while
noting that this can either be modified, keeping the regression component of the Poisson
and/or modified with results interpreted using robust inferential techniques. To allow the
trend to be jurisdiction specific we let τj,t denote periods following the first infection in
jurisdiction j at time t. In our case then,

E[yj,t|Yj,t−m, τj,t] ≡ λjt(Yj,t−m, τj,t) (4.14)

= h1(Yj,t−m)h2(τj,t),

say, so that taking the expected value of yj,t conditional on τj,t we have

E[yj,t|τj,t] = E[h1(Yj,t−m)|τj,t]h2(τj,t) (4.15)

and rearranging we have

h2(τj,t) =
E[yj,t|τj,t]

E[h1(Yj,t−m)|τj,t]
(4.16)

and under the specification for the autoregressive component of the renewal equation we
have

λjt ≡ E[yj,t|Yj,t−m, τj,t] =
h1(Yj,t−m)

E[h1(Yj,t−m)|τj,t]
E[yj,t|τj,t] (4.17)

=
( Y ′j,t−mr

E[Y ′j,t−m|τj,t]r

)
E[yj,t|τj,t]

≡ Hjt(r)E[yj,t|τj,t],

say, again with r =
(
r1 . . . rm

)′
. A number of points arise here. First, with respect to

identification, note that multiplying each rk by a common constant leaves the conditional
mean unaltered so a restriction is required. 15 We provide a more fulsome discussion of
identification below.

14Linton (2020) uses local polynomials to estimate E[yj,t|t].
15In our initial applications we normalized ln r1 = ρ1 = 1. Subsequently we used

∑
s rs = 1 to be consistent

with other work in the area. A scale restriction is also required for the aforementioned fixed-effects models.
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The multiplicative decomposition of E[yj,t|Yj,t−m, τj,t] = λj,t has an interesting interpre-
tation. E[yj,t|τj,t] is the pure trend component of the pandemic. Note that if this understates
the pandemic relative to its actual spread then the coefficient Hjt(r) will be greater than
one and this will adjust the pure trend component of the pandemic upwards. Conversely if
E[yj,t|τj,t] overstates the pandemic, E[yj,t|Yj,t−m, τj,t] will be smaller.

4.3.1 Infeasible Semi-Parametric Modelling

Were the conditional expectations known, maximum likelihood (or non-linear regression)
could be applied directly to estimate r. In that case if we substitute λjt into the single
observation log-likelihood we have

ljt(r) = −Hjt(r)E[yj,t|τj,t] + yj,t lnHjt(r) + const (4.18)

and summing over all time periods we have

lj(r) = −
T∑
t=1

Hjt(r)E[yj,t|τj,t] +
T∑
t=1

yj,t lnHjt(r) + const. (4.19)

The maximizer, r̂∗, of the sum of these lj(r)’s we shall denote as the infeasible semi-
parametric estimator. This log-likelihood is analogous to the time-varying fixed-effects case,
but with an important difference. The middle term corresponds to the log-likelihood for the
time-varying fixed-effects case. However, the equivalent to the lead term does not exist in
the time-varying fixed-effects case (either with one or L > 1 effects) as we have written it.
Actually, there is an equivalent term, but, in the derivation of the fixed effects estimator,
the equivalent of the numerator in the first term effectively cancels with the denominator
and the lead term is absorbed into the constant.

Here, differentiating and rearranging we see that the score function is of the form

sj(r) ≡
∂

∂r
lj(r) =

T∑
t=1

E[yj,t|τj,t]5Hjt(r)

(
yjt
λjt
− 1

)
(4.20)

which has the familiar structure of a Poisson score function with zero mean.

4.3.2 Feasible Semi-parametric Estimation

In the absence of the conditional mean functions E[yj,t|τj,t] and E[Yj,t−1|τj,t] we can first esti-
mate the conditional means non-parametrically and then substitute these into the likelihood
function and then maximize the likelihood over the r’s to obtain a feasible semi-parametric
estimator, r̂. There are numerous methods for estimating the non-parametric component,
including splines, nearest neighbours, kernels or local polynomial which, under regularity
conditions, result in estimators of the finite-dimensional component which are asymptoti-
cally equivalent.

Note that the time-varying fixed effects estimator is a discrete approximation to a semi-
parametric estimator with the time-varying fixed effects estimates viewed as a regresso-gram
or nearest neighbours estimator with a fixed number of neighbours estimated around the
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mid-point of each interval. We also note that the time-varying fixed effects is analogous to
Meyer’s (1990) step-wise approximation to an unknown hazard rate in duration analysis. For
the semi-parametric estimator we assume that the preliminary first-step non-parametric has
no first-order distribution effects so that

√
NT (r̂ − r̂∗) = op(1). Similar adaptive results are

known to hold for a wide range of models including Robinson (1988) and numerous others
including Carroll (1982) and Robinson (1987) and Escanciano, Jacho-Chávez and Lewbel
(2014). An often used, but not always necessary, condition for the asymptotic equivalence
result is that the non-parametric first-stage estimator converge faster than the quartic root
of the sample size. Since here we are using the Tj observations on jurisdiction j to obtain
non-parametric estimates on E[yj,t|τj,t], this amounts to doing large T asymptotics or at least
that T is growing at a rate faster than N . An alternative would be to do some pooling of
the data across like-jurisdictions.

Feasible estimation requires non-parametric estimation of the conditional mean functions
in the likelihood. We used a variety of kernel based (Nadaraya-Watson and local polyno-
mial) estimators for a number of reasons. One is that they are simple and the ones we use
have explicit representations making them straightforward to incorporate into the estimation
scheme. We focused on the usual kernel estimator and first and second-order local polyno-
mials. (The latter is used by Linton, 2020.) We used the formulation in Wand and Jones
(1995) for the fixed-design case so that the trend for jurisdiction j is transformed to τj,t/Tj
so that these are uniform on U(0, 1), eliminates a source of bias in the conditional mean
estimates and simplifies the form of the estimates’ approximate standard errors.

Non-parametric estimates are particularly useful as they provide preliminary uncondi-
tional estimates of the pandemic process based solely on the trend. One technical difficulty
that initially concerned us with the polynomial is that it does not constrain estimates to
be non-negative. In this regard we considered various methods to impose non-negativity16.
However, after conducting some limited simulations with processes constructed similar to
the observed pandemic (log-quadratic), we simply redefine the local polynomial to be the
max of δ where δ is a small number such as 10−2 and â where â is the usual least squares
estimate of the intercept in a local polynomial regression. We also used the standard kernel
estimator for transparency and also because it leads to an intuitive representation of the
coefficient in the semi-parametric regression function. (The kernel non-parametric estimator
is biased although the bias may be small in the current context in that the distribution of
the conditioning variable is known.)

4.4 Estimation of R0

Riou and Althaus (2020) report a point estimate for R0 of 2.2. Eichenbaum, Rebelo, and
Trabandt (2020) use values of 1.50 and 1.45 in their analytical macro models based on an SIR
model. Biggerstaff et al. (2014) report R0 estimates for a wide variety of other epidemics.
The count framework here allows for straightforward estimation of R0. We first consider the
“case reproduction number”. From the definition we have

16Non-negativity is logically required for a well-defined likelihood in our case.
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Rj(t) =
m∑
s=1

rsAj(t+ s) (4.21)

and we need to simply substitute estimates of rs and Aj(t+ s). Note again that that in this
count framework the reproduction number is simply the weighted sum of future exposure
weights where the weights are measures of future toxicity of an infected individual. Note
that for estimating Rj(T − s) for s ≤ m, this requires estimating outside the observed data.
In the fixed-effects case Aj(t) = eαj is constant and we have Rj(t) = eαj

∑m
s=1 rs. In the

time-varying fixed-effects case Aj(t) is constant over intervals and we have

Rj(t) =
m∑
s=1

rse
αjl1[t+ s ∈ Il] (4.22)

Note that although the exposure factors are constant across intervals, theRj(t)’s in Equation
4.22 generally will vary as the infectivity factors straddle different intervals. A popular
device used in the estimation of reproduction numbers as in Cori et al. (2013) is to consider
variations in the length of windows of observations used to estimate R0. The analogous
tuning parameter here is the length of the intervals used in the time-varying effects approach.

In the semi-parametric model, Aj(t) is the ratio of two conditional expectations and we
have

Rj(t) =
m∑
s=1

rs
E[yj,t+s|τj,t+s]

E[Y ′j,t+s−m|τj,t+s]r
=

m∑
s=1

rs
E[yj,t+s|τj,t]

E[Y ′j,t+s−m|τj,t]r
(4.23)

using E[yj,t+s|τj,t+s] = E[yj,t+s|τj,t] In each of these cases note that we need to be prudent
when constructing standard errors and confidence intervals. If we assume that the estimators
of the homogeneous parametric component (the rs’s) converges faster than the respective
estimates of the Aj(t)’s, then we may treat the latter as effectively fixed and consider the
distribution of the Aj(t)’s. As is often the case, this can be a little problematic. Since T
is relatively large, each estimate of cj = eαj is the ratio of two averages based on a large
number of observations. Standard errors based on this with approximations based on

√
T

asymptotics should be fairly accurate. A similar, though somewhat weaker argument can be
made for the time-varying fixed effects. With regard to the pure semi-parametric estimator,
the asymptotic variance can be derived using basic results for estimators such as kernel or
local-polynomial based. In this situation it is well known that the convergence rate will be√
Tγ where here γ ↓ is the window width. Alternatively, in each of these cases, some kind

of bootstrapping could be done. In our case, our empirical discussion below provides point
estimates at various stages into the pandemic accompanied by the standard deviations and
quantities across jurisdictions. The latter should provide a fairly accurate measure of the
variability of the point individual estimates.

In this context it is interesting to note that Rj(t)’s are often referred to as reproduction
ratios, highlighting the fact that these are often represented as a ratio whose numerator
is the product of daily contacts and probability of transmission and the denominator is the
product of the rate of exit from the susceptible population and the probability of contraction
of the disease. In our case, note that with the basic fixed effects mode, the estimator of Rj
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is simply
∑
r̂scj = (

∑
r̂sȳj)/h̄j which can be interpreted as an estimator of the ratio of

new cases to the exit rate due to past infections. The same interpretation applies (albeit
a little less cleanly) for the case of the time-varying fixed coefficients and semi-parametric
estimators of the reproductive numbers.

For estimation of the “instantaneous reproduction number”, denoted here by R̄j(t) and
to obtain this we simply set Aj(t+s) = Aj(t) in Equation 4.23 so that R̄j(t) = Aj(t)

∑m
s=1 rs.

In the instantaneous case per Fraser (2007) and Cosi et al. (2013) the rs’s are normalized
to sum to unity so that term does not appear. Note that in the form written here that
R̄j(t) is invariant with respect to scale transformation of the rs as, for each of the estimation
techniques, the rs’s appear implicitly in numerator and denominator.

Some programming remarks may be useful to practitioners. The estimation of all models
is straightforward using any programmable language. We did so in two or three steps.
Computation of any of the parametric models is standard. For estimating the rs’s with
the semi-parametric models the first step consisted of obtaining non-parametric estimates
of E[yj,t−s|τj,t] , s = 0, 1, · · · ,m. (I.e. current and lagged predicted values.) In this step we
also found it expedient to estimate E[yj,t+s|τj,t+s] , s = 0, 1, · · · ,m. These are then inputted
directly into standard optimization software for, say maximum likelihood or Poisson model
estimation. This estimates the rs’s. The third step computes the exposure rates Aj(t)’s
using the parametric or non-parametric estimates. Weighting these by the estimated rs’s
produces the Rj(t) estimates.

A final point can be made with respect to the connection betweenR0(t) and the statistical
concept of stationarity. In a purely AR(m) process with E[yt|Yt−m] =

∑m
s=1 φsyt−s the usual

condition for stationarity is that the roots of the equation 1 = φ1z + · · ·+ φmz
m lie outside

the unit circle. Sufficient conditions for these are if φs ≥ 0, s = 1, . . . ,m, and
∑m

s=1 φs < 1.
In the present context, assume that R

j
(t) = R0 is constant (or at some “steady-state”

value). In our case E[yt|Yt−m, t] =
∑m

s=1 rsyt−sR0 =
∑m

s=1 φsyt−sR0 with φs = rsR0. Since
rs ≥ 0 and

∑m
s=1 rs = 1,

∑m
s=1 φs < 1, if R0 < 1. So the usual characterization of R0(t) ≥ 1

as corresponding to an explosive epidemic can also be characterized in this way as a non-
stationary process.

4.5 Identification

For each jurisdiction, (we suppress j subscripts in this subsection) the conditional means
E[yt|Yt−m, t] and E[yt|t] are identified. However, due to the multiplicative separability of
the regression function, E[yt|Yt−m, t] = Y ′t−mrAt, there is an identification issue. Let r0

and A0
t denote true values so that E[yt|Yt−m, t] = Y ′t−mr

0A0
t . For any κ > 0 we also have

E[yt|Yt−m, t] = Y ′t−mr
1A1

t where A1
t = κA0

t and r1 = r0/κ so that r0 is not identified. We will
establish conditions (scale and a form of exclusion restrictions) sufficient for identification
for the three basic models considered.

Decompose r = (r1 r
′
(1))
′ where r1 is the first element of r and r(1) denotes the remaining

m− 1 elements of r.
In each of the cases with true values of the individual parameters denoted, say, as r0q ,

q = 1, . . . ,m, we consider other possible values which as r1q = κqr
0
q . We show that the κq’s

need to equal 1 to be compatible with the true values of E[yt|t] and E[yt|Yt−1, t]
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For all models we impose a scale restriction. Here, for convenience, we impose r1 = 117.
Also, for this subsection, put Yt−2 =

(
yt−2 . . . yt−m

)′
. Let Ω denote those outcomes

in the population such that yt−1 6= 0 and Yt−2 = 0. Let Yt−2,m\q denote Yt−2, excluding
yt−q. Let Ωq, q = 2, . . . ,m denote those outcomes in the population such that yt−q 6= 0
and Yt−1,m\q = 0. Let Ω+

q denote those outcomes in the population such that yt−q 6= 0 and
Yt−1,m\q = 0 and yt−1 = 0 . We assume that Pr[Ω] > 0 and for q = 2, . . . ,m, Pr[Ωq] > 0 for
the parametric models. We assume that Pr[Ω] > 0 and for q = 2, . . . ,m , Pr[Ω+

q ] > 0 for the
semi-parametric models. Since the count variables we consider have positive mass at zero
this is not an issue.

4.5.1 Identification of the fixed coefficients model

It is convenient to use the parameterization c = eα. Note that with the restriction on r1 we
can identify E[yt|Yt−m, t] = (yt−1 + Y ′t−2r

0
(1))c

0. Suppose (r1(1), c
1) are other possible values of

(r(1), c) with c1 = κc0. (a) On Ω we have E[yt|Yt−1, t] = yt−1c
0 = yt−1κc

0 so κ = 1 and c0 is
identified. (b) On each Ωq, we have E[yt|Yt−1, t] = (yt−1 + r0qyt−q)c

0 = (yt−1 + yt−qκqr
0
q)c

0 so
each κq = 1 and the other r0q ’s are identified.

4.5.2 Identification of the time-varying fixed coefficients model

Identification of the time-varying fixed effects model works similarly with the identification
being established on the first (or potentially other) interval.

4.5.3 Identification of the semi-parametric model

In this subsection, put Ŷt−1 = E[Yt−1|t] and ŷt = E[yt|t]. In the semi-parametric case we
have E[yt|Yt−1, t] = (Y ′t−1r/Ŷ

′
t−1r)ŷt and with the restriction r1 = 1 we have

E[yt|Yt−1, t]
ŷt

=
(yt−1 + Y ′t−2r

0
(1))

(ŷt−1 + Ŷ ′t−2r
0
(1))

=
(yt−1 + Y ′t−2r

1
(1))

(ŷt−1 + Ŷ ′t−1−mr
1
(1))

. (4.24)

For any q = 2, . . . ,m, we have on Ω+
q

yt−qr
0
q

Ŷ ′t−1r
0

=
yt−qr

1
q

Ŷ ′t−1r
1

=
yt−qκqr

0
q

Ŷ ′t−1r
1
. (4.25)

so

1

Ŷ ′t−1r
0

=
κq

Ŷ ′t−1r
1
. (4.26)

which implies that κq = kp = k∗, say, for all p, q ≥ 2 so that

1

Ŷ ′t−1r
0

=
κ∗

(ŷt−1 + Ŷ ′t−2κ
∗r0(1))

. (4.27)

17As mentioned, in the empirical section we set
∑
rs = 1 by parameterizing rs = eρs/(1 +

∑m
l=2 rl),

s = 2, . . . ,m and setting r1 = 1/(1+
∑m
l=2 rl). Other restrictions will work as well. In this case the conditional

mean E[yt|Yt−m, t] = Y ′t−mφBt is equivalent with φs = ρs/(1 +
∑m
s=2 rs) and B(t) = (1 +

∑m
s=2 rs)A(t)
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or

(ŷt−1 + Ŷ ′t−2κ
∗r0(1)) = κ∗(ŷt−1 + Ŷ ′t−2r

0
(1)). (4.28)

and hence k∗ =
Ŷ ′t−2r

0
(1)
−ŷt−1

Ŷ ′t−2r
0
(1)
−ŷt−1

= 1.

4.6 Asymptotics: Autoregressive Parameter Estimates

We state some high-level assumptions for the models at hand which allow us to expeditiously
establish asymptotic results. Throughout we assume the log-likelihood functions are twice
continuously differentiable. Throughout, we let r̂ denote one of the four generic estimators
we consider: fixed effects, time-varying fixed-effects, infeasible semi-parametric and feasible
semi-parametric estimators. Where necessary we denote these respectively as r̂FE, r̂TFE,
r̂FSP and r̂SP .

For each of the fixed effects, time-varying fixed-effects and infeasible semi-parametric
estimators, continue to denote by sj their respective score functions and in each case denote

vjt(r) ≡
∂

∂r′
sjt(r), vj(r) =

T∑
t=1

vjt(r) (4.29)

LNT (r) =
1

NT

N∑
j=1

lj(r), SNT (r) =
1

NT

N∑
j=1

sj(r), VNT (r) =
1

NT

N∑
j=1

vj(r) (4.30)

whose exact forms will be model-specific.
Proposition 1: (Fixed effects, time-varying fixed-effects and infeasible semi-parametric
estimators) Assume: 1, the true value of r, r0, lies in the interior of a compact subset of
Rm−1; 2, LNT (r) converges uniformly in probability to a function L0(r) which has a unique
maximum at r0; 3, VNT (r) converges uniformly in probability to a matrix Φ(r) where Φ(r0)

is strictly positive definite. 4,
√
NTSNT (r0)

d→ N(0,Λ). Then for each of the fixed effects,
time-varying fixed-effects and infeasible semi-parametric estimators r̂ is consistent (given

that the model is correct) and
√
NT (r̂ − r0) d→ N(0,Φ−1ΛΦ−1).

Proof: Follows from standard asymptotic theory as in Newey and MacFadden (1994).
We note that the forms of Λ and Φ will depend on which model is being estimated.
For the feasible semi-parametric estimator modify the notation for the infeasible likeli-

hood functionals with parametric components replaced by their corresponding non-parametric
estimates as l̂jt, ŝjt, v̂jt, L̂NT , ŜNT and V̂NT with the first three potentially scaled by a trim-
ming indicator to reduce the contribution of observations which may

Proposition 2: (Feasible semi-parametric estimators) Let the assumptions of Proposition 1
hold and assume (LNT (r))−L̂NT (r)) = op(1), (VNT (r))− V̂NT (r)) = op(1) uniformly in r and√
NT (SNT (r0))− ŜNT (r0)) = op(1). Then, r̂SP is consistent and

√
NT (r̂FSP − r̂SP ) = oP (1).

Proof: Consistency follows immediately from (LNT (r))− L̂NT (r)) = op(1) and Proposition
1. Asymptotic first-order equivalence follow from a standard mean-value expansion of the
estimator so that with probability approaching one.
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0 =
√
NTŜNT (r̂SP ) =

√
NT (ŜNT ((r0))) + V̂NT (r̄)(r̂SP − r0) (4.31)

=
√
NTSNT (r0) + VNT (r̄)(r̂SP − r0) + oP (1)

where r̄ = r0 + oP (1) is a mean value so that

√
NT (r̂SP − r0) = −(VNT (r0))−1

√
NTSNT (r0) + oP (1) (4.32)

=
√
NT (r̂NSP − r0) + oP (1).

Remark 3: Consistency of the semi-parametric estimator is straightforward given that the
underlying pointwise non-parametric regression estimators are uniformly consistent for the
true population regression functions so that the feasible log-likelihood converge to the same
expectation as the infeasible log-likelihood. (The same applies to V̂ .) The asymptotic results
(apart from considerations we have enumerated throughout the paper) for the parametric
and infeasible estimators are unremarkable. To rigorously obtain the results of Proposition
2 from first principles requires considerable work, but, were the data i.i.d., the score for the
semi-parametric estimator is of a form which fits into the analytical framework of Escan-
ciano, Jacho-Chávez and Lewbel (2014) who used empirical process theory to prove results
such as in Proposition 2. In that paper the authors demonstrate convergence of (scaled)
averages such as our

√
NT (SNT (r0)) − ŜNT (r0)). In their case the summands are averages

of multiples of semi-parametric residuals. In our case the residual is effectively yj,t − λjt. In
our case the data is dependent and heterogeneous. A rigorous demonstration of Proposi-
tion 2 from primitive conditions in that case is far beyond the applied scope of this paper,
although the empirical process results in Andrews (1994), Hansen (2009) and Hagemann
(2014) for dependent and/or non-stationary observations suggest the high-level assumptions
of Proposition 2 are quite plausible.
Remark 4: We note that each of the estimators of the auto-regressive parameters is

√
NT -

consistent. It may be possible to analytically compare the asymptotic variance matrices.
Conceptually, the estimators can be viewed as progressively less restrictive, allowing for
increasing heterogeneity over jurisdictions and over time. We do not as yet have analytic
results in this regard.

4.7 Asymptotics: Estimates of the time trend, Aj(t) and Rj(t)

In this subsection we approximate the distribution of the estimators the Aj(t)’s and Rj(t)’s.
To simplify notation, in this subsection we suppress the subscript j’s and set Tj = T . This
can be simply modified in applications. With both N and T large, we can treat the r’s as
fixed. For the case of the purely parametric models, the estimators of the A(t)’s and the
R(t) are ratios of averages and linear combinations of these, respectively, and we approximate
standard errors accordingly.

With respect to the semi-parametric estimation of the AR parameters, it was not nec-
essary to specify the particular form of the non-parametric component so long as some
generic conditions were satisfied. Various non-parametric estimators will lead to the same
asymptotic results for the parametric component. However, to derive explicit results for the
point-wise estimates of A(t)’s and R(t) we consider local polynomial estimators.
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4.7.1 Estimation of the time trend

We adapt the following from Wand and Jones (1995) and Li and Racine (2007). To facilitate
the analysis we redefine the trend variable as Xt = t/T which does not change conditional
expectations but which will allow us to better quantify the relationship between estimates at
adjacent points. Note that Xt±j = Xt ± j/T . Note that doing so allows us to approximate

non-stochastic averages as 1
T

∑T
t=1 f(Xt) =

∫
f(y)dy+O(T−1) and γ−1 1

T

∑T
t=1 g(Xt)f((Xt−

x)/γ) =
∫
g(x + γw)f(w)dw + O(T−1). For succinctness we write g(Xt) = E[Yt|τt] and

decompose infections into the time trend and residual:

yt = g(Xt) + ut (4.33)

where we assume

E[ut|Xt] = 0, E[utus|Xt] =

{
v(Xt), t = s

0, t 6= s
(4.34)

The assumption of uncorrelated residuals may be restrictive, but enables us to obtain
tractable results. To define and manipulate the local polynomial estimators put

y =


y1
y2
...
yT

 , u =


u1
u2
...
uT

 , X =


X1

X2
...
XT

 , g(X) =


g(X1)
g(X2)

...
g(XT )

 (4.35)

Xx = X − x, Kx = Diag[K(Xx/γ)], V (X) = Diag[
(
v(X1) · · · v(XT )

)
] (4.36)

Zx =
(
ιT X�1x · · · X�px

)
T×p1

, z(w) =
(
1 w · · · wp

)>
(4.37)

with p1 = p + 1 where p is the order of the polynomial, � denotes the Hadamard product
and X�px denotes the Hadamard product of Xx with itself, p times.

The regression and regression derivative estimators are obtained from a local regression
with

ĝ(x) = e>p b(x), ĝ(1)(x) = e>p b
(1)(x), b(x) = (Z>x KxZx)

−1Z>x Kxy (4.38)

and ep = (1, 0, · · · , 0)1×p1 . Note that ĝ(1)(x) denotes the derivative of ĝ(x) and not necessarily
the second element of b(x)18. We do not necessarily need to calculate ĝ(1)(x), but its definition
and properties facilitate the derivation of the properties of Â(t) and R̂(t).

Basic properties of regression and regression derivative estimators are well-established.
We state a proposition in this regard and provide some derivations at the end of this section
which may not be immediately obvious.

The following moment matrices appear in the asymptotic variances of ĝ(x) and ĝ(1)(x).

18With local polynomial estimation the second element of b(x) is an estimate of g(1)(x). This does not
exist for p = 0.
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M̂p =
1

Tγ
Z>x KxZx, Mp =

∫
z(γw)z(γw)>K(w)dw (4.39)

M̂∗
p =

1

Tγ
Z>x K

�2
x Zx, M∗

p =

∫
z(γw)z(γw)>K(w)2dw

M̂∗∗
p =

1

Tγ
Z>x K

(1)�2
x Zx, M∗∗

p =

∫
z(γw)z(γw)>K(1)(w)2dw

where M̂p = Mp +O(1/T ), M̂∗
p = M∗

p +O(1/T ) and M̂∗∗
p = M∗∗

p +O(1/T ). Put

κp = e>pM
−1
p M∗

pM
−1
p ep, κ′p = e>pM

−1
p M∗∗

p M
−1
p ep

where in the cases of interest neither κp nor κ′p depend on T .
Proposition 3: For some neighbourhood of x assume g(x) is (p + 2)-times continuously-
differentiable. Let K : [−1, 1] → [0, 1] be a twice continuously-differentiable symmetric
kernel. γ → 0, Tγ →∞. Then

√
Tγ(ĝ(x)− g(x))

d→ N(0, v(x)κp) (4.40)√
Tγ3(ĝ(1)(x)− g(1)(x))

d→ N(0, v(x)κ′p).

The first statement is a standard result. See below for a proof of the second statement. We
implicitly assume that ĝ(x) may be bias adjusted. There are a variety of methods to reduce
or remove bias such as under-smoothing, higher-order kernels, local polynomials, analytic
corrections and resampling techniques. The result for ĝ(x) can be used to obtain approximate
confidence intervals for the time trend. Note also for below that

√
Tγ3(ĝ(x)−g(x)) = oP (1).

Note that v(x) can be estimated using a local regression of the squared residuals, û2t =
(yt − ĝt)2, on the time trend.

4.7.2 Estimates of Aj(t) and Rj(t)

To derive the asymptotic distribution of Â(t) and R̂(t) it would seem straightforward to
write these as functions of estimates of the time trend at various leads and lags and apply
the delta method. As noted, there is a problem in doing so. Although kernel estimates at
distinct points are asymptotically independent, the points where we are estimating are of
the form x and xj = x + j

T
, with xj converging quickly to x. This needs to be taken into

account. Referring back to Proposition 3, it is straightforward to show that the asymptotic
variance, of say, ĝ(xj) is v(x)κp and the asymptotic covariance of ĝ(xj) and ĝ(x) is also
v(x)κp hence the (usual) covariance matrix of ĝ(x) and ĝ(xj) is singular (proportional to a
matrix of ones). Ergo, the usual delta method is not applicable to derive the asymptotic
distribution of non-parametric estimates of A(t) and R(t).

We fix a point x = x0 and, with some abuse of notation, respecify arguments accordingly
so that we have A(x) and R(x), Â(x) and R̂(x). Putting gj = g(xj) and ĝj = ĝ(xj) we have
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A(x0) =
g0∑m

j=1 rjgj
, R(x0) =

m∑
l=1

rlA(xl), Â(x0) =
ĝ0∑m

j=1 rj ĝj
, R̂(x0) =

m∑
l=1

rlÂ(xl)

(4.41)

Note that

gj = g0 +
j

T
g
(1)
0 +O(1/T 2), ĝj = ĝ0 +

j

T
ĝ
(1)
0 +Op(1/T

2) (4.42)

Examining the latter we note that Â(x0) = 1+Op(1/T ) which leads to a degeneracy if we use

standard first order asymptotics to approximate the distribution of Â(x0). To circumvent
this problem we use a second-order approximation to obtain approximate results. Put

Σ(x) =
v(x)

g(x)2
κ′p

( m∑
j=1

rjj
)2

(4.43)

Proposition 4: Let the assumptions of Proposition 3 hold with g(x0) > 0. Then√
(Tγ)3Σ(x0)

−1/2(Â(x0)− A(x0))
d→ N(0, 1) (4.44)√

(Tγ)3Σ(x0)
−1/2(R̂(x0)−R(x0))

d→ N(0, 1) (4.45)

This is proven below. The result is obtained by using the expansions in Equation 4.42
to approximate the denominators of A(x0) and Â(x0) which explains why we use the results
on the derivative of ĝ(x) and why κ′p appears in the asymptotic variance. Note that R̂(x0)

has the same asymptotic distribution as Â(x0), but this does not imply they are the same.
They are each centred at different points and the equality of their asymptotic distributions
follows from the fact that the rl’s in their definition sum to one and the points at which
their respective summands are calculated are converging to x0. Note that the instantaneous
reproduction number, R(x0), with

∑
rl = 1, corresponds to A(x0).

4.7.3 Special cases with quadratic kernel

We provide some details here for the applications in the paper. Note that the various
asymptotic variances above are functions of κp and κ′p which are in turn functions of Mp,

M∗
p and M∗∗

p . Since these are obtained as limits of M̂p, M̂
∗
p and M̂∗∗

p , the latter can be used
as estimates. Alternatively we can obtain Mp, M

∗
p and M∗∗

p analytically as we do here for
the application we employed.

Put µj =
∫
wjK(w)dw, µ∗j =

∫
wjK(w)2dw and µ∗∗j =

∫
wjK(1)(w)2dw Note that Mp,

M∗
p and M∗∗

p have individual elements [i, j]
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Mp[i, j] =

∫
z(γw)z(γw)>K(w)dw[i, j] = γi+j−2µi+j−2 (4.46)

M∗
p [i, j] =

∫
z(γw)z(γw)>K(w)2dw[i, j] = γi+j−2µ∗i+j−2 (4.47)

M∗∗
p [i, j] =

∫
z(γw)z(γw)>K(w)(1)2dw[i, j] = γi+j−2µ∗∗i+j−2 (4.48)

Note by symmetry of the kernel that every second element of these is zero, that is µj = µ∗j =
µj∗∗ = 0 if j odd. We consider cases for p ≤ 2.

M0 = 1, M∗
0 = µ∗0, M∗∗

0 = µ∗∗0

M1 =

(
1 0
0 γ2µ2

)
,M∗

1 =

(
µ∗0 0
0 γ2µ∗2

)
,M∗∗

1 =

(
µ∗∗0 0
0 γ2µ∗∗2

)

M2 =

 1 0 γ2µ2

0 γ2µ2 0
γ2µ2 0 γ4µ4

 ,M∗
2 =

 µ∗0 0 γ2µ∗2
0 γ2µ∗2 0

γ2µ∗2 0 γ4µ∗4

 ,M∗∗
2 =

 µ∗∗0 0 γ2µ∗∗2
0 γ2µ∗∗2 0

γ2µ∗∗2 0 γ4µ∗∗4



κj =

{
µ∗2, j = 0, 1
(µ24µ

∗
0−2µ2µ4µ∗2+µ22µ∗4)

(µ4−µ22)
, j = 2

(4.49)

κ′j =

{
µ∗∗2 , j = 0, 1
(µ24µ

∗∗
0 −2µ2µ4µ∗∗2 +µ22µ

∗∗
4 )

(µ4−µ22)
, j = 2

(4.50)

In the empirical work we used zero, first and second-order polynomials with a quadratic
kernel. For the quadratic kernel: K(w) = (3/4)(1−w2)1[|w| ≤ 1], K(w)2 = (9/16)(1−w2)2

and K(1)(w)2 = (9/4)w2. Also,

µ0 = 1, µ2 = 1/5, µ4 = 3/35 (4.51)

µ∗0 = 3/5, µ∗2 = 3/35, µ∗4 = 1/35

µ∗∗0 = 3/2, µ∗∗2 = 9/10, µ∗∗4 = 9/14.

4.8 Derivations

Proof of Proposition 3: The basic properties of ĝ(x) are well-established. We confirm the
properties of ĝ(1)(x). To obtain the mean and variance of ĝ(1) note that (Mpb(x))(1) =

Mpb
(1)(x) sinceM

(1)
p = 0. With (M̂pb(x))(1) = 1

Tγ
(Z>x Kx)

(1)y, E[M̂pb(x))(1)] = 1
Tγ

(Z>x Kx)
(1)g(X).

To order O(1/T ),
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MpE[b(1)(x)] =
1

γ

∫
d

dx
(Z(y − x)K(y − x))g(y)dy (4.52)

= −1

γ

∫
d

dy
(Z(y − x)K((y − x)/γ))g(y)dy

=

∫
Z(γw)K(w))g(1)(x+ γw)dw

=

∫
Z(γw)K(w)Z(γw)>dw

( (
g(1)(x) · · · g(p1)(x)/p1!

)> )
+ γp1O(1)

so

E[ĝ(1)(x)] = E[e>b(1)(x)] = g(1)(x) + γp1O(1). (4.53)

To order 1/T

Var[ĝ(1)(x)] = Var
[
e′pM̂

−1
p

1

Tγ

∑
ut(Z(Xt − x)K(Xt − x))(1)

]
(4.54)

=
1

(Tγ)2
e′pM̂

−1
p

∑
v(Xt)(K(Xt − x)Z(Xt − x))(1)(K(Xt − x)Z(Xt − x)>)(1)M̂−1

p ep

=
1

Tγ3
e′pM

−1
p

∫
v(x+ γw)(K(1)(w)2Z(γw))Z(γw))

′
dyM−1

p ep +O((Tγ2)−1)

=
v(x)

Tγ3
e′pM

−1
p

∫
K(1)(w)2Z(γw))Z(γw))

′
dyM−1

p ep + o((Tγ3)−1))

≡ v(x)

Tγ3
κ′p + o((Tγ3)−1)).

Asymptotic normality follows since ĝ(1)(x) is proportional to a weighted average of the ut’s.
Proof of Proposition 4: We decompose

Â(x0)− A(x0) =
ĝ0 −

∑m
j=1 rj ĝ−j∑m

j=1 rj ĝ−j
−
g0 −

∑m
j=1 rjg−j∑m

j=1 rjg−j
(4.55)

Â(x0)− A(x0) =
(ĝ0 −

∑m
j=1 rj ĝ−j)− (g0 −

∑m
j=1 rjg−j)∑m

j=1 rjg−j
+R1T

=
(ĝ0 −

∑m
j=1 rj ĝ−j)− (g0 −

∑m
j=1 rjg−j)

g0
+R2T +R1T

= R3T +R2T +R1T

where

R1T = (ĝ0 −
m∑
j=1

rj ĝ−j)

∑m
j=1 rj(g−j − ĝ−j)

(
∑m

j=1 rjg−j)(
∑m

j=1 rj ĝ−j)
= Op

( 1

T

)
Op

(
|ĝ0 − g0|

)
(4.56)

R2T =
(

(ĝ0 −
m∑
j=1

rj ĝ−j)− (g0 −
m∑
j=1

rjg−j)
)(g0 −∑m

j=1 rjg−j

g0
∑m

j=1 rjg−j

)
= Op

( 1

T

)
O
( 1

T

)
(4.57)

26



and

R3T =
(ĝ0 −

∑m
j=1 rj ĝ−j)− (g0 −

∑m
j=1 rjg−j)

g0
(4.58)

We see that

R3T =

(∑m
j=1 rj ĝ

(1
0 j/T +Op(T

−2)
)
−
(∑m

j=1 rjg0j/T +O(T
−2)
)

g0
(4.59)

=
1

T

(ĝ
(1)
0 − g

(1)
0 )

g0

( m∑
j=1

rjj
)

+Op(T
−2)

Putting these terms together, noting that T
√
Tγ3R2T = op(1) = T

√
Tγ3R1T , we have, from

Proposition 3,

T
√
Tγ3Â(x0)− A(x0) =

√
Tγ3(ĝ

(1)
0 − g(1))

(∑m
j=1 rjj

)
g0

+ op(1)
d→ N(0,Σ(x0)).

To derive the distribution of R̂(x0), note that it is the weighted sum of Â(x0)’s and we can
decompose it similarly as

R̂(x0)−R(x0) =
m∑
l=1

rlR3T (xl) +Op(T
−1)Op(|ĝ0 − g0|) (4.60)

where

R3T (xl) =
(ĝl −

∑m
j=1 rj ĝl−j)− (gl −

∑m
j=1 rjgl−j)

gl
(4.61)

=
( l
T
ĝ
(1)
0 − (

∑m
j=1 rj ĝ

(1)
0 (l − j)/T )− ( l

T
g
(1)
0 − (

∑m
j=1 rjg

(1)
0 (l − j)/T )

g0
+Op(T

−2)

=
1

T

(ĝ
(1)
0 − g

(1)
0 )(

∑m
j=1 rjj)

g0
+OP (T−2).

Thus,

R̂(x0)−R(x0) =
m∑
l=1

rlR3T (xl) +Op(T
−1)Op(|ĝ0 − g0|) (4.62)

=
1

T

(ĝ
(1)
0 − g

(1)
0 )

g0

( m∑
j=1

rjj
)

+Op(T
−1)Op(|ĝ0 − g0|)

which corresponds to the approximation to Â(x0).
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4.9 Other Considerations

For each jurisdiction a trend is constructed commencing on the first incidence day and
incremented by 1 each subsequent day. 19

One manner in which to compare jurisdictions is with respect to their specific fixed
effect. (αj’s below.) There are a variety of ways to do this. One is to simply compare the
rankings. Some caution needs to be taken here. If the approximations are asN →∞ then the
distribution of N of these is effectively unknown and constructing confidence intervals around
them will be problematic. However, if T is relatively large then approximate intervals can
be constructed based on asymptotic theory for any fixed number of these. 20 Alternatively,
if we are focused simply on one jurisdiction we can introduce separate parameters for that
jurisdiction and impose homogeneity on the rest. Note that the modelling does not allow
separately for demographic considerations such as population density. This is a fixed effect
and is incorporated into the Aj(t) parameters.

To allow for day-of-the-week effects (most certainly administrative, which do show up) we
defined indicators 7× 1 indicators Dt =

(
Dt1 · · · Dt7

)
. The resulting regression function

can then be modified to g(τ,D) in the obvious way. The kernel used then was for mixed
data of the form

K(τ,D) =
1

Tjγj
K
(τj,t − τ

γ

) 7∏
l=1

γ1−Dtl
d (4.63)

with γd ∈ [0, 1]. The asymptotic distribution for the non-parametric components becomes
amended with Tj replaced by Tj/7 in the standard errors. For window-width we cross-

validated as follows. Putting γj = sjT
−1/5
j c where Tj is the number of observations on

jurisdiction j and sj the standard deviation of the τj,t’s we minimized over the leave-one-out
estimates over c > 0 and γd > 0 . As stated, we used a quadratic kernel.

4.9.1 Outliers and trimming

Numerical difficulties can arise in semi-parametric estimation when the non-parametric com-
ponent can cause an argument to be undefined or unbounded. Typically this problem occurs
when the estimand is close to zero and appears in a denominator or logarithm. In these
cases it is common to trim the estimators in some way. In our case this difficulty manifests
itself in two ways. First, the lagged values of expected infections appear in the denominator
of the semi-parametric time trend and these are often zero or close to zero. Second, this
is compounded in a very few cases, but enough to create numerical difficulties by a few in-
stances where the number of infections jumped from zero to quite large numbers. Although
this is remotely possible in real life, it is more likely that some administrative clumping of
reporting occurred. One possible remedy for this would be to do some preliminary smooth-
ing. 21 However, any smoothing of this form is invariably ad hoc and risks removing valuable
movement in the data. To alleviate the problems we trimmed the data in two ways. First,

19With the parametric benchmark estimates these are multiplied by 1/100 for numerical purposes. When
interpreting the results and/or doing simulations, the estimates need to be rescaled.

20For a few cases there are Tj is quite small and we would be very hesitant to read much into these.
21It is common to see infections reported in rolling average form.
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we set the minimum for expected infections at .01. Second, we truncated expected infections
to be no higher than 10 times the expected infections of the previous period.22

4.9.2 Goodness of Fit

There are numerous measures of goodness of fit used with Poisson models.23 Our use of
these is largely for indicative purposes rather than for rigorous model selection. We have
several objectives. One is to compare models, another is to provide a rough decomposition
of the relative impact of subsets of considerations, stochastic heterogeneity, deterministic
trends. To maintain comparability across models we report: R̄2, simply based on the ratio
of squared residuals or the model at hand to deviations from the jurisdictional average.

Let T(j) denote the date of the first reported infection in jurisdiction j, Tj the total
number of observations after the first reported infection in jurisdiction j (T(j) = T − Tj + 1)

and T (N) =
∑N

j=1 Tj. We define

S =
1

T (N)

N∑
j=1

T∑
t=1

pjt(yj,t − ŷjt)2, (4.64)

S0 =
1

T (N)

N∑
j=1

T∑
t=1

pjt(yj,t − ȳj)2, (4.65)

where ŷj,t denotes a “fitted value” from the model at hand and

pjt =

{
0, t < T(j)

1, otherwise
(4.66)

ȳj =
1

Tj

T∑
t=1

pjtyj,t, ȳ =
1

NT̂

N∑
j=1

T∑
t=Tj

yj,t, (4.67)

The measure of goodness of fit for the Poisson models was thus

R̄2 = 1− S

S0

. (4.68)

Note that this is not necessarily in [0, 1]. Given the heterogeneity between jurisdictions it
makes sense to use different benchmarks measures of deviation than simply overall deviations
from overall mean. The R2’s reported below for the parametric Ordinary Least Squares and
Fixed Effects estimators are the usual R2 statistics. Note that these are for goodness of fit
for the logs of counts (+1).

As a practical matter the autoregression parameters were constrained to be positive
and sum to one by using the estimates rs = eρs/(1 +

∑m
l=2 e

ρl) , s = 2, . . . ,m and r1 =

22Despite this, there are still a few anomalous results that crop up. Note in the tables the presence of some
skewness/outliers in our estimatedR0’s which cause the mean and median across jurisdictions to occasionally
diverge (also the maximum values). Since these do not affect the overall results we have chosen to leave in
all observations rather than remove in an ad hoc manner.

23Note that the non-linearity and implicit heterogeneity of count models invalidates some of the statistical
properties of standard R2 statistics.
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1/(1 +
∑m

l=2 e
ρl). (This constraint makes them comparable to the popular device of making

them fit a probability distribution such as the gamma, but without the implied constraints
on the coefficients including uni-modality.) The ρs’s were then estimated without constraint
with standard information matrices obtained from the Hessian of the likelihood function and
gradient method. To obtain standard errors for the estimates of the rs’s the delta method
was used with the m×m− 1 Jacobian matrix

With

r(ρ) =


r1
r2
...
rm

 =


1/(1 +

∑m
s=2 e

ρs

r1e
ρ2

...
r1e

ρm

 (4.69)

J =
∂r

∂ρ
=


−r1r2 −r1r3 · · · −r1rm

−r1r2eρ2 + r1e
ρ2 −r1r3eρ2 · · · −r1r4eρ2

...
...

...
...

−r1r2eρm −r1r3eρm · · · −r1rmeρm + r1e
ρm

 (4.70)

=
∂r

∂ρ
=


−r1r2 −r1r3 · · · −r1rm
−r22 + r2 −r2r3 · · · −r2rm

...
...

...
...

−rmr2 −rmr3 · · · −r2m + rm

 (4.71)

= −rr>(1) +

(
01×m−1

diag[r(1)]

)
(4.72)

5 Empirical Results

The estimators proposed in the previous section generate many different results: estimates
of the autoregression parameters common across jurisdictions, as well as the daily predicted
values for each of the jurisdictions as well as their daily reproduction numbers. We will
summarize these as well as some benchmark estimates using the data set.

5.1 Benchmark Estimates

Many individuals and institutions have worked on various COVID-19 data sets, both formally
and informally using a wide range of estimators. We initially conducted fairly extensive
analysis of the data using standard regression modelling for panel data as well as purely
non-parametric estimation. We report here as benchmarks estimates using a variety of
specifications for the parametric regression function. These would largely agree with the
literature published in the popular media. For illustrative purposes we summarize a few of
these results. We first summarize some basic results using OLS and fixed effects estimators
using ln(1 + yj,t) as the dependent variable. Note again that not all jurisdictions had the
same start date.

Various pooled least squares estimates are given in the first table. Here the dependent
variable is ln(1 + yj,t) with 14 lagged values of ln(1 + yj,t) as explanatory variables as well as
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a quartic polynomial in the time trend. When the pandemic first broke out, it appeared as if
a quadratic trend would (perhaps hopefully) explain the spread of infections. Subsequently,
although this has been the case in some jurisdictions, surges or second waves of the infection
would imply that its spread is not so easily quantified. From an inspection of the coefficients
in the first table we can infer that the pandemic has a fairly long lag structure, but the value
of the lagged effects does dissipate over time. In our initial analysis of the data we conducted
separate similar regressions on a case by case basis. What is evident is that although there
is some similarity between some jurisdictions there is also substantial heterogeneity across
them. We also, again more to get a sense for the data and highlight a few of its characteristics,
include a variety of fixed effects estimators. These correspond to the pooled OLS results with
a variety of results using 14 period lags, quartic trend and various combinations of same.
We note the similarity to the pooled OLS results. We also note that (in terms of goodness
of fit) there is much to be gained by including both stochastic and deterministic elements as
explanatory variables.

One component of the semi-parametric results are the first stage non-parametric trends
by jurisdiction. These are useful as benchmarks and correspond with some caveats to the
estimates in Linton (2020). The first caveat is that there are two conditioning variables. One
is the time trend which for each jurisdictions commences on the day of the first recorded
infection. The other is a smoothed indicator for day-of-the-week. It became apparent that
the latter has a substantial impact, probably the result of administrative recording. This was
important to include: omitting it distorts the estimates of the autoregressive parameters.
The plots of some of the non-parametric estimates are in the graphs. The goodness of fit
for three kernel based non-parametric estimates is in the table immediately following the
log-linear fixed-effects results. These correspond to using 1, local constant (aka kernel), 2,
local linear and 3, local quadratic polynomials. We note that the local polynomials have a
(theoretical) advantage over the local constant estimators in terms of bias at the boundary
of the support which may be advantageous for forecasting.

Thus, in addition to the estimators developed in this paper, we provide, for comparison,
a variety of benchmark estimators which range from entirely parametric, assuming a great
deal of homogeneity (log-linear pooled and fixed effects regression estimators) to the least
parametric, which assume no homogeneity across jurisdictions (kernel and local polynomial
estimators).

5.2 Count Model Estimates

There are six sets of count model results containing estimates using a wide range of Poisson-
like specifications. All have in common a stochastic AR(14) component. Table 5 contains
three sets of parametric results: for a “pooled” Poisson model where there is one Aj(t) = eα

estimated, constant across jurisdictions and time; the second corresponds to the fixed effects
where there are jurisdiction-varying, time invariant Aj(t) = eαj ’s. The third set of results
correspond to time-varying fixed effects where the Aj(t)’s vary across jurisdictions but are
constant over intervals of 26 weeks. (Estimates over 21 and 31 weeks were very similar.)
Table 6 contains three sets of results corresponding to semi-parametric estimates using,
respectively, kernel, local linear and local quadratic polynomial estimators of the trend.
With the semi-parametric estimators the Aj(t)’s vary across jurisdictions on a daily basis.
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We note that there is a wide agreement across all these models as to the general shape of
the auto-correlation pattern.

5.2.1 Parametric Count Model Estimates

The first sets of results is when the conditional mean consists of the stochastic trend with
14 lags and a common multiplicative constant, i.e., eα. This corresponds to an assumption
of complete homogeneity across time and jurisdictions. Note the estimated values of rs
are relatively large for small s and then largely decreasing with s. Note that there is one
implied common Rj(t) estimate across time and jurisdictions. The estimate is 1.0118. We
note that values of Rj(t) greater than one generate exponential growth rates for pandemic
spread. This is not an obscure point, a value of Rj(t) even slightly above one can lead to
widespread illness in a very short time. 1.0118 may seem relatively small, but note that
this is an average over jurisdictions and time so that this reflects gradual overall reductions
(albeit non-monotonic) over time in infections in many if not most jurisdictions.

The second set of results allow for different rates of spread across jurisdictions, but again
with no deterministic trend. This corresponds to an assumption of homogeneity across time
but not jurisdictions.The pattern of the autoregressive coefficients is similar to the completely
homogenous case. There are N different coefficients and Rj(t)’s estimated implicitly and we
don’t report these here, but we report their quartiles mean and standard deviation across
jurisdictions. Note that the median and average values are 1.0049 and 1.0170 which are quite
close to the estimate with complete homogeneity. Note that with no time variation in the
Aj(t)’s there are no separate case and instantaneous reproduction numbers.

5.2.2 Flexible-Form and Semi-Parametric Count Model Estimates

We have four sets of count model results which incorporate a deterministic trend (either
piecewise constant for the time-varying fixed coefficients case or smooth, for the three semi-
parametric estimators). For these cases we include tables of estimates of the autoregression
parameters and tables describing the distribution of the daily, jurisdiction level estimates of
the Rj(t)’s. The latter tables provide the quartiles of these on a weekly basis 24 as well as
their sample means and standard deviations. There are also two sets of illustrative graphs for
five of the countries in the sample. One set plots the daily observed counts, non-parametric
and semi-parametric fitted values of infections. The second set plots the estimated case and
instantaneous Rj(t)’s for these same countries.

The first set of results for models incorporating a deterministic trend, corresponds to
the time-varying fixed-effects model. Here the pattern of the estimates of the autoregressive
coefficients is not so precise as in the fixed-coefficients case although the coefficients for the
later lags is definitely smaller. Here and in the semi-parametric cases it useful to examine the
Rj(t)’s and their distribution overtime. These diminish fairly monotonically. The quantiles’
tendencies are similarly decreasing over time, though note the first quantile estimate is above
1.5 and the third quantile at 2.8 are very high from a public health perspective. There are
many interesting aspects to these estimates. For example, with respect to the first quantile,

24That is, the Rj(t)’ as estimated on days 1, 8, 15, . . .. with the sample statistics over the N jurisdictions
on that day.
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note that it was only after the third week that barely a quarter of jurisdictions had their
Rj(t) under one. Note that over half the jurisdictions in the sample had estimated Rj(t)’s
greater than one throughout most of the sample period.

The final three sets of tables correspond to the distribution of semi-parametric estimates
of the case and instantaneous Rj(t)’s. They correspond to estimates using local constant,
linear and quadratic polynomials in the first stage. Each give similar results with some
caveats. The point estimates are all consistent with gradually decreasing infectiousness
but with resurgences (note in particular the third quartile). Note that with all estimators
the mean and median can be quite different. We attribute this to an asymmetry in the
distribution of the pandemic’s severity as well as some remaining outliers which can have a
large impact on some of the estimates. However, the quartiles of the Rj(t)’s, including the
median, are each quite consistent with each other and the flexible form results. In terms of
goodness of fit the second-order polynomial dominates the other two somewhat, although as
a caveat we found the second-order polynomial could result in some anomalous fitted values.

After the tables are graphical examples of the fits of the estimators and the Rj(t)’s for
five countries: US, Taiwan, Brazil, New Zealand and Sweden. Note that these all begin on
the first day of the outbreak in each jurisdiction, which is January 22 for the US and Taiwan
and January 31 for Sweden, February 26 for Brazil, February 28 for New Zealand. For each
country we plot: 1, recorded infections, 2, fitted values from local regression (first-order
polynomial) and 3, semi-parametric estimator using the same local regression in the first
stage. From the plots we see that the semi-parametric estimator is much better at tracking
some of the short-term fluctuations in the infections which are smoothed out by the pure
time-trend.

Accompanying graphs plot the case and instantaneous Rj(t) daily estimates. These
largely confirm what has been reflected in the news media regarding infections. Taiwan and
New Zealand have had a lower Rj(t) than most countries, although with some increase at
the beginning. Sweden, which was more permissive in its approach to social distancing had
a fairly large initial Rj(t), but then diminishing with a second wave. The United States and
Brazil have had a great deal of difficulty in getting the spread of COVID-19 under control,
although at time of writing this seemed to be changing. Note that the case and instantaneous
Rj(t) estimates are quite similar, the case number seems to lead the instantaneous number
in most cases which may be important for prediction and policy reasons. The instantaneous
reproduction number, which does not require forecasts of future infections, is simpler to
estimate.

In regard to the Poisson models, there seems to be a pattern in the autoregression pattern
that is quite robust across each of the specifications. In all cases there is a hump in the
parameters corresponding to the sixth and seventh lags. Note that rs can be interpreted as
the product of a measure of infectiousness and the survival function at period s. Since the
latter is decreasing in s this pattern in the rs’s indicates an increase in infectiousness a week
after the initial reporting of the infection. After that increase there is a largely common
decrease with s in the parameter estimates until very small numerically. There are also
bumps in the AR process at the end of the second and third weeks which may be reflecting
some accounting.

We note some limitations of the methods and/or the data. The fitted values and repro-
duction number estimates may be somewhat unreliable at the beginning of the processes.
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This may reflect a number of issues. Recording of cases may be particularly inaccurate at the
beginning of each outbreak and it may be the case that infections may have already occurred
prior to the first observed case. We note that the estimates of the two different reproduction
numbers track each other quite closely. The caseRj(t) seems to lead the instantaneous Rj(t)
in most cases so would appear to be a better lead indicator of the direction of the pandemic.

6 Conclusion

This paper has developed new panel count data estimators for the analysis of the progress
COVID-19 pandemic using an array of parametric and semi-parametric estimators which
exploit the fact that the biological component of the virus’ spread should be fairly homoge-
nous across jurisdictions. The approach allows for two new direct methods of estimating of
estimating the reproduction numbers associated with the disease. The estimators are applied
to international panel data and produce compelling estimates of the COVID-19 process.

The autoregressive count methodology is consistent with an epidemiological model. The
semi-parametric estimators in particular are capable of tracking the spread of the COVID-19
pandemic and provide simple, direct estimates of jurisdiction and time specific reproduction
numbers.

Extensions we are considering at present are allowing for dependence between observa-
tions using, say, a gravity model and joint modelling of infections with deaths and recoveries.

At the time of writing new strains of the COVID-19 had manifested themselves. New
strains of any virus are standard and since the beginning of the pandemic various reports had
appeared of new strains, but none sufficiently different to have much impact on statistical
studies. These new strains, the first appearing in the UK in mid-December, 2020, while
apparently no more lethal, do appear to spread more easily. In principle, this could be
modelled in a similar way with the new strain having a different set of r’s.
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Appendix: Tables and Figures

Table 1: Pooled OLS Results with 14 lags count and/or quartic trend

with lags and trends with lags with trends

Variable Estimate t-stat Estimate t-stat Estimate t-stat

Lag 1 0.0787 26.1281 0.0831 27.5650
Lag 2 0.1226 40.5189 0.1264 41.7221
Lag 3 0.1105 36.2401 0.1137 37.2370
Lag 4 0.1042 33.9822 0.1071 34.8658
Lag 5 0.0802 26.0394 0.0829 26.8349
Lag 6 0.1301 42.0992 0.1325 42.7749
Lag 7 0.3258 104.5120 0.3271 104.6505
Lag 8 0.0590 18.8689 0.0565 18.0467
Lag 9 -0.0476 -15.3025 -0.0510 -16.3865
Lag 10 -0.0592 -19.0799 -0.0629 -20.2202
Lag 11 -0.0673 -21.7182 -0.0712 -22.9469
Lag 12 -0.0446 -14.4289 -0.0487 -15.7418
Lag 13 0.0037 1.2174 -0.0008 -0.2574
Lag 14 0.1995 65.0707 0.1946 63.4210
t -0.6877 -17.1783 2.5205 20.3739
t2 0.4408 13.7562 -1.1683 -11.7382
t3 -0.1119 -11.7309 0.2843 9.5784
t4 0.0097 10.2452 -0.0264 -9.0116
Constant 0.3879 26.3332 0.0705 16.4338 1.0012 22.1171

R2 0.9029 0.9024 0.0533
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Table 2: Fixed Effects Results with 14 lagged counts and quartic trend

Variable Estimate t-stat

Lag 1 0.0690 22.9090
Lag 2 0.1137 37.5886
Lag 3 0.1028 33.7685
Lag 4 0.0976 31.9191
Lag 5 0.0748 24.3532
Lag 6 0.1256 40.7730
Lag 7 0.3223 103.8212
Lag 8 0.0578 18.5794
Lag 9 -0.0485 -15.6729
Lag 10 -0.0608 -19.6780
Lag 11 -0.0697 -22.5819
Lag 12 -0.0479 -15.5476
Lag 13 -0.0003 -0.0840
Lag 14 0.1954 63.9262
t -0.4979 -12.3293
t2 0.3531 10.9948
t3 -0.0917 -9.5896
t4 0.0079 8.3196

R2 0.6893

38



Table 3: Fixed Effects Results with 14 lagged counts

Variable Estimate t-stat

Lag 1 0.0702 23.2886
Lag 2 0.1146 37.8863
Lag 3 0.1036 33.9985
Lag 4 0.0983 32.1142
Lag 5 0.0754 24.5273
Lag 6 0.1261 40.9123
Lag 7 0.3225 103.7877
Lag 8 0.0567 18.2211
Lag 9 -0.0499 -16.1425
Lag 10 -0.0623 -20.1797
Lag 11 -0.0713 -23.1328
Lag 12 -0.0496 -16.1307
Lag 13 -0.0021 -0.6996
Lag 14 0.1933 63.4256

R2 0.6888

Table 4: Fixed Effects Results with just quartic trend

Variable Estimate t-stat

t 2.2956 58.0509
t2 -0.9490 -29.7866
t3 0.2115 22.2214
t4 -0.0190 -20.1882

R2 0.0000
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Table 5: Point Estimates and t-stats Parametric Models

Poisson Fixed FX Variable Fixed FX

Variable Estimate t-stat Estimate t-stat Estimate t-stat

Lag 1 0.1166 78857.8448 0.2503 165233.6504 0.12 108092.93
Lag 2 0.1195 72083.5880 0.1072 66459.5040 0.07 45882.75
Lag 3 0.0647 40275.5103 0.0363 25212.5578 0.02 16536.15
Lag 4 0.0407 27936.5396 0.0193 15255.5853 0.02 13408.67
Lag 5 0.0445 30911.3764 0.0178 15004.6973 0.01 6802.20
Lag 6 0.1380 80028.5733 0.1334 80754.3729 0.12 78015.96
Lag 7 0.4210 215258.3474 0.4026 212609.1149 0.40 266581.04
Lag 8 0.0031 2879.3392 0.0073 6145.7217 0.04 32030.05
Lag 9 0.0019 3503.4497 0.0011 3296.1438 0.00 4474.15
Lag 10 0.0013 1730.3238 0.0010 1715.1449 0.00 2144.47
Lag 11 0.0004 1231.6369 0.0005 1265.7473 0.00 1333.10
Lag 12 0.0007 2556.9607 0.0005 2532.1252 0.00 2678.55
Lag 13 0.0070 5550.1336 0.0013 1302.2248 0.01 6183.22
Lag 14 0.0405 27527.2148 0.0214 16591.8203 0.19 178613.27

Table 6: AR Point Estimates and t-stats: Semiparametric Models

SP-Kernel SP-Local Linear SP-Local Quadratic

Variable Estimate t-stat Estimate t-stat Estimate t-stat

Lag 1 0.0654 10217.3592 0.08 11803.48 0.05 7077.67
Lag 2 0.2621 26962.0516 0.27 28567.82 0.25 23993.37
Lag 3 0.0000 402.9697 0.00 423.81 0.11 12278.51
Lag 4 0.0741 9882.0843 0.12 15805.71 0.05 5896.71
Lag 5 0.0001 469.3961 0.00 481.74 0.03 3495.55
Lag 6 0.0911 13311.4545 0.06 10823.62 0.08 11025.75
Lag 7 0.0010 4407.7208 0.00 2896.21 0.00 3157.54
Lag 8 0.1410 15895.4420 0.16 18438.75 0.09 10809.88
Lag 9 0.1601 16215.1040 0.14 15067.98 0.13 12728.97
Lag 10 0.0367 5418.9402 0.01 3694.43 0.06 6184.65
Lag 11 0.0332 4596.6403 0.05 6452.74 0.04 4761.75
Lag 12 0.0188 3535.9058 0.02 3720.07 0.04 5191.10
Lag 13 0.1113 13759.8314 0.08 12305.28 0.08 11232.15
Lag 14 0.0049 11503.9231 0.00 4942.09 0.00 11680.89
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Table 7: R-squares for local polynomials

SP-Kernel SP-Local Linear SP-Local Quadratic

R-square 0.9290 0.9288 0.9289

Table 8: Poisson Reproduction Number with Lagged Infections and Constant

R0 1.0118

Table 9: Fixed Effects Reproduction Number Distribution

Q1 Median Q3 Mean SD

R0 1.0008 1.0049 1.0179 1.0170 0.0379

R-squared 0.8382

41



Table 10: Variable Fixed Effects Reproduction Number Estimator Distribution

Case Instantaneous

Week N Q1 Median Q3 Mean SD Q1 Median Q3 Mean SD

1 221 1.11 1.33 1.68 1.55 0.73 1.11 1.33 1.68 1.55 0.72
2 221 1.11 1.33 1.68 1.55 0.72 1.11 1.33 1.68 1.55 0.72
3 221 1.12 1.34 1.69 1.56 0.72 1.11 1.33 1.68 1.55 0.72
4 221 1.02 1.30 1.73 1.52 0.81 1.11 1.33 1.68 1.55 0.72
5 221 0.81 1.15 1.59 1.36 1.22 1.09 1.31 1.74 1.59 0.94
6 221 0.61 1.07 1.50 1.26 1.37 0.81 1.17 1.60 1.35 1.39
7 221 0.48 1.01 1.41 1.15 1.30 0.47 1.04 1.50 1.24 1.41
8 221 0.61 1.02 1.40 1.06 1.00 0.47 1.00 1.41 1.16 1.39
9 221 0.75 1.04 1.36 1.08 0.77 0.53 1.00 1.37 1.05 1.24

10 221 0.73 1.03 1.34 1.07 0.79 0.72 1.03 1.38 1.08 0.79
11 221 0.73 1.00 1.31 1.03 0.70 0.73 1.03 1.37 1.09 0.85
12 221 0.62 0.97 1.23 0.97 0.74 0.73 1.01 1.29 1.03 0.79
13 221 0.56 0.98 1.23 0.98 0.89 0.52 0.95 1.23 0.96 0.93
14 221 0.64 0.99 1.25 1.00 0.86 0.55 0.97 1.23 0.99 0.93
15 221 0.72 1.02 1.22 1.05 0.89 0.56 0.98 1.23 0.98 0.88
16 221 0.81 1.04 1.26 1.05 0.82 0.70 1.02 1.26 1.09 1.07
17 221 0.80 1.04 1.25 1.07 0.89 0.73 1.03 1.24 1.02 0.85
18 221 0.82 1.04 1.23 1.13 1.08 0.76 1.04 1.24 1.09 1.06
19 221 0.81 1.02 1.23 1.11 1.02 0.81 1.05 1.26 1.15 1.19
20 221 0.82 1.03 1.22 1.10 0.90 0.79 1.02 1.22 1.09 1.03
21 221 0.82 1.03 1.24 1.05 0.63 0.81 1.02 1.24 1.13 1.05
22 221 0.80 1.00 1.26 1.02 0.49 0.80 1.02 1.23 1.03 0.61
23 221 0.84 1.00 1.28 1.03 0.47 0.81 1.00 1.28 1.00 0.54
24 221 0.80 0.99 1.25 1.01 0.51 0.81 1.01 1.30 1.06 0.55
25 221 0.80 0.97 1.20 0.99 0.49 0.80 0.99 1.23 1.00 0.51
26 221 0.84 0.99 1.16 0.99 0.43 0.80 0.98 1.20 0.98 0.50
27 221 0.85 1.00 1.17 1.01 0.49 0.80 1.00 1.17 0.98 0.50
28 221 0.83 0.99 1.17 1.04 0.68 0.82 0.99 1.17 1.00 0.59
29 221 0.84 1.01 1.18 1.06 0.73 0.82 0.99 1.16 1.04 0.74
30 221 0.86 1.01 1.17 1.05 0.65 0.85 1.00 1.20 1.06 0.74
31 221 0.87 1.02 1.19 1.01 0.51 0.86 1.01 1.21 1.07 0.74
32 221 0.91 1.03 1.23 1.02 0.40 0.85 1.01 1.18 1.00 0.59
33 220 0.91 1.05 1.26 1.06 0.50 0.88 1.02 1.21 1.00 0.42
34 220 0.92 1.06 1.28 1.10 0.51 0.91 1.04 1.26 1.07 0.52
35 219 0.94 1.09 1.33 1.15 0.70 0.91 1.06 1.31 1.08 0.53
36 219 0.93 1.07 1.31 1.13 0.68 0.93 1.08 1.34 1.16 0.74
37 219 0.90 1.06 1.22 1.08 0.58 0.90 1.07 1.33 1.13 0.68
38 219 0.89 1.04 1.22 1.04 0.42 0.89 1.04 1.24 1.09 0.68
39 218 0.87 1.00 1.19 1.01 0.40 0.87 1.02 1.23 1.04 0.43
40 218 0.86 0.98 1.18 1.01 0.40 0.86 0.99 1.19 1.00 0.41
41 218 0.85 1.00 1.17 0.99 0.37 0.86 0.98 1.19 1.02 0.43
42 218 0.83 0.99 1.15 0.97 0.38 0.83 0.98 1.17 0.98 0.40
43 218 0.83 0.99 1.15 0.96 0.39 0.83 0.99 1.16 0.98 0.42
44 218 0.82 0.98 1.13 0.95 0.38 0.83 0.98 1.15 0.96 0.41
45 218 0.83 0.97 1.11 0.94 0.37 0.82 0.99 1.14 0.95 0.40
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Table 11: Variable Fixed Effects Reproduction Number Estimator Distribution (cont.)

Case Instantaneous

Week N Q1 Median Q3 Mean SD Q1 Median Q3 Mean SD

46 218 0.83 0.95 1.09 0.94 0.46 0.83 0.97 1.14 0.95 0.40
47 218 0.80 0.93 1.10 0.94 0.49 0.82 0.93 1.10 0.93 0.49
48 218 0.81 0.95 1.12 0.97 0.50 0.78 0.93 1.10 0.93 0.52
49 218 0.82 0.96 1.12 1.04 0.65 0.78 0.92 1.10 0.96 0.60
50 218 0.83 0.98 1.14 1.08 0.78 0.81 0.97 1.13 1.05 0.79
51 218 0.86 1.00 1.17 1.10 0.76 0.82 0.97 1.14 1.08 0.81
52 218 0.88 1.00 1.16 1.06 0.63 0.86 0.99 1.18 1.12 0.80
53 218 0.82 0.98 1.15 0.99 0.53 0.86 1.00 1.18 1.08 0.74
54 218 0.80 0.99 1.13 0.97 0.58 0.79 0.97 1.17 0.97 0.63
55 218 0.81 1.00 1.15 0.97 0.58 0.80 0.98 1.14 0.97 0.58
56 218 0.82 0.99 1.16 0.98 0.51 0.80 0.99 1.18 0.97 0.59
57 218 0.85 1.01 1.16 0.96 0.39 0.81 1.01 1.18 0.99 0.59
58 218 0.81 1.00 1.15 0.95 0.46 0.82 1.02 1.18 0.96 0.42
59 218 0.79 0.97 1.10 0.93 0.45 0.80 1.00 1.17 0.96 0.48
60 217 0.77 0.97 1.11 0.94 0.44 0.77 0.96 1.11 0.91 0.47
61 217 0.77 0.97 1.13 1.00 0.59 0.73 0.95 1.10 0.93 0.47
62 215 0.74 0.97 1.14 0.99 0.56 0.75 0.97 1.13 0.98 0.55
63 215 0.76 0.97 1.12 0.97 0.51 0.74 0.97 1.13 1.00 0.57
64 215 0.75 0.95 1.08 0.93 0.42 0.74 0.97 1.13 0.98 0.58
65 214 0.72 0.93 1.10 0.91 0.44 0.72 0.94 1.10 0.91 0.44
66 208 0.71 0.92 1.09 0.89 0.43 0.72 0.92 1.10 0.91 0.44
67 196 0.69 0.87 1.07 0.86 0.39 0.71 0.90 1.10 0.88 0.41
68 170 0.69 0.88 1.05 0.85 0.35 0.66 0.86 1.06 0.83 0.39
69 121 0.66 0.88 1.07 0.83 0.37 0.66 0.88 1.07 0.83 0.37
70 88 0.67 0.89 1.07 0.82 0.36 0.67 0.88 1.06 0.82 0.36
71 59 0.68 0.89 1.08 0.83 0.42 0.67 0.93 1.09 0.83 0.40
72 46 0.57 0.82 1.14 0.82 0.59 0.67 0.91 1.07 0.82 0.47
73 45 0.57 0.84 1.16 0.82 0.61 0.57 0.84 1.16 0.82 0.61
74 45 0.57 0.84 1.16 0.82 0.61 0.57 0.84 1.16 0.82 0.61
75 36 0.00 0.79 1.14 0.78 0.67 0.00 0.79 1.14 0.78 0.67

R2 0.85
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Table 12: SP estimates Zero Order (Kernel) local Polynomial Case and Instantaneous Re-
production Number Distribution

Case Instantaneous

Week N Q1 Median Q3 Mean SD Q1 Median Q3 Mean SD

1 221 1.37 1.98 2.68 2.17 1.28 2.38 4.31 11.10 40.25 106.83
2 221 1.16 1.65 2.37 1.86 1.18 1.43 2.55 4.75 12.15 32.48
3 221 1.05 1.49 1.95 1.69 1.39 1.07 1.66 2.93 4.69 12.23
4 221 0.86 1.34 1.79 4.65 39.15 0.68 1.34 2.09 2.42 5.97
5 221 0.67 1.17 1.70 6.54 64.15 0.55 1.18 1.70 1.69 2.95
6 221 0.67 1.10 1.61 3.99 40.33 0.38 1.01 1.52 1.31 1.50
7 221 0.77 1.14 1.67 11.23 83.74 0.21 0.94 1.43 3.20 30.12
8 221 0.75 1.18 1.62 12.79 96.32 0.18 0.88 1.43 1.13 1.55
9 221 0.78 1.20 1.52 11.20 87.67 0.41 0.89 1.49 19.44 272.68

10 221 0.71 1.11 1.42 7.66 50.37 0.40 0.92 1.49 4.44 42.81
11 221 0.70 1.07 1.42 4.32 24.24 0.30 0.94 1.43 14.22 179.19
12 221 0.65 1.07 1.38 5.50 36.16 0.20 0.89 1.28 2.39 17.05
13 221 0.75 1.09 1.39 12.93 72.43 0.10 0.87 1.23 1.27 4.72
14 221 0.78 1.10 1.45 15.99 95.56 0.01 0.89 1.26 10.80 139.17
15 221 0.83 1.10 1.60 11.54 64.21 0.03 0.89 1.27 1.98 10.52
16 221 0.87 1.10 1.54 11.33 65.79 0.06 0.88 1.26 2.10 10.51
17 221 0.81 1.08 1.48 12.34 77.32 0.14 0.90 1.31 2.06 9.45
18 221 0.83 1.06 1.46 12.06 88.63 0.26 0.91 1.31 19.90 268.17
19 221 0.82 1.09 1.46 9.61 50.18 0.15 0.94 1.29 21.89 258.87
20 221 0.83 1.10 1.40 9.01 55.67 0.24 0.93 1.31 6.44 57.24
21 221 0.82 1.06 1.49 9.26 60.02 0.30 0.96 1.32 3.07 18.91
22 221 0.85 1.10 1.49 9.86 60.29 0.33 0.95 1.28 2.27 9.90
23 221 0.83 1.08 1.50 13.35 95.93 0.18 0.95 1.30 2.10 11.95
24 221 0.78 1.05 1.46 8.86 63.02 0.28 0.94 1.44 14.68 188.94
25 221 0.84 1.07 1.40 2.83 14.10 0.29 0.93 1.32 1.81 11.44
26 221 0.86 1.06 1.37 3.10 17.44 0.28 0.93 1.32 1.66 8.23
27 221 0.87 1.04 1.38 10.91 71.50 0.33 0.97 1.32 2.26 14.11
28 221 0.88 1.04 1.37 10.95 85.52 0.49 0.99 1.33 1.55 3.58
29 221 0.84 1.03 1.40 6.99 28.86 0.53 0.99 1.36 18.52 253.81
30 221 0.83 1.04 1.33 7.53 49.50 0.52 1.00 1.40 5.09 54.21
31 221 0.83 1.07 1.38 4.11 26.50 0.48 0.97 1.34 2.71 17.34
32 221 0.86 1.08 1.42 5.83 48.12 0.48 0.97 1.34 1.93 8.57
33 220 0.88 1.11 1.42 9.91 93.39 0.53 0.98 1.34 1.51 3.93
34 220 0.88 1.09 1.45 3.90 28.84 0.50 0.97 1.33 1.26 1.88
35 219 0.91 1.12 1.45 3.40 17.14 0.46 1.02 1.30 1.25 1.99
36 219 0.89 1.12 1.44 2.13 6.24 0.45 1.02 1.30 2.20 15.84
37 219 0.90 1.12 1.38 3.50 17.83 0.59 1.03 1.35 3.48 30.82
38 219 0.89 1.10 1.35 8.71 62.82 0.67 1.04 1.31 1.30 2.38
39 218 0.90 1.06 1.37 8.95 71.54 0.72 1.07 1.38 4.50 46.46
40 218 0.89 1.05 1.34 3.87 34.19 0.55 0.99 1.29 1.17 1.96
41 218 0.90 1.04 1.37 4.25 32.35 0.42 0.97 1.29 1.15 2.09
42 218 0.88 1.07 1.36 4.07 32.35 0.39 0.95 1.36 18.45 255.56
43 218 0.87 1.05 1.29 2.54 8.88 0.35 0.91 1.28 1.30 4.37
44 218 0.81 1.03 1.28 2.34 9.98 0.39 0.91 1.23 1.11 2.08
45 218 0.82 1.03 1.29 3.83 32.79 0.38 0.88 1.18 18.20 252.75
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Table 13: SP estimates Zero Order (Kernel) local Polynomial Case and Instantaneous Re-
production Number Distribution (cont.)

Case Instantaneous

Week N Q1 Median Q3 Mean SD Q1 Median Q3 Mean SD

46 218 0.79 0.99 1.30 4.49 34.83 0.35 0.86 1.14 1.11 2.46
47 218 0.76 0.97 1.29 3.32 18.25 0.29 0.87 1.17 0.98 1.39
48 218 0.78 0.99 1.23 3.30 15.26 0.39 0.85 1.17 0.94 1.34
49 218 0.81 1.02 1.27 7.88 52.58 0.44 0.90 1.15 1.14 2.07
50 218 0.83 1.03 1.27 12.73 78.89 0.47 0.94 1.19 4.95 49.37
51 218 0.85 1.06 1.26 12.44 83.43 0.49 0.96 1.23 4.64 46.10
52 218 0.86 1.04 1.29 4.71 36.15 0.51 0.99 1.24 1.40 3.11
53 218 0.84 1.04 1.33 2.15 7.93 0.47 0.98 1.27 1.22 1.78
54 218 0.83 1.06 1.33 2.02 8.17 0.42 1.01 1.30 1.16 1.51
55 218 0.85 1.09 1.34 4.07 25.24 0.49 1.00 1.36 22.07 306.47
56 218 0.82 1.09 1.31 4.54 31.25 0.42 0.96 1.36 6.59 56.89
57 218 0.81 1.01 1.32 7.75 66.16 0.49 0.97 1.36 2.25 14.74
58 218 0.79 1.01 1.23 9.40 70.39 0.43 0.97 1.28 1.87 7.21
59 218 0.78 1.00 1.23 9.74 81.00 0.47 0.95 1.26 4.55 46.05
60 217 0.74 0.99 1.24 8.21 80.98 0.42 0.92 1.24 1.30 3.30
61 217 0.77 0.98 1.27 4.12 24.40 0.45 0.91 1.23 1.30 3.04
62 215 0.76 0.97 1.29 1.82 6.95 0.44 0.90 1.22 18.99 257.33
63 215 0.74 1.00 1.29 1.56 3.74 0.38 0.91 1.15 5.13 55.02
64 215 0.74 0.99 1.24 1.99 9.69 0.42 0.89 1.16 2.89 19.72
65 214 0.74 0.99 1.28 3.63 21.74 0.33 0.88 1.19 2.18 12.22
66 208 0.72 0.97 1.32 5.94 40.01 0.48 0.90 1.19 1.80 9.47
67 196 0.68 0.95 1.30 6.32 39.63 0.42 0.84 1.16 1.78 9.31
68 170 0.70 0.97 1.28 2.49 9.85 0.33 0.81 1.14 1.57 8.99
69 121 0.71 0.94 1.13 1.16 1.50 0.39 0.76 1.15 0.84 0.83
70 88 0.73 0.90 1.13 0.95 0.62 0.38 0.80 1.13 0.83 0.83
71 59 0.61 0.88 1.10 0.85 0.54 0.17 0.79 1.14 0.79 0.75
72 46 0.20 0.77 1.05 0.76 0.60 0.01 0.69 1.15 0.72 0.70
73 45 0.53 0.90 1.24 1.13 1.63 0.00 0.76 1.16 0.93 1.17
74 45 0.63 0.92 1.30 4.46 23.39 0.01 0.78 1.26 2.93 10.98
75 36 0.00 0.85 1.32 5.29 25.94 0.00 0.67 1.29 39.88 221.83

R2 0.9383
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Table 14: SP estimates First Order local Polynomial Case and Instantaneous Reproduction
Number Distribution

Case Instantaneous

Week N Q1 Median Q3 Mean SD Q1 Median Q3 Mean SD

1 221 1.31 2.00 2.70 2.12 1.19 2.90 5.44 20.89 227.95 735.32
2 221 1.20 1.64 2.25 1.80 1.08 1.45 2.54 5.39 37.60 133.25
3 221 1.03 1.44 1.88 1.67 1.37 1.03 1.63 2.83 8.88 34.37
4 221 0.89 1.33 1.77 2.76 13.20 0.68 1.32 2.02 2.47 7.14
5 221 0.73 1.18 1.66 3.82 25.89 0.60 1.11 1.60 1.66 2.69
6 221 0.74 1.11 1.58 1.94 9.51 0.44 1.00 1.56 1.31 1.54
7 221 0.83 1.14 1.65 4.42 22.18 0.29 0.96 1.47 1.20 1.54
8 221 0.85 1.21 1.63 7.13 42.03 0.49 1.00 1.43 1.17 1.46
9 221 0.93 1.19 1.57 11.61 74.17 0.56 0.99 1.44 5.53 65.16

10 221 0.89 1.11 1.43 11.63 71.10 0.61 1.00 1.49 9.53 116.56
11 221 0.82 1.06 1.39 6.78 35.47 0.60 1.00 1.43 99.93 1454.43
12 221 0.84 1.05 1.37 6.34 28.72 0.60 1.00 1.34 5.32 58.49
13 221 0.87 1.10 1.41 9.24 39.51 0.55 0.99 1.21 1.52 6.40
14 221 0.93 1.12 1.50 12.60 73.14 0.55 0.99 1.25 41.54 592.39
15 221 0.94 1.10 1.60 12.33 77.84 0.68 1.00 1.32 2.69 22.13
16 221 0.97 1.10 1.50 11.17 55.50 0.69 1.00 1.32 4.17 40.13
17 221 0.94 1.08 1.45 12.79 77.70 0.71 1.00 1.34 4.08 35.55
18 221 0.93 1.06 1.45 12.39 62.92 0.70 1.00 1.38 8.53 75.45
19 221 0.95 1.07 1.48 9.01 49.77 0.72 1.00 1.33 13.86 136.28
20 221 0.95 1.08 1.39 7.59 34.01 0.72 1.00 1.36 13.62 131.64
21 221 0.93 1.07 1.46 8.57 37.13 0.71 1.00 1.33 7.11 64.39
22 221 0.91 1.09 1.49 7.79 37.75 0.70 1.00 1.34 4.07 30.65
23 221 0.89 1.07 1.51 9.00 48.00 0.77 1.00 1.47 2.14 10.97
24 221 0.89 1.04 1.45 11.05 80.99 0.74 1.00 1.41 28.88 401.56
25 221 0.91 1.05 1.38 6.02 46.82 0.71 1.00 1.36 2.67 22.84
26 221 0.92 1.05 1.35 3.03 12.34 0.71 1.00 1.37 3.43 32.42
27 221 0.93 1.05 1.37 6.24 27.91 0.78 1.00 1.37 5.85 57.15
28 221 0.92 1.03 1.38 10.56 57.91 0.81 1.00 1.34 1.65 4.44
29 221 0.87 1.03 1.35 13.24 67.23 0.75 1.00 1.31 15.10 200.49
30 221 0.91 1.04 1.29 9.82 47.62 0.70 1.00 1.36 16.69 222.41
31 221 0.90 1.06 1.39 7.25 46.90 0.70 1.00 1.38 6.53 71.71
32 221 0.92 1.09 1.39 5.07 27.73 0.74 1.00 1.39 3.91 32.82
33 220 0.92 1.10 1.40 6.62 49.63 0.71 1.00 1.36 2.35 12.58
34 220 0.94 1.10 1.42 9.11 83.87 0.71 1.00 1.35 1.36 2.35
35 219 0.97 1.11 1.48 6.40 54.15 0.60 1.00 1.29 1.37 2.52
36 219 0.97 1.13 1.45 3.77 19.13 0.68 1.03 1.29 5.08 57.47
37 219 0.94 1.11 1.35 4.50 28.94 0.79 1.03 1.32 6.05 62.95
38 219 0.94 1.09 1.35 9.27 75.28 0.84 1.04 1.33 1.60 5.48
39 218 0.93 1.05 1.34 12.74 132.16 0.83 1.04 1.33 1.27 1.67
40 218 0.92 1.04 1.36 2.99 15.95 0.77 1.00 1.33 1.26 2.65
41 218 0.92 1.04 1.34 4.08 20.45 0.63 0.98 1.30 1.25 3.00
42 218 0.93 1.06 1.34 5.18 32.99 0.66 1.00 1.41 10.36 134.56
43 218 0.92 1.05 1.31 4.38 23.02 0.54 0.98 1.27 1.25 3.03
44 218 0.87 1.03 1.31 2.57 8.91 0.53 0.98 1.21 1.12 1.68
45 218 0.86 1.05 1.30 15.66 197.34 0.56 0.94 1.20 10.26 134.70
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Table 15: SP estimates First Order local Polynomial Case and Instantaneous Reproduction
Number Distribution (cont.)

Case Instantaneous

Week N Q1 Median Q3 Mean SD Q1 Median Q3 Mean SD

46 218 0.87 1.02 1.32 15.79 193.53 0.56 0.94 1.14 1.15 2.04
47 218 0.86 1.00 1.28 5.18 35.00 0.52 0.96 1.17 1.05 1.23
48 218 0.87 1.00 1.23 3.28 13.63 0.60 0.97 1.17 1.02 1.18
49 218 0.86 1.01 1.29 14.28 117.45 0.62 0.97 1.16 1.23 2.27
50 218 0.89 1.04 1.27 24.03 203.40 0.62 0.99 1.17 1.47 4.50
51 218 0.90 1.04 1.26 11.75 76.47 0.73 1.00 1.26 1.53 4.14
52 218 0.91 1.05 1.30 7.84 50.98 0.68 1.00 1.24 1.44 2.96
53 218 0.89 1.04 1.38 12.38 125.02 0.67 1.00 1.28 1.30 2.06
54 218 0.90 1.06 1.35 5.95 42.16 0.57 1.02 1.29 1.24 1.77
55 218 0.91 1.09 1.36 3.67 20.41 0.56 1.00 1.33 5851.92 86382.18
56 218 0.88 1.06 1.31 3.71 16.06 0.62 1.00 1.33 15.00 199.20
57 218 0.89 1.03 1.30 18.43 223.74 0.69 1.00 1.36 4.19 41.29
58 218 0.86 1.01 1.26 73.25 1017.58 0.70 1.00 1.29 2.55 15.11
59 218 0.84 1.01 1.29 159.65 2248.58 0.65 1.00 1.25 1.68 4.79
60 217 0.83 1.00 1.25 243.98 3481.90 0.63 1.00 1.24 1.47 4.26
61 217 0.84 1.00 1.33 297.94 4293.91 0.67 1.00 1.27 1.44 3.90
62 215 0.84 1.00 1.30 1.78 4.06 0.65 1.00 1.22 6.18 67.78
63 215 0.84 1.00 1.26 36.51 512.54 0.65 0.97 1.20 9.63 119.66
64 215 0.84 1.01 1.23 151.86 2199.22 0.62 0.97 1.18 7.96 71.72
65 214 0.81 1.00 1.31 250.36 3633.53 0.64 0.99 1.19 5.68 48.09
66 208 0.84 1.00 1.36 337.95 4812.59 0.64 0.97 1.17 4.41 39.29
67 196 0.82 1.00 1.39 4.82 20.55 0.66 0.95 1.16 3.69 37.01
68 170 0.81 1.00 1.39 4.49 27.31 0.62 0.91 1.13 3.95 39.08
69 121 0.81 1.00 1.25 1.65 4.95 0.57 0.87 1.16 0.94 0.93
70 88 0.83 1.00 1.18 1.15 1.07 0.61 0.89 1.13 0.92 0.76
71 59 0.79 0.96 1.12 1.01 0.52 0.43 0.99 1.14 0.90 0.75
72 46 0.74 0.97 1.03 0.92 0.48 0.61 1.00 1.24 0.87 0.62
73 45 0.82 1.00 1.26 1.92 5.07 0.76 1.00 1.31 1.07 0.92
74 45 0.89 1.00 1.22 6.23 32.64 0.80 1.00 1.44 3.61 11.93
75 36 1.00 1.00 1.37 10.40 50.70 1.00 1.00 1.41 167.37 968.49

R2 0.94
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Table 16: SP estimates Second Order local Polynomial Case and Instantaneous Reproduction
Number Distribution

Case Instantaneous

Week N Q1 Median Q3 Mean SD Q1 Median Q3 Mean SD

1 221 1.50 2.14 2.72 2.14 0.99 3.06 5.36 17.20 55.48 143.26
2 221 1.28 1.64 2.25 1.81 0.99 1.52 2.46 5.02 12.57 36.76
3 221 1.00 1.46 1.87 1.63 1.21 1.02 1.55 2.78 4.07 10.41
4 221 0.88 1.29 1.69 1.99 8.18 0.72 1.34 1.93 2.13 5.36
5 221 0.71 1.14 1.60 2.38 15.83 0.58 1.15 1.63 1.59 2.56
6 221 0.73 1.07 1.56 1.78 8.28 0.45 1.03 1.45 1.27 1.33
7 221 0.81 1.09 1.58 3.67 19.12 0.29 0.97 1.45 1.16 1.33
8 221 0.83 1.14 1.52 4.72 27.39 0.49 0.97 1.43 1.11 1.10
9 221 0.87 1.15 1.42 5.25 37.47 0.58 1.00 1.47 5.42 63.59

10 221 0.89 1.12 1.38 3.91 20.64 0.61 1.00 1.50 1.37 2.30
11 221 0.86 1.09 1.38 2.75 9.65 0.64 1.00 1.43 2.07 8.40
12 221 0.85 1.05 1.35 3.46 13.19 0.61 1.00 1.33 2.37 17.93
13 221 0.87 1.07 1.35 5.94 23.50 0.53 1.00 1.24 1.16 2.11
14 221 0.91 1.07 1.36 7.91 40.61 0.51 1.00 1.28 8.07 102.11
15 221 0.94 1.12 1.47 6.42 26.15 0.65 1.00 1.35 1.62 7.68
16 221 0.96 1.10 1.54 6.04 22.31 0.67 1.00 1.33 1.88 10.29
17 221 0.95 1.10 1.45 6.10 34.99 0.71 1.00 1.35 1.83 9.05
18 221 0.97 1.11 1.44 5.73 27.50 0.68 1.00 1.34 6.11 64.54
19 221 0.98 1.09 1.44 5.11 20.34 0.74 1.00 1.36 9.17 84.18
20 221 0.93 1.10 1.37 3.74 12.29 0.75 1.00 1.36 6.06 56.39
21 221 0.92 1.10 1.42 3.65 12.65 0.69 1.00 1.30 3.06 20.14
22 221 0.91 1.08 1.46 3.61 12.55 0.72 1.00 1.36 2.21 9.97
23 221 0.89 1.07 1.45 4.97 27.41 0.75 1.00 1.41 2.29 15.83
24 221 0.91 1.06 1.34 5.89 36.61 0.71 1.00 1.47 9.95 127.71
25 221 0.92 1.06 1.34 3.64 19.96 0.70 1.00 1.41 1.62 8.51
26 221 0.94 1.05 1.29 2.43 8.49 0.72 1.00 1.36 1.71 8.63
27 221 0.94 1.05 1.33 3.64 12.92 0.77 1.00 1.33 1.31 2.41
28 221 0.93 1.05 1.33 3.81 18.30 0.77 1.00 1.34 1.27 1.62
29 221 0.91 1.06 1.33 3.73 14.60 0.72 1.00 1.38 10.47 136.21
30 221 0.93 1.06 1.33 4.76 25.00 0.69 1.00 1.36 5.12 56.73
31 221 0.93 1.09 1.33 2.94 14.26 0.65 1.00 1.35 2.52 18.25
32 221 0.96 1.10 1.40 3.55 20.38 0.69 1.00 1.38 1.85 8.62
33 220 0.94 1.11 1.45 3.83 26.71 0.72 1.00 1.37 1.47 3.48
34 220 0.96 1.10 1.41 3.81 23.97 0.68 1.00 1.33 1.25 1.44
35 219 0.98 1.11 1.42 2.69 8.51 0.66 1.03 1.33 1.33 2.34
36 219 0.97 1.12 1.41 2.86 13.38 0.66 1.05 1.32 1.30 1.98
37 219 0.96 1.13 1.36 2.89 12.54 0.78 1.06 1.35 1.32 1.80
38 219 0.94 1.11 1.34 4.67 26.43 0.83 1.07 1.35 1.26 1.30
39 218 0.94 1.06 1.33 5.31 44.33 0.79 1.06 1.36 1.30 1.64
40 218 0.93 1.06 1.36 2.12 9.47 0.70 1.00 1.30 1.23 1.99
41 218 0.94 1.06 1.34 2.62 12.76 0.66 1.00 1.28 1.15 1.72
42 218 0.95 1.06 1.32 2.78 15.74 0.65 1.00 1.39 8.59 110.32
43 218 0.93 1.05 1.31 2.37 8.36 0.55 0.97 1.27 1.47 6.40
44 218 0.88 1.04 1.28 2.34 8.42 0.55 0.97 1.27 1.19 2.60
45 218 0.86 1.04 1.29 3.99 25.58 0.56 0.95 1.21 8.36 107.23
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Table 17: SP estimates Second Order local Polynomial Case and Instantaneous Reproduction
Number Distribution (cont.)

Case Instantaneous

Week N Q1 Median Q3 Mean SD Q1 Median Q3 Mean SD

46 218 0.87 1.01 1.26 3.58 26.19 0.53 0.95 1.17 1.06 1.54
47 218 0.87 1.00 1.33 2.83 12.83 0.52 0.95 1.19 1.04 1.45
48 218 0.86 1.00 1.23 2.91 11.19 0.58 0.98 1.17 1.03 1.54
49 218 0.88 1.00 1.27 4.74 25.93 0.65 0.98 1.16 1.21 2.04
50 218 0.89 1.03 1.29 6.22 35.31 0.68 1.00 1.25 1.66 5.91
51 218 0.90 1.04 1.27 4.72 22.83 0.75 1.00 1.28 1.56 4.14
52 218 0.91 1.06 1.28 2.86 12.00 0.66 1.00 1.24 1.53 4.03
53 218 0.90 1.06 1.33 2.23 7.46 0.69 1.00 1.32 1.27 1.82
54 218 0.90 1.06 1.30 1.95 5.88 0.61 1.01 1.33 1.19 1.43
55 218 0.94 1.09 1.32 2.42 8.86 0.57 1.01 1.37 22.27 308.50
56 218 0.92 1.08 1.31 3.64 17.60 0.62 1.00 1.34 4.88 52.68
57 218 0.90 1.03 1.29 5.05 35.82 0.64 1.00 1.35 2.27 15.77
58 218 0.87 1.02 1.25 5.62 39.33 0.67 1.00 1.32 1.75 6.88
59 218 0.84 1.01 1.19 5.74 39.46 0.63 1.00 1.30 1.41 2.87
60 217 0.83 1.00 1.24 4.74 42.02 0.60 1.00 1.24 1.24 2.06
61 217 0.85 1.00 1.26 3.77 19.54 0.61 0.98 1.20 1.28 2.10
62 215 0.86 1.00 1.24 3.16 20.42 0.62 0.95 1.22 6.03 65.90
63 215 0.83 1.00 1.25 2.35 9.30 0.64 0.97 1.21 5.19 54.33
64 215 0.83 1.00 1.28 2.09 7.09 0.59 0.98 1.20 3.05 21.10
65 214 0.83 1.00 1.29 2.05 6.48 0.64 0.99 1.20 2.29 12.91
66 208 0.86 1.00 1.30 3.44 15.07 0.63 1.00 1.20 1.91 10.01
67 196 0.82 1.00 1.29 3.62 12.07 0.63 0.96 1.16 1.63 9.06
68 170 0.80 1.00 1.23 3.30 14.61 0.60 0.92 1.13 1.61 9.14
69 121 0.81 1.00 1.15 2.53 10.76 0.59 0.89 1.14 0.93 0.78
70 88 0.85 1.00 1.22 1.54 4.00 0.60 0.91 1.14 0.91 0.59
71 59 0.79 0.98 1.08 1.32 2.20 0.45 0.98 1.15 0.89 0.68
72 46 0.77 0.99 1.11 1.10 0.82 0.38 1.00 1.15 0.87 0.63
73 45 0.87 1.00 1.17 1.65 3.62 0.80 1.00 1.29 1.13 1.17
74 45 0.94 1.00 1.36 6.65 36.57 0.83 1.00 1.39 3.17 12.82
75 36 0.98 1.00 1.58 12.72 68.93 1.00 1.00 1.47 27.63 154.54

R2 0.94
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