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Abstract

We introduce the conditional Maximum Composite Likelihood (MCL) estimation method
for the stochastic factor ordered Probit model of credit rating transitions of firms.
This model is recommended for internal credit risk assessment procedures in banks
and financial institutions under the Basel III regulations. Its exact likelihood function
involves a high-dimensional integral, which can be approximated numerically before
maximization. However, the estimated migration risk and required capital tend to be
sensitive to the quality of this approximation, potentially leading to statistical regu-
latory arbitrage. The proposed conditional MCL estimator circumvents this problem
and maximizes the composite log-likelihood of the factor ordered Probit model. We
present three conditional MCL estimators of different complexity and examine their
consistency and asymptotic normality when n and T tend to infinity. The performance
of these estimators at finite T is examined and compared with a granularity-based
approach in a simulation study. The use of the MCL estimator is also illustrated in an
empirical application.
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1 Introduction

Under the “internal-ratings-based” (IRB) approach advocated in the Basel II and III reg-
ulation, banks use their internal risk rating systems to estimate the risk exposures, credit
rating migration probabilities and the probability of default (PD) in order to evaluate their
regulatory capital requirements [see Basel Committee on Banking Supervision (2004, 2009),
Hull (2012), Grippa, Gornicka (2016)]. Under Pillar II, financial institutions must also
conduct stress tests to determine the level of capital needed to absorb losses in worsening
economic conditions and be protected against systemic risk. For these reasons, banks per-
form their own credit rating migration analysis in order to monitor the changes in borrowers’
credit quality and to predict borrowers’ potential default in a volatile economic environment.
This analysis concerns the “internal” or “in-house” established credit rating histories of bor-
rowers, classified into credit quality categories, which are determined independently of the
ratings publicly provided by the rating agencies such as the Moody’s.1 The internal credit
rating analysis is applied to the historical probabilities of default and migration probabilities.
It differs from the analysis of their risk-neutral counterparts, which underlies the pricing of
credit derivatives, such as credit default swaps (CDS), Collaterized Debt Obligations (CDO),
or derivatives written on iTraxx [see, e.g. Duffie, Eckner, Horel, Saita (2009), Azizpour,
Giesecke, Schwenkler (2018) in continuous time, Gouriéroux, Monfort, Polimenis (2006) in
discrete time, Gouriéroux, Monfort, Mouabbi, Renne (2021) for joint historical and risk-
neutral analysis]. The internal ratings are used for pricing the portfolios of credits offered to
a large number of small and medium-size firms whose assets are not traded on the markets.
Even for large firms, the historical and risk-neutral probabilities of default can differ signif-
icantly. In our paper, the analysis of internal ratings is consistent with prudential banking
supervision and aims at avoiding a pure mark-to-market pricing of risk.2

The credit rating migration analysis concerns the changes [i.e. upgrades or downgrades] of
borrowers’ credit quality over time with respect to their previous ratings [Altman, Saunders
(1998)]. These data are available from monthly or quarterly time series of credit migration
matrices comprising the qualitative ratings of firms, ranked from the low risk category A
to the most risky rating D of default. The ordered Probit model for credit ratings arises
as a natural specification, which has been extended to the Asymptotic Single Risk Factor
(ASRF) model by Vasicek (1991) [see also Vasicek (2015), Nickell, Perraudin, Varotto
(2000)]. The ASFR is a stochastic factor probit model of default with an independent and
identically distributed common random unobserved factor capturing the systemic risk effect.
The factor is assumed to drive the parameters of a latent quantitative score function in the
model, which is transformed into qualitative ratings. Due to the presence of the unobserved
common factor, the observed rating histories are cross-sectionally dependent, which can ex-

1Publicly available credit ratings of large obligors are available from the rating agencies such as the
Moody’s, Standard and Poor’s (S&P), and Fitch.

2There is often a confusion about the notions of historical and risk-neutral risks. For example, Moody’s
Analytics provides “EDF” estimates of the historical probability of default by considering default frequencies
of firms with the same distance-to-default (DD). However, the notion of DD is risk-neutral.
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plain default correlation. Gagliardini, Gouriéroux (2005), Feng, Gouriéroux, Jasiak (2008),
extended this setup to multiple credit rating categories with common systemic factors that
can be serially correlated, in order to predict the future credit ratings of firms. This exten-
sion is strongly recommended under the Basel III regulatory measures: “Interdependence
between issuers is frequently modelled in a similar way to the regulatory framework, using
a combination of an idiosyncratic (i.e. individual) and one or more systemic risk factors”
[European Banking Authority (2012), article 12 on Systemic Risk Factor]. Moreover, the
dynamic ordered probit model takes into account the heterogeneity of issuers and satisfies
the requirement that “Separate transition matrices may be applied for specific groups of
issuers and geographical areas” [European Banking Authority (2012)]. It also reproduces
other stylized facts such as the rating momentum [see e.g. Altman, Kao (1992)].

The estimation of the ordered Probit model with a latent common factor is challenging.
In order to derive the joint density of observed ratings, the history of the latent factor has
to be integrated out. Therefore, the exact likelihood function based on the joint density
of rating histories involves an integral of high dimension, increasing with the number of
observations over time. Due to the presence of the multiple integrals, the exact maximum
likelihood needs to be replaced by an approximation in practice. There exist various ap-
proximation methods, most of which involve a set of arbitrary control parameters, having a
significant impact on the associated required capital. These parameters are, for example, the
discretization steps [Farmer (2021)], tuning parameters, penalties, etc. The effect of the sta-
tistical approximation and optimization method can go as far as to partly eliminate the need
for keeping an internal capital reserve, which is called a “statistical regulatory arbitrage”.
Therefore these approximations are often not validated by the supervisory authorities who
are regularly auditing the internal databases and estimation techniques.3 So far, the bank-
ing supervisory authority has validated selected standardized approximation methods, such
as the granularity adjusted approach, that is valid and efficient if both the cross-sectional
and temporal dimensions are large [see Gagliardini, Gouriéroux (2014, 2015), for general
discussion] and the Simulated Maximum Likelihood (SML) method with a large number of
simulations [Feng, Gouriéroux, Jasiak (2008)]. Both these methods circumvent the high-
dimensional integration. Under the SML estimation employed in Feng, Gouriéroux, Jasiak
(2008), the integral is approximated by simulations, allowing for the latent factor values
to be filtered out ex-post. The quality of the simulation-based approximation depends on
the number of simulations, which can become high, depending on the number of time units
considered and the complexity of factor dynamics. This makes this method computation-
ally intense. The granularity-based approach [Gagliardini, Gouriéroux (2015)] is a two-step
estimation method that eliminates the burden of simulations and provides the estimates of
the unknown parameters and unobserved factor values. However, the granularity-based esti-
mator depends in the first step on a set of “nuisance” parameters of size T , which increases
the computational complexity of this method.

3“Any estimation technique should be duly justified and documented” [European Banking Authority
(2012)].
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This paper introduces the conditional Maximum Composite Likelihood (MCL) as an
alternative estimation method for the stochastic factor ordered Probit model. The MCL
estimators have been widely used in the statistical literature to handle complex likelihood
functions [see, Lindsay (1988), Varian (2008), Varian, Reid, Firth (2011), Gouriéroux,
Monfort (2018)]. The conditional composite likelihood functions are obtained by multiplying
a collection of conditional component likelihoods, each depending on some integrals. In our
one factor framework, these integrals are of dimension 1. We show that the proposed MCL
estimators are computationally less intense than the granularity-based approach, and are
reliable in finite sample.

In the panel analysis of credit ratings, the number of firms determines the cross-sectional
dimension n, and the number of observed time units determines the dimension T . Then,
two different asymptotics can be considered, when n, T both tend to infinity, or n→ ∞ and
T fixed, i.e. finite sample in T . In practice, n is often large, while T can be rather small.
Therefore, these two types of asymptotics are considered and compared. When both n and
T tend to infinity, the new conditional composite maximum likelihood estimators are shown
to be consistent, but not fully efficient, while the granularity-based estimator is consistent
and asymptotically efficient. However, when n is large and T is fixed, all estimators converge
to stochastic limits that depend on the latent factor values and differ from the true values
of the parameters. Then, the efficiency ordering between the granularity-based estimators
and maximum composite likelihood estimators can be reversed when T is fixed, so that the
MCL estimators can turn out to be more efficient in finite sample. We study this effect and
highlight the key role of “nuisance” parameters in the MCL and granularity-based estimators.

This paper is organized as follows. Section 2 compares the credit rating models that exist
in the literature and describes the ordered probit model of credit rating transitions. Section
3 introduces the conditional composite maximum likelihood estimators and the granularity
approach. The order and rank conditions for identification are also provided. Section 4
derives the asymptotic properties, i.e. the consistency, rates of convergence and asymptotic
normality when both n and T tend to infinity [resp. n tends to infinity, T fixed]. In Section
5, the performance of MCL and granularity-based estimators in finite sample is examined
in a simulation study. Section 6 includes the empirical application. The observed transition
probabilities are computed from the Compustat Standard and Poor’s (S&P) rating database
from 1985Q4 to 2016Q4, available through Wharton Research Data Services. We analyze the
estimated parameters, probabilities of defaults, and the downgrade probabilities at different
horizons. Section 7 concludes the paper. Proofs are given in Appendices A-C and the
simulation details and additional simulation results are presented in the online Appendix D.

2 The Stochastic Factor Ordered-Probit Model

In this section, we discuss the models of joint evolution of individual ratings that already
exist in the literature. Next, we focus on the stochastic factor ordered probit model and its
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state space representation. The expression of the complete likelihood function is derived,
highlighting the presence of multiple integrals of large dimension.

2.1 Migration Models

Let yi,t denote the rating of firms i, i = 1, ..., n at time t, t = 1, ..., T . The ratings are
qualitative variables that take K values associated with different rating categories. The
sequences of variables yi,t t = 1, ..., T for i = 1, ..., n represent the panel of qualitative
individual histories of credit ratings. The migration model defines the joint distribution
of the qualitative variables yi,t, i = 1, ..., n, t = 1, ..., T and provides information on the
transitions (migrations) of individuals (firms) between the ratings.

2.1.1 Markov Chain

The basic migration model assumes that the histories of individual transitions (migrations)
of firms between the ratings (states) are independent, identically distributed Markov chains.

Assumption: Independent Markov Chains

a.1 The individual histories (yi,t, t = 1, ..., T ) are independent across individuals (firms)
i, i = 1, ..., n.

a.2 These Markov chains are homogeneous with transition probabilities P [yi,t = k|yi,t−1 =
j] = pjk independent of the firm.4

This model is examined in Lando, Skødeberg (2002), Section 3, and reviewed in Dos Reis,
Pfeuffer, Smith (2020) , for example. It has the following two drawbacks:

a) It does not account for the rating momentum effect, i.e. the fact that the intensity
of transitions out of a given state is influenced by previous transitions into that state, and
more generally for non-Markovian features [Gomes-Gonzalo, Kiefer (2009)].

b) It assumes no migration correlations among the individuals, implying no default cor-
relation among the firms in particular, whereas this interdependence of risks has to be
introduced as an incremental risk, accounted for by additional required capital [see Basel
Committee on Banking Supervision (2009), European Banking Authority (2012)].

2.1.2 Adjustment for rating momentum

The first drawback a) can be eliminated by considering a non-Markovian model, as for
example the hazard model introduced in Lando, Skødeberg (2002) and Dos Reis, Pfeuffer,

4We choose the transition matrix P = [pjk] such that the elements of each row sum up to one.
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Smith (2020), Section 4, based on the following assumption:

Assumption: Semi-Markov Chains

a.1 The individual histories are independent.

a.2 The transition probabilities are:

P [yi,t = k|yi,t−1, yi,t−2, , ...] = pjkexp(cZi,t−1),

where yi,t−1 = j and Zi,t−1 = 1, if firm i was downgraded to its current state, Zi,t−1 = 0, if
firm i was upgraded to its current state. Alternatively, the non-Markovian feature can be
introduced by considering a mixture of Markov chains [Frydman, Schuermann (2008)].

Assumption: Mixture of Markov Chains

a.1 The individual histories are independent.

a.2 The transition probabilities are obtained from a mixture of Markov chains.

Other non-Markovian assumptions can be introduced by considering time varying exoge-
nous variables, such as the observed regime of business cycle [Bangia, Diebold, Kronimus,
Schlagen, and Schuerman (2002), Gavalus, Syriopoulos (2014)], or time itself. These exten-
sions are characterized by the independence of migrations, implying no migration correlation
among the individuals (firms). Hence, drawback b) is the common issue of all these models.

2.1.3 Adjustment for rating momentum and migration correlation

An adjustment eliminating both drawbacks a) and b) is obtained by extending the stan-
dard Vasicek model of default risk [Vasicek (1991), Gordy, Lutkebohmert (2013), Grippa,
Gornicka (2016)] to a migration model with a latent factor. Such models assume:

Assumption: Markov model with double adjustment

a.1 There exist unobserved (latent) stochastic common factors ft, say.

a.2 The conditional transition probability of the factor given the whole past information
depends on ft−1 only:

l(ft|ft−1, ft−2, ...; yi,t−1, yi,t−2, ...; i = 1, ..., n) = l(ft|ft−1).

a.3 Conditional on the path of the common factor, the individual rating histories are
independent, heterogeneous Markov chains with:
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P [yi,t = k|yi,t−1 = j, ft] = pjk(ft).

Under assumptions a.1, a.2, a.3, the joint process (yi,t, i = 1, ..., n, ft) is a Markov process
with an exogenous evolution of factor process (ft).

Since the factor is unobserved, its evolution has to be integrated out to get the joint
distribution of individual histories, which has the following effects:

- it creates migration (and default) correlation because the factor is common to all indi-
viduals (firms).

- it also implies non-Markovian features after integrating the dynamic with respect to
factor f = (ft). In particular, the conditional transition probability:

P [yi,t+1 = k, yi,t+2 = k|yi,t = j], for example, is not equal to P [yi,t+2 = k|yi,t+1 = k]P [yi,t+1 =
k|yi,t = j].

Indeed, we have:

P [yi,t+1 = k, yi,t+2 = k|yi,t = j] =
EP [yi,t = k, yi,t+1 = k, yi,t+2 = j|f ]

EP [yi,t = j|f ]
,

where the expectation is taken with respect to the stochastic evolution of f over the period
(0, t+2), which has a different impact on the probability of staying in state k depending on
the last transition being an up- or down-grade, and the date of that transition.

This unobserved factor model can be viewed as an infinite mixture model at time t, with
stochastic weights. An example of this type of model is the stochastic factor ordered probit
model [Gagliardini, Gouriéroux (2005, 2014), Feng, Gouriéroux, Jasiak (2008), Huajian,
Zunwei (2015), Cousin, Lelong, Picard (2021)] examined in this paper.5 Its state-space
representation is given below.

2.2 The State-Space Representation

Let y∗i,t and yi,t denote the (credit) score and rating of firm i, i = 1, ..., N at time t,
t = 1, . . . , T . The latent continuous quantitative score (y∗it) determines the individual quali-
tative rating yit. More precisely, the quantitative score is discretized in order to obtain the
individual qualitative ratings. Therefore, an observed rating is determined as follows:

yi,t = k, if and only if ck ≤ y∗i,t < ck+1, k = 1, ..., K, (2.1)

5or its continuous time counterparts, i.e. the dynamic marked point processes with common systemic
factors (see Creal, Koopman, Lucas (2012), Section 4.3, Koopman, Lucas, Monteiro (2008) for a continuous
time approach without systemic factor).

6



where c1 < · · · < cK+1 are the thresholds. Relation (2.1) shows how the observable endoge-
nous credit rating (yi,t) is linked to the latent score function (y∗i,t). By convention, we have
c1 = −∞ and cK+1 = +∞. Relation (2.1) defines the measurement equation of the state
space representation of the model.

The conditional distribution of the quantitative scores given the factor path and the
previous scores y∗ depends on the common latent factor ft

6 and on the past individual
ratings yi,t−1, such that:

y∗i,t = δj + βjft + σjui,t, , i = 1, ..., n, if yi,t−1 = j, j = 1, ..., K, t = 2, . . . , T, (2.2)

and yi,1 is the first observed rating for firm i. The multivariate, continuous, latent processes
y∗it, are generated by individual level effects (δj), volatility effects (σj), σj > 0, factor effects
where the components of βj define the factor sensitivities. When coefficient β is large (small,
resp.), the effect of systemic risk carried through the factor is strong (weak, resp.). All the
parameters δj, βj, σj depend on the previous rating j. While the idiosyncratic risks (ui,t)
can be diversified, the systemic risk (ft) cannot be diversified. Thus the presence of systemic
risk generates risk interdependence in the model. Because parameters β are different in each
rating category, the risk interdependence varies across rating transitions resulting in risk
momentum. Among these parameters, δj and σj summarize the effect of idiosyncratic risk,
and βj is the sensitivity to systemic risk.

The following autoregressive model of order 1 (AR(1)) represents the common factor
dynamics:

ft = ρft−1 +
√

1− ρ2ηt, |ρ| < 1, t = 2, . . . , T, (2.3)

where ηt defines the shock to the common factor and f1 is drawn in the stationary distri-
bution. The system of equations (2.2)-(2.3) defines the state equations of the state-space
model. Let us introduce the following assumptions to obtain a migration model with migra-
tion correlation and rating momentum:

Assumption A.1: The errors ui,t, ηt, i = 1, ..., n, t = 1, ..., T , are independent, standard
normal variables.

The independence assumption allows for performing impulse response analysis by shock-
ing separately the idiosyncratic and systematic innovations, to perform a stress-test in par-
ticular. The assumption of identical distribution and the fact that coefficients in (2.2) are
independent of the firm implies that we consider a homogeneous set of firms, obtained by
crossing the country, industrial sector and firm size, in compliance with the current regula-
tion.

Note that the independence of errors assumption implies that assumptions a.2, a.3 of the
Markov model with double adjustment are satisfied.

6Alternatively, a multidimensional factor can be considered to distinguish between the dynamic migration
patterns of firms with good and poor credit quality, respectively.
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Assumption A.2: The factor process (ft) is the strongly stationary solution of autoregres-
sive equation (2.3).

Under Assumptions A.1-A.2 the factor dynamics implies Eft = 0, V ar(ft) = 1. These
moment restrictions are introduced to solve the factor identification issue, because in this
framework the factor is defined up to a linear affine transformation.

As the processes (ft), (ui,t), i = 1, . . . , n, are independent and strictly stationary, it follows

that the joint n−dimensional process y∗t =
(
y∗1,t, . . . , y

∗
n,t

)′
is also strictly stationary, and so is

its state discretized version yt = (y1,t, . . . , yn,t)
′. However, the individual components (y∗i,t),

i = 1, . . . , n are not independent due to the effect of the common factor ft.
7

It is important to notice that the error variance in equation (2.3) has been set equal
to 1 − ρ2. This implies that factor ft is marginally normally distributed with mean 0 and
variance 1: E(ft) = 0, V ar(ft) = 1. These moment restrictions are introduced to solve the
factor identification issue, since the factor is defined up to a linear affine transformation.

In practice, the underlying quantitative scores are computed by a credit institution and
each individual (firm) can request the records of its own score history. However, the complete
score database is, in general, proprietary and the information on the quantitative scores
is not available to an outsider econometrician/data scientist. The factor ft is assumed
unobserved for the following two reasons: First it creates the cross-sectional correlation
between individual risks. Second, it provides a dynamic model that can be used to predict
the future defaults. A bias could result from directly replacing factor ft by an observed
proxy f̂t, such as the VIX market volatility index, a consumer sentiment index, consumption
growth, a business cycle indicator [see e.g. Berndt, Douglas, Duffie, Fergusson (2018),
Azizpour, Giesecke, Schwenkler (2018)], or the slope of the yield curve. Moreover, if factors
are observed, their predictions cannot be computed without specifying an additional model
of the dynamics for all the observed factors in f̂t, and checking that these observed factors
are exogenous.

2.3 The Complete Likelihood Function

In order to derive the joint density of observations yi,k, i = 1, ..., n, t = 1, ..., T , the un-
observed factor path has to be integrated out. As a consequence, observations yi,t are
cross-sectionally dependent and serially dependent with a non-Markovian serial dependence.
More precisely, the stochastic migration probabilities between dates t− 1 and t, conditional

7In this respect this model differs from Tuzmuoglu (2019), where the state equations (2.2)-(2.3) are
replaced by y∗i,t = ρy∗i,t−1 + β′xi,t +αi + ϵi,t, with independent, identically distributed (αi, (ϵi,t)), i = 1, ..., n
given x. This specification does not contain systemic risk and does not allow for risk interdependence.
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on ft, are given by:

pjk,t = pjk(ft; θ) = P [yi,t = k|yi,t−1 = j, ft]

= P [ck ≤ y∗i,t < ck+1|yi,t−1 = j]

= Φ

(
ck+1 − βjft − δj

σj

)
− Φ

(
ck − βjft − δj

σj

)
, j, k = 1, ..., K, t = 2, ..., T, (2.4)

where Φ denotes the cumulative distribution function (c.d.f.) of the standard normal. Thus
each row of the transition matrix conditional on (ft) contains an ordered polytomous probit
model with a common explanatory factor ft. When factor ft is unobserved stochastic and
serially correlated as in (2.3), the transition matrices are stochastic and serially dependent.

Let us now define the log-likelihood function of the stochastic migration model. The
vector θ includes the parameters of the state space model, which are parameters δj, βj, σj, j =
1, . . . , K in the quantitative score, and parameters ck, k = 2, . . . , K defining the states. As
the conditional migration matrices are functions of parameter vector θ as well as of the
common factor values f = (ft), the likelihood function conditional on f and the initial
rating y1 is:

LT (Y |f, y1; θ) =
T∏
t=2

K∏
k=1

K∏
j=1

(pjk(ft; θ))
njk,t , (2.5)

where njk,t denotes the number of firms which migrate from j to k between t − 1 and t,
Y = (yi,t) for i = 1, ..., n and t = 2, ..., T , f = (ft, t = 2, . . . , T ), and y1 = (y1,1, . . . , yn,1)

′.

Since the factor history is not observed, after integrating out the factor values (f2, ..., fT ),
the log-likelihood function, given the initial value y1 only, is:

ℓ(Y |y1; θ, ρ) = log

∫
...

∫ T∏
t=2

K∏
k=1

K∏
j=1

[(pjk(ft; θ))
njk,tψ(f2, ..., fT ; ρ)] df2...dfT , (2.6)

where ψ refers to the joint probability distribution function of factor values. The above
log-likelihood function contains a multivariate integral. The dimension of this integral is of
order T , as there is a common factor value for each transition at time t. Therefore the exact
computation of this likelihood is infeasible and its approximation is often not sufficiently
robust.8 The MCL estimators are convenient alternatives for complicated nonlinear dynamic
state-space models allowing for circumventing the high-dimensional integral.

8See Feng, Gouriéroux, Jasiak (2008) for the discussion of robustness when simulations are used.
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3 Conditional Composite Likelihood for Migration Model

with Unobserved AR(1) Factor

3.1 Expected Transition Probabilities

The process of transition matrices {Pt, t = 1, ..., T} has component matrices Pt = (pjk,t),
which provide the probabilities of transitions from state j to state k between times t−1 and
t given ft. From (2.4), it follows that the elements of matrix Pt are:

pjk,t = pjk(ft; θ) = P[yi,t = k|yi,t−1 = j, ft] = Φ

(
ck+1 − βjft − δj

σj

)
− Φ

(
ck − βjft − δj

σj

)
,

k, j = 1, ..., K.

Let us now compute the product of two successive transition matrices P
(2)
t = PtPt−1 to

obtain the probabilities of transition at horizon 2 from state j to k between times t− 2 and
t given the factor history (ft). The elements of matrix P

(2)
t depend on ft, ft−1 and are given

by:

p
(2)
jk,t = pjk(ft, ft−1; θ) = P[yi,t = k|yi,t−2 = j, ft, ft−1] =

K∑
l=1

[plk(ft, θ)pjl(ft−1, θ)]. (3.1)

They can be computed from the elements of matrices Pt and Pt−1. Let us denote by P and

P (2) the expectations of matrices Pt and P
(2)
t with respect to the common factor history:

P = E(Pt), P (2) = E(P
(2)
t ) = E(PtPt−1). (3.2)

The elements of matrix P :

P = [pjk] = [pjk(θ)] = Eft [pjk(ft, θ)],

are obtained by integrating out the unobserved factor value ft.

Lemma 1 Under Assumptions A1 and A2, we have:

pjk(θ) = Φ

 ck+1 − δj√
σ2
j + β2

j

− Φ

 ck − δj√
σ2
j + β2

j

 .

Proof. See Appendix A.1.
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It is easy to see that the expected matrix P is also a transition matrix. Indeed, its
elements are non-negative and additionally Pe = E(Pt)e = E(Pte) = e, where e is a vector
of ones. Matrix P is a quasi-transition matrix for yi,t, since pjk is not equal to the conditional
probability of yi,t = k given yi,t−1 = j, except when the ft’s are i.i.d., i.e. when ρ = 0. In
fact, it is computed as if ft was independent of yi,t−1. Each row of this quasi-transition
matrix corresponds to another ordered probit model.

The elements of matrix P (2) are obtained by integrating jointly with respect to ft, ft−1. We
have:

P (2) = [p
(2)
jk ] = [p

(2)
jk (θ, ρ)] = Eft,ft−1

[
K∑
l=1

plk(ft, θ)pjl(ft−1, θ)

]
.

Lemma 2 Under Assumptions A1 and A2, we have:

p
(2)
jk (θ, ρ) =

∫ K∑
l=1

[[
Φ

(
ck+1 − δl − βlρf√
σ2
l + β2

l (1− ρ2)

)
− Φ

(
ck − δl − βlρf√
σ2
l + β2

l (1− ρ2)

)]

×
[
Φ

(
cl+1 − δj − βjf

σj

)
− Φ

(
cl − δj − βjf

σj

)]]
ϕ(f)df,

where ϕ is the probability distribution function (pdf) of the standard normal.

Proof. See Appendix A.2.

P (2)(θ, ρ) is a quasi-transition matrix at horizon 2 computed as if (ft, ft−1) were inde-
pendent of yi,t−1. The quasi-transitions at horizon 2 involve one-dimensional integrals only,
which are easy to compute numerically.

3.2 Conditional Composite Likelihood Functions

This section presents the conditional composite likelihood functions for the migration model
with an unobserved AR(1) factor. The composite likelihoods are often based on misspecified
likelihoods, which are easier to calculate [see Cox, Reid (2004), Varian, Reid, Firth (2011)].
In our framework, the conditional composite likelihoods are constructed from the quasi-
migration probabilities at horizons 1 and 2 to reduce the dimension of the integrals. We also
present the conditional likelihood used in the first step of the granularity approach.

As mentioned earlier, the parameters θ = (βk, δk, σk, ck) determine the rating for a given
factor value. θ includes the parameters characterizing the latent quantitative score, repre-
senting the systemic and idiosyncratic risks, and the thresholds that define the qualitative
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rating category associated to the latent quantitative score. The additional parameter ρ al-
lows for predicting the future systemic risk. Some among the estimation methods given in
this section are focused on the rating parameters θ, while others concern both θ and serial
dependence parameter ρ.

i) The Conditional Composite Log-Likelihood at Lag 1

The conditional composite log-likelihood function at lag 1, called CL(1), is focused on
parameter θ. The associated log-likelihood Lcc(θ) is defined as:

Lcc(θ) =
T∑
t=2

K∑
k=1

K∑
j=1

[πj p̂jk,t log(pjk(θ))] , (3.3)

where p̂jk,t = njk,t/nj,t−1 is the observed transition frequency from j to k in one step over
the period (t − 1, t), nj,t−1 is the count of firms with rating j at the beginning of period
t, and πj, j = 1, ..., K is a given set of weights. The log-likelihood Lcc is calculated as if
the observed ratings (yi,t), i = 1, ..., n, were independent across the individuals, while in
reality they are linked by the common factor. Moreover, Lcc considers the rating processes
(yi,t), i = 1, ..., n, as if these were components of a Markov chain with quasi-transition
matrix P , although (yi,t), i = 1, ..., n, are not Markov because integrating the factor out
increases the memory of the process. It also assumes a time independent rating structure
(πj, j = 1, ..., K). Therefore, the CL(1) is a quasi (pseudo) log-likelihood. The conditional
composite log-likelihood CL(1) depends on parameter vector θ only, and cannot be used to
estimate the factor dynamics, i.e, the autoregressive coefficient ρ. For that purpose, it is
necessary to increase the lag.

ii) The Conditional Composite Log-Likelihood at Lag (2)

The conditional composite log-likelihood at lag (2), called CL(2), depends on both pa-
rameters θ and ρ. The log-likelihood Lcc,2(θ, ρ), is:

Lcc,2(θ, ρ) =
T∑
t=3

K∑
k=1

K∑
j=1

[
πj p̂

(2)
jk,t log p

(2)
jk (θ, ρ)

]
, (3.4)

where p̂
(2)
jk,t is the observed transition frequency from state j to k in two steps over the period

(t− 2, t) and π = (πj, j = 1, ..., K) is a fixed structure of ratings.

The composite log-likelihood function Lcc,2(θ, ρ) is computed from the density of (yi,t) con-
ditional on (yi,t−2) as if the rating histories (yi,t) were cross-sectionally independent from one
another, (yi,t−2) were containing all information about the past and were based on quasi-
transitions over 2 steps. Therefore, the CL(2) is a quasi (pseudo) log-likelihood too.

An important difference between Lcc and Lcc,2 is the set of identifiable parameters. As
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mentioned above, we can expect to identify θ from Lcc, but we cannot identify parameter ρ
characterizing the cross-sectional dependence. Lcc,2 provides additional information that is
sufficient to identify ρ.

iii) The Conditional Composite Likelihood up to Lag 2

The conditional composite log-likelihood up to lag 2, CL(1,2), is defined by summing up
the previous composite log-likelihoods at lags 1 and 2:

Lc(θ, ρ) = Lcc,2(θ, ρ) + aLcc(θ). (3.5)

where a is a constant to be selected.9 It concerns both parameters θ and ρ. This objective
function cannot be interpreted as a quasi likelihood.

iv) The Granularity-Based Conditional Log-likelihood

Let us now introduce another type of log-likelihood for the estimation of parameter θ.
As shown in Section 2.2, the complete log-likelihood has a complicated expression including
a high-dimensional integral of a dimension increasing with T . The granularity approach
[Gagliardini, Gouriéroux (2005, 2015)] replaces the complete log-likelihood by an appropriate
expansion for large T . This leads to a two step estimation method where, in the first step,
the factor values are considered as fixed time effects. This log-likelihood conditional on
(f2, ..., fT ) is:

L(θ, f2, ..., fT ) =
n∑

i=1

T∑
t=2

K∑
k=1

K∑
j=1

[1(yi,t = k, yi,t−1 = j) log pjk(ft; θ)]

=
T∑
t=2

K∑
k=1

K∑
j=1

[njk,t log pjk(ft; θ)]

=
T∑
t=2

K∑
k=1

K∑
j=1

[nj.,t−1p̂jk,t log pjk(ft; θ)] , (3.6)

where njk,t (resp. nj,t−1) counts all transitions from j to k (resp. is the structure of ratings
at t−1). It is maximized with respect to both parameter θ and factor path f2, ..., fT subject
to the identification restrictions:

1

T − 1

T∑
t=2

ft = 0,
1

T − 1

T∑
t=2

f 2
t = 1. (3.7)

9a could be optimally selected to increase the efficiency of the estimator in a two step approach [Cox,
Cox, Reid (2004), p.730].
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These restrictions on time fixed effects (ft) approximate the identification restrictions
on the latent stochastic factor, i.e. E(ft) = 0, V ar(ft) = 1. This conditional constrained
log-likelihood resembles the composite log-likelihood Lcc except that in the composite log-
likelihood, plk(θ) was made independent of ft by marginalizing and the observations are
introduced with a fixed rating structure π = (πj, j = 1, ...., K). Since this objective function
is maximized with respect to θ, f2, . . . , fT , it provides not only an estimator of θ, but also
an approximation f̂t of the factor values.10

Let us focus on parameter θ and briefly discuss the expected properties of the above
estimation methods. In the panel framework involving both n and T , various notions of
asymptotics can be considered. When n and T both tend to infinity, the granularity approach
provides consistent and asymptotically efficient estimators [Gagliardini, Gouriéroux (2014)].
In Section 4, we prove that both CL(1) and CL(2) methods also provide consistent estimators
of θ. In practice, the cross-sectional dimension n is large, but T is much smaller. Therefore,
we expect finite sample effects in T affecting all the estimators. When n tends to infinity,
T is fixed, all estimators converge to pseudo-true values θ∞(f0,2, ..., f0,T ) depending on the
latent factor values f0,2, ..., f0,T , including the first step of the granularity approach due
to replacing the factor identification restrictions E(ft) = 0, V ar(ft) = 1 by their fixed
effect counterparts. Hence, for T fixed, all the estimators considered are asymptotically
(in n) biased both conditionally on factor values and after re-integrating the factor. Let
us now discuss their variances conditional on f0,2, ..., f0,T . In this respect, it is important
to consider the number of “nuisance” parameters in each of the estimation method: no
nuisance parameter in CL(1), one nuisance parameter ρ in CL(2), T −1 nuisance parameters
f0,2, ..., f0,T in the first step of the granularity approach.11 The variances can increase with
the number of nuisance parameters. Moreover, the bias and variance trade-off12 would
depend on the dynamic pattern of the true factor values f0,2, ..., f0,T , in particular if they
approximately satisfy the restrictions of zero sample mean and unit sample variance for the
granularity approach, or are more or less erratic for the CL(1) and CL(2) methods.

3.3 Identification

In this section, the order and rank conditions for identification of each of the conditional com-
posite log-likelihoods are discussed. The identification of θ, ρ in the conditional granularity
approach has already been examined in Gagliardini, Gouriéroux (2005, 2015).

10In the second step, an estimator of ρ is obtained by regressing f̂t on f̂t−1, t = 2, . . . , T .
11The number of nuisance parameters quickly increases if more systemic risk factors are introduced.
12In statistics, the variance-bias trade-off is through the quadratic loss = variance + squared bias. In

credit portfolios, it is through a Value-at-Risk of the type VaR= bias + 1.96
√
variance.
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The parameters to be identified and their respective numbers are as follows:

ck, k = 2, ..., K, number : K − 1,

δk, k = 1, ..., K, number : K,

βk, k = 1, ..., K, number : K,

σk, k = 1, ..., K, number : K,

ρ, number : 1.

The total number of independent parameters to identify is 4K − 2. The negative two is due
to the score y∗i,t being defined up to an increasing function. As we have supposed that it was
a linear function of factor ft, the score y

∗
i,t is defined up to a linear affine increasing function.

The intercept and slope of that linear function are not identifiable.

3.3.1 Order Conditions

In this subsection, the order conditions for each conditional composite log-likelihood are
discussed. These conditions are derived from the probabilities pjk(θ), p

(2)
jk (θ, ρ) that appear

in the composite log-likelihoods. These probabilities can be consistently estimated if n and
T tend to infinity13 (see Section 4).

i) Identification of θ under CL(1):

The identifying functions are the reduced form parameters in the CL(1) objective func-
tion, i.e. the elements pjk(θ) of the quasi-transition matrix P . There are K(K − 1) of these
elements that are linearly independent because of the unit mass restriction on each column.
Hence, the order condition is:

K(K − 1) ⩾ 4K − 1 ⇐⇒ K2 − 5K + 1 ⩾ 0,

by taking into account the absence of parameter ρ in the objective function. This order
condition is satisfied for K ⩾ 5.

ii) Identification of θ under CL(2):

The identifying functions are determined by observing that the factor f varies within
the integral expression of p

(2)
jk (θ, ρ) (see Lemma 2). These identifying functions and their

13They cannot be consistently estimated otherwise, in particular when n → ∞, T fixed. Indeed, in such
a panel framework, the identification does not necessarily imply the existence of a convergent estimator.
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respective numbers are as follows:

(1)
ck − δj√

σ2
j + β2

j (1− ρ2)
; number : K(K − 1);

(2)
ϵβjρ√

σ2
j + β2

j (1− ρ2)
; number : K;

(3)
ck − δj
σj

; number : K(K − 1);

(4)
ϵβj
σj

; number : K,

where ϵ = ±1 is an unknown sign, since the distribution of f is symmetric. This implies
that the integral expression in Lemma 2 is also valid with f replaced by −f . There is only
one such invariance property and therefore the sign ϵ is equal for all j. The total number of
identifying functions of parameters is 2K(K − 1) + 2K = 2K2. Hence, the order condition
is:

2K2 ⩾ 4K − 2 ⇐⇒ K2 − 2K + 1 ⩾ 0

⇐⇒ (K − 1)2 ⩾ 0.

The order condition holds for any K.

iii) Identification of θ, ρ under CL(1,2):

The total number of functions available is equal to the sum of functions available for each
component of the total composite log-likelihood. Therefore, the order condition is:

3K2 −K ⩾ 4K − 2.

The order condition is satisfied for any K.

3.3.2 Rank Conditions

The rank conditions are important for the local identifiability. They are derived for the
CL(1) and CL(2) approaches and are similar to the rank condition derived for the granularity
approach in Gagliardini, Gouriéroux (2005) and Gagliardini, Gouriéroux (2015), p.84.

Proposition 1 Under the CL(1) log-likelihood function and the identifying constraints c2 =
0, γ1 = 1, we can identify the thresholds ck, k = 2, ..., K, the intercepts δj, j = 1, ..., K, and

the γj =
√
β2
j + σ2

j , j = 2, ..., K.
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Proof. See Appendix B.1.

Proposition 2 Under the CL(2) composite log-likelihood function and the identifying con-
straints c2 = 0, γ1 =

√
σ2
1 + β2

1 (1− ρ2) = 1, all parameters are identified up to the common
sign ϵ for βj, j = 1, ..., K.

Proof. See Appendix B.2.

In order to identify the unknown sign ϵ, an additional constraint needs to be introduced
such as:

β1 > 0.

The unknown sign ϵ is a problem of global identification and not of local identification.
Hence, when the asymptotic properties of the estimators are derived (see Section 4), this
positivity constraint has to be taken into account to obtain the consistency of the estimator.
It has no effect on the asymptotic normality. The asymptotic properties of the composite
log-likelihood estimators are discussed in the next section.

4 Asymptotic Properties of Composite Log-likelihood

Estimators

4.1 The Asymptotics

In a panel data framework, the asymptotic analysis can be performed with respect to the
cross-sectional dimension n and time dimension T that can tend to infinity as follows:14

(i) Both n, T → ∞: double asymptotics;

(ii) n→ ∞, T fixed: short panel asymptotics.

The double asymptotics in case (i) has been developed for applications to big data [Gagliar-
dini, Gouriéroux (2014, 2015), Bonhomme, Jochmans, Robin (2017)]. It corresponds to a
long panel of high dimensional time series.

In the migration model with an unobserved factor, the asymptotic analysis existing in the
literature concerns the granularity adjusted version of the (complete) maximum likelihood
method, i.e. the estimation of θ0, f0,2..., f0,T (and ρ0) based on the log-likelihood (3.6)-
(3.7) [see Gagliardini, Gouriéroux (2014, 2015)]. Let us denote the maximizers of the
log-likelihood (3.6)-(3.7) by f̂n,t,T , t = 2, ..., T and θ̂n,T , and the autoregressive coefficient

estimator obtained by regressing f̂n,t,T on f̂n,t−1,T , t = 2, ..., T , by ρ̂n,T . Let θ0, ρ0, f0,1, ..., f0,T
denote the true values of parameters and factors. Then, we obtain the following results:

14The last case (iii) n fixed, T → ∞ is less relevant for applications to credit rating.
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(i) If n→ ∞, T → ∞,

a. θ̂n,T is consistent of θ0, converges at speed 1/
√
nT and is asymptotically normal.

b. f̂n,t,T is consistent of f0,t, converges at speed 1/
√
n, for any t (but the convergence is not

necessarily uniform in t, t ≤ T ) and is asymptotically normal.

c. ρ̂n,T is consistent of ρ0, converges at speed 1/
√
T and is asymptotically normal.

(ii) If n→ ∞, T is fixed,

a. θ̂n,T converges to a stochastic limit θ∞(f0,2, ..., f0,T ), is consistent of θ∞(f0,2, ..., f0,T ),
converges at speed 1/

√
n and is asymptotically normal conditional on f0,2, ..., f0,T .

b. f̂n,t,T is consistent of a quantity F∞,t(f0,2, ..., f0,T ) ̸= f0,t,
15, converges at speed 1/

√
n, for

any t and
√
n[f̂n,t,T − F∞,t(f0,2, ..., f0,T )] is asymptotically normal.

c. ρ̂n,T is inconsistent.

When n→ ∞, T → ∞, the asymptotic properties of the conditional maximum composite
likelihood estimators are much easier to derive than the asymptotic properties of the complete
ML estimator. Indeed, the conditional composite log-likelihood functions are finite sums
of products of summary statistics and functions of parameters. This simplifies the proof
of uniform convergence with respect to the parameters. The next section examines the
asymptotics (i) -(ii) and describes the properties of the conditional composite maximum
likelihood estimators.

4.2 Consistency

This section examines the consistency of the maximum conditional composite likelihood
estimators of the identifiable parameters when n → ∞, T → ∞. To prove the consistency,
we need the following additional assumption:

Assumption A3

a) The parameter set of (θ, ρ) is compact, and strictly included in the set σj > 0,∀j, |ρ| <
1.

b) The model is well-specified and the true value (θ0, ρ0) is in the interior of the parameter
set.

The condition σj > 0, ∀j, ensures that the transition probabilities pjk(ft; θ) [resp.

pjk(θ), p
(2)
jk (θ, ρ)] are infinitely continuously differentiable with respect to ft and θ (resp.

with respect to θ, ρ).

15Since the true identification restrictions differ from those imposed on the fixed effects.
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(i) Double asymptotics: n→ ∞, T → ∞

Let us consider the double asymptotics with CL(1) approach. We have:

Lcc(θ) =
K∑
k=1

K∑
j=1

T∑
t=2

[πj p̂jk,t log pjk(θ)] .

The conditional composite likelihood Lcc depends on n and T , although it is not indexed
by n and T to simplify the notation. Since T is varying, we need uniform a.s. convergence
of the ratios p̂jk,t to pjk(ft; θ0) with respect to t, not only their pointwise a.s. convergence.

Assumption A.4:

i) P [Maxm≥n|p̂jk,t(m)− pjk(ft; θ0)| > ϵ |ft) < gjk(ft;θ0)

nϵ2
,

∀j, k, ϵ, n, ft, where the notation p̂jk,t(n) is introduced to indicate the dependence of the
transition probabilities on the number of observations, and gjk is integrable with respect to
the marginal distribution of ft.

ii) n, T → ∞ with T/n→ 0.

Assumption A.4 i) is a domination condition. Assumption A.4 ii) means that we have a
panel with the cross-sectional dimension much larger than the time dimension. This allows
for disregarding the uncertainty in n with respect to the uncertainty in T in the double
asymptotic [see Appendix C].

Let us consider the objective function normalized by T :

1

T
Lcc(θ) =

K∑
j=1

πj

K∑
k=1

[
(
1

T

T∑
t=2

p̂jk,t) log pjk(θ)

]
.

When n tends to infinity, this quantity tends to∑K
j=1 πj

∑K
k=1

[
( 1
T

∑T
t=2 pjk(ft, θ0)) log pjk(θ)

]
. If moreover T tends to infinity, the limiting

objective function is

lim
n,T→∞

1

T
Lcc ≈

K∑
j=1

πj

K∑
k=1

[pjk(θ0) log pjk(θ)] , (4.1)

by using the ergodicity of the factor process and the Strong Law of Large Numbers in time
dimension.

By the property of the Kullback-Leibler divergence measure applied to each row of the
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transition matrix, we know that the associated limiting conditional composite log-likelihood
is maximized at θ∗0 with:

pjk(θ
∗
0) = pjk(θ0),∀j, k.

Then, by the identifiability of θ = (c, δ, γ) (see Proposition 1), we get θ∗0 = θ0, and the
consistency follows.

(ii) Short panel asymptotics: n→ ∞, T fixed.

Like for the granularity approach, we cannot expect the conditional composite ML es-
timators to be consistent for n → ∞, T fixed. This is a consequence of the cross-sectional
dependence due to the common systemic factor ft. To clarify this point, let us assume T = 2
and consider the maximum conditional composite likelihood CL(1) estimator. For T = 2,
the conditional composite log-likelihood is:

Lcc(c, δ, γ) =
K∑
k=1

K∑
j=1

[πj p̂jk,2 log pjk(θ)] ,

where θ = (c, δ, γ) is the identifiable parameter satisfying the identification restriction in
Proposition 1, that are c2 = 0, γ1 = 1. By Assumptions A.1, A.2 and the fact that the rating
indicators are nonnegative and bounded, we can apply the Strong Law of Large Numbers to
individuals. The conditional composite log-likelihood tends a.s. to:

lim
n→∞

a.s.Lcc(c, δ, γ) = lim
n→∞

a.s.
K∑
j=1

πj

(
K∑
k=1

[
pjk(θ0, f02) log pjk(θ)

])
,

Then, this limiting objective function admits at least a maximum on the parameter set
by Assumption A4 ii). Let θ∗0 denote the pseudo-true value, i.e. a solution of the asymptotic
optimization problem, we have:

θ∗0 = argmax
θ

K∑
j=1

[
πj

[ K∑
k=1

pjk(θ0, f0,2) log pjk(θ)

]]
.

This pseudo-true value is a function of θ0 and f0,2. Therefore, it cannot be equal to the

true value, that does not depend on f0,2. In other words, the MCL estimator θ̂n converges
to a stochastic limit whose distribution depends on the distribution of f2.
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4.3 Asymptotic Normality

For expository purpose, we continue the discussion of the CL(1) approach for n→ ∞, T → ∞
16. As mentioned above, the conditional composite log-likelihood is continuously differen-
tiable. Since the estimator θ̂n,T = (ĉn,T , δ̂n,T , γ̂n,T ) tends to the true value θ0 = (c0, δ0, γ0),
which is in the interior of the parameter set, the estimator will also be asymptotically in the
interior of the parameter set and will satisfy the necessary first-order conditions for large T .
Therefore, we have:

∂Lcc(θ̂n,T )

∂θ
= 0 ⇐⇒

K∑
k=1

K∑
j=1

T∑
t=2

[
πj p̂jk,t

∂ logpjk(θ̂n,T )

∂θ

]
= 0.

We can perform a Taylor-McLaurin expansion with respect to θ̂n,T in the neighborhood of
θ0. Let us assume:

Assumption A.5: The parameter set Θ for θ is convex.

We get:

K∑
k=1

K∑
j=1

T∑
t=2

[
πj p̂jk,t

∂log pjk(θ0)

∂θ

]
+

(
K∑
k=1

K∑
j=1

T∑
t=2

[
πj p̂jk,t

∂2log pjk(θ̃n,T )

∂θ ∂θ′

]
(θ̂n,T − θ0)

)
= 0,

(4.2)
where θ̃n,T is an intermediate value between θ̂n,T and θ0.

By applying the same argument as for the uniform a.s. convergence of the composite
log-likelihood function, we deduce that:

1
T

∑K
k=1

∑K
j=1

∑T
t=2

[
πj p̂jk,t

∂2log pjk(θ̃n,T )

∂θ∂θ′

]
will converge a.s. to

∑K
k=1

∑K
j=1

[
πjpjk(θ0)

∂2log pjk(θ0)

∂θ∂θ′

]
,

1
T

∑K
k=1

∑K
j=1

∑T
t=2

[
πj p̂jk,t

∂logpjk(θ0)

∂θ

]
will converge a.s. to∑K

k=1

∑K
j=1

[
πjpjk(θ0)

∂log pjk(θ0)

∂θ

]
= 0,

since θ0 is the maximizer of the limiting objective function (4.1), and

1√
T

K∑
k=1

K∑
j=1

T∑
t=2

[
πj p̂jk,t

∂log plk(θ0)

∂θ

]

=
1√
T

K∑
k=1

K∑
j=1

{[
T∑
t=2

πj[pjk(ft, θ0)− pjk(θ0)]

]
∂log pjk(θ0)

∂θ

}
+ op(1),

16The proof is easy to extend for the setup n → ∞, T fixed.
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where op(1) is a negligible term in probability by Assumption A.4. Let us assume:

Assumption A6: The matrix J0 =
∑K

k=1

∑K
j=1

[
πjpjk(θ0)

∂2log pjk(θ0)

∂θ∂θ′

]
is positive definite.

Then, by normalizing the expansion (4.2) by 1/(
√
T ), we get:

√
T (θ̂n,T − θ0) =

[
−
∑K

k=1

∑K
j=1

(
πj pjk(θ0)

∂2log pjk(θ0)

∂θ∂θ′

)]−1

× 1√
T

∑T
t=2

∑K
k=1

∑K
j=1

[
πj[pjk(ft; θ0)− pjk(θ0)]

∂log pjk(θ)

∂θ

]
+ op(1)

=
[
−
∑K

k=1

∑K
j=1 πjpjk(θ0)

∂2log pJk(θ0)
∂θ∂θ′

]−1
∂
∂θ

[vec log pjk(θ0)]
′

× 1√
T

∑T
t=2 vec[πj[pjk(ft, θ0)− pjk(θ0)]] + op(1),

where vec denotes the vectorization that stacks the columns of the transition matrix. Note
that

vec[πjpjk(ft; θ0)] = vec[P (ft; θ0)diag π] = [diag π ⊗ Id] vecP (ft; θ0),

where diag π is the diagonal matrix with terms πj on the main diagonal and ⊗ denotes the
Kronecker product.

The common factor ft is strictly stationary and geometrically mixing. Thus, the same
property holds for the K2 dimensional process vec [πjpjk(ft; θ0)]. We deduce the asymptotic
normality of

√
T (θ̂n,T − θ0).

Proposition 3 Under Assumptions A.1-A.6, when n → ∞, T → ∞, the maximum condi-
tional composite likelihood estimator θ̂n,T obtained by maximizing Lcc(θ) is consistent, con-
verges to the true value θ0 at speed 1/

√
T , and is asymptotically normal:

√
T
(
θ̂n,T − θ0

)
∼ N

[
0, J−1

0

(
∞∑

h=−∞

I0h

)
J−1
0

]
,
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where

J0 = −
K∑
k=1

K∑
j=1

[
πjpjk(θ0)

∂2log pjk(θ0)

∂θ∂θ′

]
,

I0h =
∂

∂θ
vec (log pjk(θ0))

′
Cov0

[
vec (πjpjk(ft, θ0)) , vec(πjpjk(ft−h, θ0))

]
× ∂

∂θ′
vec (log pjk(θ0)) ,

=
∂

∂θ
vec[log pjk(θ0)]

′(diag π ⊗ Id)Cov0[vecP (ft, θ0), vecP (ft−h, θ0)]

× (diag π ⊗ Id)
∂

∂θ′
vec[log pjk(θ0)],

h = 1, 2, ...

As expected, we obtained the following results:

(a) The speed of convergence of θ̂n,T is 1/
√
T instead of 1/

√
nT as in the granularity

approach. This is a consequence of the crude cross-sectional aggregation of the data in the
composite approach as if the observations yi,t were cross-sectionally independent. This higher
speed of convergence in the granularity approach when n → ∞, T → ∞ likely becomes a
drawback causing a lack of robustness when n→ ∞, T is fixed. In particular, a naive use of
the formulas of asymptotic variances will tend to underestimate the magnitude of systemic
risk, and that effect will be stronger for the granularity approach than for the conditional
MCL methods.

(b) The asymptotic variance is obtained from the “sandwich” formula, as it is common in
a mis-specified (pseudo) maximum likelihood approach [see, Huber (1967), White (1982)].

(c) The terms pjk(ft, θ0) and pjk(ft−h, θ0) depend on ft, and ft−h, respectively. They are
correlated because of the factor dynamics (except when ρ = 0, that is the case of an i.i.d.
factor). Therefore, the covariances have to be taken into account even if we consider only a
small number of values of lag h. It is important to notice that the sum

∑∞
h=−∞ I0h always

exists due to the geometric ergodicity of the factor process.

(d) The asymptotic variance-covariance matrix of the MCL estimator depends on the se-
lected set of weights π. It is out of the scope of this paper to discuss the optimal choice of
weights that likely reduce the robustness of this estimator. Instead, to facilitate the compar-
ison with the granularity-based approach, this set of weights has to be close to the structure
of ratings at the different dates. As it is assumed to be time independent, a solution is to
choose the set of weights close to the true unconditional structure of ratings (see Sections 5
and 6).

The above asymptotic analysis is different from the main literature on composite like-
lihood that usually considers either i.i.d. individuals, or finite dimensional time series [see
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e.g. Cox, Reid (2004), Varian, Reid, Firth (2011)].

The asymptotic variance-covariance matrix of the conditional composite maximum like-
lihood estimator is consistently estimated by considering appropriate sample counterparts
of components J0, I0h.

5 Simulation Results

In this section, we perform a Monte-Carlo experiment to assess the finite sample properties
of estimators based on the conditional composite likelihood function and step one of the
granularity approach.

5.1 The Design

The designs include K = 8 ratings, with a higher k indicating a lower capacity to repay
debt, and k = 8 denoting the absorbing state of default. These rating categories can be
interpreted as AAA, AA, A, BBB, BB, B, CCC/CC and D, respectively (according to the
Standard and Poor’s (S & P) terminology).

5.1.1 Design of thresholds and intercepts

Given the rating at time t−1, i.e. yi,t−1 = j ∈ {1, . . . , 7}, suppose that the underlying latent
continuous quantitative score y∗i,t can be written as:

y∗i,t = δj + βjft + σjui,t, ui,t ∼ i.i.d.N (0, 1) ,

where the rating is determined by:

yi,t = k, k = 1, . . . , 8 ⇐⇒ ck ≤ y∗i,t < ck+1, k = 1, . . . , 8,

with the thresholds (ck) described in Table 1 and the intercepts (δj) described in Table 2.

Table 1: Thresholds (ck)

k 1 2 3 4 5 6 7 8 9

ck −∞ 0 1.5 3 4.5 6 7.5 9 ∞

The thresholds and intercepts are ranked in an increasing order, and their values are chosen
to get higher transition probabilities on the main diagonal and decreasing probabilities when
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Table 2: Intercepts (δj)

j 1 2 3 4 5 6 7

δj −0.5 1 2.5 4 5.5 7 8.5

a firm transits to other states. The treatment of the “absorbing state D” corresponding to
j = 8 is discussed later on.

5.1.2 Design of risk components

The uncertainty on migrations is driven by rating-specific shocks ui,t and the common sys-
tematic shocks ft. To see the effects of risk on the systematic and rating-specific components,
we consider two designs for σj, βj, j = 1, . . . , 7:

Design 1: ρ = 0; The idiosyncratic and systemic components have, for each j, the same

impact, that is: σj = βj =
(1+r)j−1

√
2

, with r = 0.05. Thus, when the rating is lower, the risk
of downgrading is higher.

Design 2: ρ = 0.4, 0.7 and 0.95; The autocorrelation parameter is taken into account and the
impact of the systemic component relative to the idiosyncratic one decreases with l. This
means that the idiosyncratic errors largely explain the junk bonds in non crisis environment.
To capture this feature, we consider the ratios

βj

σj
= 1

(1+r)j−1 , with r = 0.05, where βj =
1√
2−ρ2

, ∀j.

There is also a persistence of the systematic factor ft satisfying:

ft = ρft−1 +
√

1− ρ2ηt, ηt ∼ i.i.d.N(0, 1),

where the autocorrelation parameter ρ measures the persistence and f1 is drawn in th esta-
tionary distribution N(0, 1).

We consider the following four values for the autocorrelation parameter ρ: ρ = 0, that
corresponds to independent migration matrices. This is the basic assumption of the Value of
the Firm model introduced in Vasicek (2015); ρ = 0.4 is used to reflect a moderate amount
of autocorrelation at lag 1 of the systematic factor; ρ = 0.7 corresponds to a high amount of
autocorrelation at lag 1 of the systematic factor, while ρ = 0.95 allows for some persistence
in the systematic factor.

5.1.3 Treatment of the absorbing state

The state of default is an absorbing state. Therefore, if we follow a given population of
corporates, all of the corporates will default at some date, and the number of still alive

25



corporates (the so-called Population-at-Risk (PaR)) will diminish. Theoretically, the process
of observed ratings is asymptotically stationary with a stationary distribution equal to a point
mass on default. This difficulty is solved by assuming that newly created corporates offset
the corporates entering into default, thus ensuring a PaR of constant size. This corresponds
to the model with equal birth and death rates used in epidemiological studies (see e.g. Harko,
Lobo, Mak (2016)). As at the time of new firms arrival their rating are high, we replace the
last row of the migration matrix at the individual level,

0, 0, 0, 0, 0, 0, 0, 1,

corresponding to a standard absorbing state, by the row of assignment of new entries at the
population level,

0.5, 0.3, 0.2, 0, 0, 0, 0, 0.

Thus we have to distinguish individual migration matrices Pt, from the population mi-
gration that could be adjusted by taking into account the newly created firms. When the
newly created firms are taken into account, the migration matrix is indexed as P a

t .

5.1.4 Individual trajectories

Let us consider the design with ρ = 0.4. For each individual i, we compute and compare the
time series of underlying scores, ratings as well as the series of expected stability measures
in the current rating. These series are denoted by y∗i,t, yi,t and si,t, where:

si,t = Φ

(
ck+1 − βjft + δ

σj

)
− Φ

(
ck − βjft + δ

σj

)
, with j = yi,t−1.

These series are displayed in Figure 1 for an initial factor value of f1 = 0 and initial rating
of yi,0 = 2, which is equivalent to AA.

The displayed trajectories correspond to three different corporate bonds. At time 0, a
bond with rating 2 (AA) is issued. It is subject to downgrading after time 10 down to
default in time 21. At that time a new bond with rating 1 (AAA) is issued to balance the
defaulted bond. It is gradually downgraded to default at time 44. Then, a new bond is
issued at time 45 and so on. In such an environment of births and deaths occurring with
equal rates, each trajectory corresponds to a stochastic number of firms, rather than a single
firm. This stochastic number is equal to the number of observed defaults plus one. This
approach ensures the stationarity of the process and provides the rating histories of equal
length T .
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Figure 1: Individual Trajectories, ρ = 0.4
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5.1.5 (Quasi) Migration Matrices

In this section we present the quasi-transition (migration) matrices with ρ = 0.4. The time
unit can be viewed as one month or one quarter, and the horizons of one and two correspond
to one and two time units, respectively. Matrix P a is evaluated at the true parameter value
from the formula in Lemma 1 and given in Table 3.

Table 3: Quasi Migration Matrices P a, at Horizon 1 in %

P a k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

j = 1 68.42 28.82 2.72 0.04 0.00 0.00 0.00 0.00
j = 2 17.48 50.53 28.93 3.01 0.05 0.00 0.00 0.00
j = 3 1.14 16.97 49.46 29.01 3.35 0.07 0.00 0.00
j = 4 0.02 1.31 17.43 48.36 29.07 3.71 0.10 0.00
j = 5 0.00 0.03 1.53 17.88 47.23 29.09 4.11 0.13
j = 6 0.00 0.00 0.04 1.78 18.32 46.07 29.07 4.72
j = 7 0.00 0.00 0.00 0.06 2.07 18.73 44.89 34.25
j = 8 50.00 30.00 20.00 0.00 0.00 0.00 0.00 0.00

We observe a commonly reported feature of a migration matrix, i.e. the largest rates
located on the main diagonal and the two adjacent diagonals with larger rates of downgrades
than of upgrades. Moreover, there are significant rates of default from ratings 6 and 7,
corresponding to the “junk bonds”. The last row corresponds to the new firms introduced to
compensate for the defaulted corporates. Next, we determine the nondegenerate stationary
distribution µa, solution of:

(µa)′ = (µa)′ P a. (5.1)

Because of the absorbing state, without the equal birth-death rates each corporate bond
would default and the asymptotic stationary distribution of individual ratings would be a
point mass at 8 (D). The interpretation of the stationary distribution µa is different and
concerns the population ratings. It provides the long run rating structure of the population
of corporate bonds under rebalancing. This long run structure, that does not depend on the
initial rating structure, is given in Table 4. In practice, the stationary distribution provides
the information on how the ratings agencies determine the thresholds of scores to define the
ratings. In our experimental design, the unobserved quantitative scores are discretized to
obtain close proportions of bonds across ratings.

Table 4: Stationary Distribution

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Probabilities in % 14.51 16.66 17.47 16.09 14.15 11.19 6.99 2.94
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Let us now consider the quasi-migration matrix at horizon 2. Table 5 shows the matrices
P (2)a and (P a)2. Matrix P (2)a is computed by Monte-Carlo integration with S = 50, 000
replications of the latent factor values ft at the true parameter value (see Lemma 2). The
changes in P (2)a and (P a)2 compared to P a are due to the aggregate effect of both the rating-
specific and systemic shocks. Both matrices have non zero elements on the diagonals up or
down by 2 from the main diagonal because of time aggregation. The matrices P (2)a and
(P a)2 are not equal. This difference is caused by the systemic risk. As expected, we observe
larger diagonal elements in the matrix P (2)a for j = 2, ..., 7 because of the persistence of the
factor, which leads to more stability in the ratings.

Table 5: Quasi-Migration Matrices, at Horizon 2 in %

P a(2) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

j = 1 51.89 34.75 11.54 1.70 0.12 0.00 0.00 0.00
j = 2 21.12 35.51 29.93 11.39 1.90 0.15 0.00 0.00
j = 3 4.31 17.68 34.51 29.49 11.69 2.12 0.19 0.01
j = 4 0.45 4.27 17.88 33.75 29.05 11.99 2.36 0.25
j = 5 0.09 0.56 4.64 18.06 32.97 28.58 12.26 2.84
j = 6 2.36 1.45 1.57 4.99 18.21 32.07 27.20 12.15
j = 7 17.13 10.28 6.90 0.76 5.35 17.64 25.68 16.26
j = 8 39.68 32.96 19.93 6.73 0.69 0.01 0.00 0.00

(P a)2 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

j = 1 52.90 31.85 12.59 2.40 0.25 0.01 0.00 0.00
j = 2 22.83 33.32 28.37 12.56 2.61 0.29 0.02 0.00
j = 3 5.61 17.88 32.51 28.06 12.74 2.83 0.35 0.02
j = 4 0.76 5.23 18.03 31.82 27.72 12.92 3.08 0.44
j = 5 0.13 0.86 5.56 18.16 31.13 27.33 13.09 3.74
j = 6 2.36 1.49 1.89 5.85 18.26 30.38 26.33 13.44
j = 7 17.18 10.31 6.97 1.10 6.17 17.84 24.94 15.49
j = 8 39.64 32.98 19.94 6.74 0.69 0.01 0.00 0.00

5.2 Finite Sample Properties of the MCL Estimation

To give some insights into the accuracy of the MCL estimation, in terms of the number of
months T and the factor autocorrelation parameter ρ, we conduct Monte-Carlo experiments.
The estimation is performed with n = 1, 000 firms, including the adjustment for the newly
created firms and the designs described above. The numbers of observation periods are
T = 60 (5 years for monthly data and 15 years for quarterly data), T = 120 (10 years for
monthly data and 30 years for quarterly data), T = 240 (20 years for monthly data and 60
years for quarterly data). In each experiment, we perform S = 500 simulations of individual
trajectories, with initial ratings yi,0 drawn from the adjusted stationary distribution µa,
conditional on non-default ratings. The stationary probability computed conditional on
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non-default ratings provides the initial rating structure. The condition for this initial draw
is satisfied by starting the simulations from another initial structure, 20 dates before t = 1
in our case. This structure is chosen equal to the average observed structure of ratings. 17

5.2.1 Parameters of Interest

The stochastic migration model depends on a large number of parameters that are 19 iden-
tifiable parameters (c3 . . . , c8, δ1 . . . , δ7, γ2 . . . γ7) for the CL(1) method, and 27 identifiable
parameters (c3 . . . , c8, δ1 . . . , δ7, β2 . . . , β7, σ1 . . . , σ7 and ρ) for the CL(2) method, counted
by taking into account the two identification conditions c2 = 0, γ1 = 1. For the granularity
approach, further identification conditions are needed. The next sections discuss the CL(1)
estimation results based on design 1, the CL(2) estimation results based based on design 2,
and compare the findings to the granularity estimation results. In particular, we discuss the
finite sample distributions of the estimated ck+1, k = 2, . . . , 7 and δj, j = 2, . . . , 7, which are
common for the CL(1), the CL(2) and the granularity methods. In addition, we analyze the
distribution of the estimated βj, j = 2, . . . , 7 and σj, j = 2, . . . , 7, obtained from the CL(2)
and the granularity approaches.

5.2.2 The CL(1) Estimation Results

The CL(1) approach depends on the selected set of weights (πj, j = 1, ..., 7) with weight zero
on the default rating. This set of weights is set equal to the average rating structure from the
simulated data conditional on non-default ratings. We illustrate the finite sample behavior
of the parameter estimators by plotting the empirical pdf of the estimates (Figures 1 - 12 in
online Appendix D.1), when ρ = 0, 0.4, 0.7 and 0.95 for T = 60, 120 and 240. Figures 1 - 4
present the empirical probability distributions depicted by the histograms for the estimated
threshold parameters (c3, . . . , c8). Figures 5 - 8 show the empirical probability distributions
of the estimated intercepts (δ1, . . . , δ7), while Figures 9 - 12 present these distributions for the
unconditional variances (γ2, . . . , γ7). In each figure, the x-axis shows the values of estimators,
while the y-axis presents their frequencies. The red vertical line shows the true value of the
estimated parameters and allows us to analyze to which extent the estimators are biased and
discuss their distributions. When ρ = 0, 0.4 and 0.7, a common feature observed in these
figures is that, when T varies, the distribution of the parameter estimators remains centered
around their true values. The mode of estimates from the simulated data takes values close
to the true value. As the sample sizes increase, the range of values taken by the estimates

17Figures 45 - 56 in online Appendix D.4 presents the rating structures at each time period t, and the
chosen fixed rating structure, represented by their means over the S simulated data. The figures show that
the rating structures at each date t are generally close to the fixed structure for most ratings. We find
an improvement in the ability of the average rating structures to capture their dynamics over time as the
autocorrelation in the systematic factor increases. However, as mentioned above, the choice of optimal rating
structure is beyond the scope of this paper.
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tends to decrease. This indicates a smaller dispersion, and, therefore, an improvement in the
precision of the CL(1) estimation. In the extreme case, where ρ = 0.95 is close to the non-
stationarity in the latent factor, with ρ = 1, the estimations are less accurate. However, the
accuracy also improves with an increase in the time dimension. The results are in line with
the asymptotic results on the

√
T -consistency of the CL(1) estimates given in Proposition 3.

5.2.3 The CL(2) Estimation Results

We conduct further analysis based on the CL(2) method with the same set of weights.
Figures 13 - 28 in online Appendix D.2 show the distributions of the CL(2) estimators when
ρ = 0, 0.4, 0.7 and 0.95 for T = 60, 120 and 240. Like for the CL(1), Figures 14-17 provide
the histograms of the estimated thresholds, and Figures 17 - 20 show the histograms of the
estimated intercepts. In addition to those estimated parameters, Figures 21 - 24 display
the histograms of the estimated slopes, while Figures 25 - 28 present these distributions for
the estimated volatilities. Under the CL(2), the thresholds and intercepts are generally well
estimated when ρ = 0, 0.4 and 0.7. The results show that the estimates are centered around
the true parameters. The accuracy of the estimation improves with increasing sample sizes.
We observe similar results for the factor sensitivities and volatilities.

5.2.4 The Granularity Estimation Results

The granularity estimation consists of two steps. First, the log-likelihood from the micro-
density given by:

T∑
t=2

K∑
j=1

K∑
k=1

njk,tlog
[
Φ
(ck+1 − βjft − δj

σj

)
− Φ

(ck − βjft − δj
σj

)]
, (5.2)

is maximized with respect to parameter θ and factor values f2, ..., fT . In the second step,
the values f̂t are regressed on their lagged values to get an estimator of ρ. We examine the
first step of the granularity approach providing the estimates of θ.

The estimators are presented in online Appendix D.3. Figures 29 - 32 provide the his-
tograms of the estimated thresholds, and Figures 33 - 36 show the histograms of the estimated
intercepts. Figures 37 - 40 show the histograms of the estimated slopes, while Figures 41 -
44 present these distributions for the estimated volatilities. By comparing the finite sam-
ple distributions, we observe that the CL(1) method provides slightly more accurate results
than the CL(2) and the first step of the granularity approach for the parameters identifiable
under the CL(1). The results obtained from the CL(2) and granularity for parameters βj, σj
are close, although slight asymmetries arise in the histograms of some of these parameters
estimated by the granularity.

In addition, the granularity approach is computationally more intensive, and the compu-
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tation burden increases with the number of factor values, given that the factor is estimated
for each time period at the first step of the granularity estimation.

Table 6: Average Estimation Time (in seconds) of Parameters

CL(1) CL(2) Granularity Approach

ρ = 0.0 ρ = 0.4 ρ = 0.7 ρ = 0.95 ρ = 0.0 ρ = 0.4 ρ = 0.7 ρ = 0.95 ρ = 0.0 ρ = 0.4 ρ = 0.7 ρ = 0.95

T = 60 13.46 14.06 15.42 22.88 105.08 103.74 105.64 103.19 74.57 74.20 73.95 73.70

T = 120 12.75 13.20 14.17 19.25 105.74 104.10 105.54 102.77 153.54 153.40 150.04 149.93

T = 240 11.53 12.01 11.99 15.67 104.97 104.26 105.19 103.04 294.93 299.92 286.38 285.32

To give an idea of the computation time, the average estimation times are presented in
Table 6. The estimation is carried out on a virtual machine running in a VMware (Virtual
Machine) cluster.18 The code is written in Matlab and the optimizations are performed by
using the fminsearch. The results show that the maximum CL(1) likelihood estimation is
at least 5 up to 7 times faster than the CL(2) estimation and granularity approach when
T = 120, respectively. Furthermore, it is at least 6 and 18 times faster than the CL(2)
estimation and granularity approach when T = 240. Overall, the granularity procedure is
more intensive (and requires maximizations with respect to higher numbers of parameters)
than the CL(1) and the CL(2) methods as the number of time periods increase, while the
CL(1) is always the fastest in terms of computation.

6 Empirical Study

In this section, we present the empirical results. Subsection 6.1 introduces the data. In
Section 6.2, we estimate the model from the conditional composite log-likelihood at lag one
proposed in Section 3.2, given that CL(1) performs well in the finite sample experiments
and is computationally less intensive. We analyze the estimated parameters, transition
probabilities, probabilities of defaults, and the downgrade probabilities at different horizons.

6.1 Data Description

The observed transition probabilities are computed from the Compustat S&P rating database
over the period 1985Q4 to 2016Q4. In this section, we describe the data set and explain the
necessary transformation due to missing data on non-rated companies.

We use the domestic long-term issuer quarterly credit ratings classified in eight categories:
AAA, AA, A, BBB, BB, B, CCC/CC, and D, ranked from the lowest up to the highest risk,

18Intel Xeon Gold 6140, multi threaded CPU with 20 real cores, 192GB ECC RAM, and 1TB enterprise
grade SAS drive disk space with RAID-6, and dual power supply.
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as in Section 5: k = 1, . . . , 8, respectively. Each transition matrix summarizes all rating
movements across these categories over one quarter.

Table 7: Number of Issuers and Migration Matrix for 1987Q2 (in %)

Issuers k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

j = 1 36 94.44 2.78 0.00 2.78 0.00 0.00 0.00 0.00 0.00
j = 2 209 0.00 98.08 0.96 0.00 0.00 0.00 0.00 0.00 0.96
j = 3 355 0.00 0.56 94.37 1.41 0.28 0.56 0.00 0.00 2.82
j = 4 250 0.00 0.80 1.60 91.20 3.60 1.20 0.00 0.00 1.60
j = 5 214 0.00 0.00 0.00 2.34 92.06 0.93 0.00 0.46 4.21
j = 6 295 0.00 0.00 0.00 0.34 1.69 87.12 0.68 1.02 9.15
j = 7 48 0.00 0.00 0.00 0.00 2.08 0.00 85.42 2.08 10.42

Table 7 provides an example of the transition matrix for 1987Q2. The rows two to eighth
represent the rating j at the beginning of the quarter. The second column shows the number
of issuers with rating j = 1, . . . , 7, while columns 3 to 10 present the frequency of transiting
to ratings k = 1, . . . , 8 until the end of 1987Q2. The last column gives to the frequency of
firms rated at the beginning of 1987Q2 that are non-rated (k = 9) at the end of the quarter.
As explained by Feng, Gouriéroux, Jasiak (2008), non-rated firms arise when the relevant
debt is extinguished and there is a lack of balance sheet information to determine the firm
rating due to a merger or an acquisition.

We follow the approach of Feng, Gouriéroux, Jasiak (2008) to correct for non-rated firms.
More precisely, we use for our analysis the transition probability conditional on being rated
at the end of the quarter. We divide the frequency of migrating from any rating j = 1, . . . , 7
to k = 1, . . . , 8 by one minus the frequency of migrating from j = 1, . . . , 7 to the non-rated
state j = 9. The resulting non-rated adjusted transition matrix for Table 7 is presented in
Table 8.

Table 8: Non-Rated Adjusted Transition Matrix for 1987Q2 (in %)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

j = 1 94.44 2.78 0.00 2.78 0.00 0.00 0.00 0.00
j = 2 0.00 99.03 0.97 0.00 0.00 0.00 0.00 0.00
j = 3 0.00 0.58 97.10 1.45 0.29 0.58 0.00 0.00
j = 4 0.00 0.81 1.63 92.68 3.66 1.22 0.00 0.00
j = 5 0.00 0.00 0.00 2.44 96.10 0.98 0.00 0.48
j = 6 0.00 0.00 0.00 0.37 1.87 95.90 0.75 1.11
j = 7 0.00 0.00 0.00 0.00 2.33 0.00 95.35 2.32

The frequencies of firms remaining in the same ratings over 1987Q2 is close to 100%
because the changes of ratings do not occur very often. The next highest transition prob-
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abilities are on the two diagonals below and above the main diagonal, as firms generally
move away by one category from their initial rating if they are up-graded or down-graded by
the rating agencies. The last column shows the probability that a rated firm defaults. The
migration matrices in the sample have a similar pattern to the one documented in Table 8.

The S&P database provides the rating structure of issuers at each date (see the first
column of Table 8). This structure changes over time due to rating migration, and also
because of defaults of some issuers and the arrivals of new issuers. Therefore, there is
another type of rebalancing of the population of firms. We use the time averages of these
structures to define the weights in the estimation.

6.2 Empirical Results

We report in Table 9, the estimated parameters and their bootstrap confidence intervals19.
Table 10 contains the estimated transition matrix, and Table 11 presents some resulting
downgrade probabilities and probabilities of default.

Table 9: Estimated Parameters

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

cl+1 6.18 6.40 9.01 11.05 15.20 17.09
(4.05, 6.74) (4.37, 6.83) (5.90, 9.16) (7.86, 11.53) (12.89, 18.94) (14.44, 23.05)

δl -1.92 4.75 6.30 7.76 10.06 13.17 16.13
(-2.95, 0.70 ) (2.75, 5.87) (4.23, 6.78) (5.30, 7.83) ( 7.02, 0.11) (11.13, 14.97) (13.81, 21.03)

γl 0.71 0.04 0.59 0.52 1.05 0.76
(0.26, 1.12) (0.01, 0.11) (0.07, 0.65) (0.22, 0.93) (0.78, 2.52) (0.43, 1.83)

The estimated thresholds in Table 9 increase with the ratings, so that firms with higher
latent scores receive higher ratings. Furthermore, firms with higher ratings have higher
estimated intercepts and therefore increased scores. The largest estimated value of uncon-
ditional volatility is obtained for j = 6 and j = 7, which corresponds to firms facing major
uncertainties, currently vulnerable, or which have filed for bankruptcy protection.

In practice, the parameters of interest can be nonlinear functions of cj, δj and γj. For
instance, one might be interested in the quasi transition probabilities, the quasi downgrade
probabilities and the quasi probabilities of default. We used the estimates to compute the
migration probabilities and illustrate the prediction of downgrade probabilities and proba-
bilities of default as follows:

i) the downgrade probabilities at horizon 1 and 2 of a firm currently rated j: DP (1|j), DP (2|j).
19The firms are randomly drawn with replacements. Consequently, the firms’ histories are kept unchanged

once a firm is drawn. Therefore, we estimate parameters from the bootstrap data and use them to find the
bootstrap intervals of the estimated parameters based on B = 399 replications.
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ii) the term structure of the probability of default at different horizons h for a firm currently
rated j. The horizons are fixed to 1 quarter, 3 year, 6 years, 9 years, and denoted by
PD(1|j), PD(12|j), PD(24|j), PD(36|j).

Table 10: Estimated Quasi Migration Matrix (in %)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

j = 1 97.28 2.72 0.00 0.00 0.00 0.00 0.00 0.00
j = 2 0.00 97.81 1.20 0.99 0.00 0.00 0.00 0.00
j = 3 0.00 0.20 98.09 1.71 0.00 0.00 0.00 0.00
j = 4 0.00 0.39 0.72 97.13 1.76 0.00 0.00 0.00
j = 5 0.00 0.00 0.00 2.12 95.14 2.74 0.00 0.00
j = 6 0.00 0.00 0.00 0.00 2.21 95.12 2.66 0.01
j = 7 0.00 0.00 0.00 0.00 0.00 10.94 78.80 10.26

Table 10 shows the estimates of the expected migration probabilities from any state
j = 1, . . . , 7 to k = 1, . . . , 8, after plugging in the parameter estimates. The estimated quasi
migration matrix reproduced the aforementioned features of an observed transition matrix.
Table 11 presents the downgrade probabilities and the probabilities of default computed
from the estimated transition matrix. We observe that the downgrade probability and the
probability of default often increase as the horizon increases. At horizon 1, the downgrade
probability is 2.72% for a firm initially rated j = 1, while it increases to 10.26% for a firm
initially rated j = 7. At horizon 2, the estimated probability increases to 18.35% for j = 7
from 5.37 for j = 1. At horizon 1, the probabilities of default are zero for ratings j = 1, . . . , 5.
This is consistent with the fact that the probability that a firm with a better capacity to
repay its debt defaults during one quarter is negligible. The estimated probabilities increase
as the horizon increases.

Table 11: Estimated Downgrade Probabilities and Probabilities of Default (in %)

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

DP (1|j) 2.72 2.19 1.71 1.76 2.75 2.67 10.26
DP (2|j) 5.37 4.32 3.37 3.44 5.30 4.91 18.35
PD (1|j) 0.00 0.00 0.00 0.00 0.00 0.01 10.26
PD (12|j) 0.00 0.00 0.00 0.04 0.86 8.33 48.00
PD (24|j) 0.00 0.02 0.04 0.43 3.93 18.01 55.68
PD (36|j) 0.02 0.12 0.18 1.37 7.91 25.43 60.07
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7 Conclusion

The stochastic factor ordered Probit model has been introduced for dynamic analysis of
credit risk, as it is sufficiently flexible to account for the rating dynamics, the presence
of systemic risk and the stylized fact of rating momentum. This paper proposes three
maximum composite likelihood estimation methods of different complexity for this model:
the conditional composite log-likelihood function at lag 1, the conditional composite log-
likelihood at lag 2, and the conditional composite likelihood up to lag 2. The paper discusses
the identifiability of the model parameters and establishes the asymptotic properties of these
estimators when both the cross-sectional dimension n and the time dimension T tend to
infinity. In this asymptotic setup, the MCL methods are less efficient than the two-step
granularity-based approach existing in the literature. However, in practice n is large, but T is
much smaller. Then, the MCL methods turn out to be more advantageous, as the granularity
approach appears to be less robust because of the large number of nuisance parameters to
be estimated jointly. We illustrate the finite sample properties of the conditional composite
log-likelihood at lag 1 and at lag 2 by conducting Monte-Carlo experiments and compare
with the granularity approach. Our results indicate that the MCL methods are reliable at
T=60 and are computationally less demanding than the granularity-based estimator at finite
T . An empirical study illustrates the application of the proposed method to credit rating
data.

Appendix A: The Expected Transition Matrices

A.1. Expected Matrix P (Lemma 1)

The matrix P is computed from:

y∗i,t = βjft + δj + σjui,t, if yi,t−1 = j,

as if ui,t ∼ N(0, 1) and ft ∼ N(0, 1) were independent. Then, under this independence
condition, if yi,t−1 = j, y∗i,t|yi,t−1 = j ∼ N(δj, σ

2
j + β2

j ). It follows that:

P [yi,t = k|yi,t−1 = j] = P [ck < y∗i,t < ck+1|yi,t−1 = j],

and

pjk(θ) = Φ

 ck+1 − δj√
σ2
j + β2

j

− Φ

 ck − δj√
σ2
j + β2

j

 .
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A.2. Matrix P (2) (Lemma 2)

We have:

P (2) = E[P (ft; θ) P (ft−1; θ)] = E[P (ρft−1 +
√

1− ρ2 ηt; θ)] P (ft−1; θ)].

where the expectation is taken with respect to the joint marginal distribution of (ft, ft−1).
Since ft−1 and ηt are independent, ηt ∼ N(0, 1) and ft−1 ∼ N(0, 1), we get:

P (2) = Eft−1 Eηt

[
P (ρft−1 +

√
1− ρ2 ηt; θ) P (ft−1; θ)|ft−1

]
,

= Eft−1

[
Eηt

[
P (ρft−1 +

√
1− ρ2 ηt; θ)|ft−1

]
P (ft−1; θ)

]
,

= Eft−1

[
A B

]
,

where the components of matrix A are given by:

akl(ft−1; θ, ρ) = P
[
ck < y∗i,t < ck+1| yi,t−1 = l, ft−1

]
= P

[
ck < δl + βlρft−1 + βl

√
1− ρ2 ηt + σlui,t < ck+1|ft−1

]
,

= Φ

(
ck+1 − δl − βlρft−1√
σ2
l + β2

l (1− ρ2)

)
− Φ

(
ck − δl − βlρft−1√
σ2
l + β2

l (1− ρ2)

)
, k, l,= 1, ...K,

as if (ηt, ui,t) and (yi,t−1, ft−1) were independent. By (2.4) the elements of matrix B are:

pjl(ft−1; θ) = Φ

(
cl+1 − δj − βjft−1

σj

)
− Φ

(
cl − δj − βjft−1

σj

)
, j, l = 1, ..., K.

Therefore, by integrating out f = ft−1, we get:

p
(2)
jk (θ, ρ) =

∫ K∑
l=1

[ak,l(f ; θ, ρ) pj,l(f ; θ)]ϕ(f)df

=

∫ K∑
l=1

[
Φ

(
ck+1 − δl − βlρf√
σ2
l + β2

l (1− ρ2)

)
− Φ

(
ck − δl − βlρf√
σ2
l + β2

l (1− ρ2)

)]
×
[
Φ

(
cl+1 − δj − βjf

σj

)
− Φ

(
cl − δj − βjf

σj

)]
ϕ(f)df.
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Appendix B: Proof of Propositions 1 and 2

B.1. Proof of Proposition 1

From Lemma 1 and the definitions c1 = −∞, cK+1 = ∞, we know that the identifiable
functions of parameters are:

ck − δj√
σ2
j + β2

j

∀ k = 2, ..., K, j = 1, ..., K. (b.1)

Therefore parameter ρ is not identifiable. Moreover, parameters σ2
j cannot be distinguished

from β2
j . Let us denote their sum by γ2j , where:

γj =
√
σ2
j + β2

j .

There are K(K − 1) identifying functions (b.1), that we would like to use to identify the
(K − 1) values of ck, the K values of δj and the K values of γj, i.e. 3K − 1 unknowns. We
follow Gagliardini, Gouriéroux (2015) and add the identifying restrictions:

c2 = 0, γ1 = 1.

Next, we proceed as follows:

(a) From (b.1) written for k = 2, we identify
δj

γj
. Given that γ1 = 1, we get δ1 identified.

(b) For j = 1, we have γ1 = 1, hence we identify ck−δ1, given (b.1). Therefore, all thresholds
ck, k = 2, ..., K are identified.

(c) Then the identifying functions can also be written as:

ck − δj
γj

=
ck
γj

− δj
γj
, k = 2, . . . , K, j = 1, . . . , K.

Therefore, from the identification of the ratios δj/γj result in (a), we identify all ratios ck/γj.
Then from the identification of the ck’s (b), we identify γj, j = 1, ..., K. Next, the ck, γj are
identified, and from (c), we identify δj, j = 1, ..., K.
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B.2. Proof of Proposition 2

We have the following identifying functions of parameters:

(1)
ck − δj√

σ2
j + β2

j (1− ρ2)
, k = 2, . . . , K, j = 1, . . . , K

(2)
ϵβjρ√

σ2
j + β2

j (1− ρ2)
, j = 1, . . . , K

(3)
ck − δj
σj

, k = 2, . . . , K, j = 1, . . . , K

(4)
ϵβj
σj
, j = 1, . . . , K.

Let us define:

γj =
√
σ2
j + β2

j (1− ρ2),

and use the identifying restrictions:

γ1 = 1, c2 = 0.

Then we proceed as follows:

(a) For k = 2, given c2 = 0,

and identified function (1), we identify δj/γj.

(b) For k = 2, given c2 = 0,

and function (3), we identify δj/σj, j = 1, . . . , K.

(c) Given that γ1 = 1, it follows from (a) that parameter δ1 is identified.

(d) Then, it follows from (b) that parameter σ1 is identified.

(e) For j = 1 and identified function (1), we identify:

ck − δ1
γ1

= ck − δ1.

Hence, from (c), it follows that ck, k = 1, ..., K − 1 are identified.
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(f) From identified function (1), the quantities

ck
γj

− δj
γj
,

are identified since γ1 = 1.

Then, by (a), the ratios ck/γj are identified.

(g) From (f) and (e), parameters γj, j = 1, ..., K are identified.

(h) From (a) and (g), parameters δj, j = 1, ..., K are identified.

(i) From (b) and (h), parameters σj, j = 1, ..., K are identified.

(j) From equation (4) and result (i), parameters ϵβj, j = 1, ..., K are identified.

(k) From (2), we get the ratios ϵβjρ/γj and given (g) we identify ϵβjρ, j = 1, ..., K

(l) Finally, from (j) and (k), we identify parameter ρ.

Appendix C: Proof of Uniform a.s. Convergence

Let us introduce a more precise notation: p̂jk,t(n), where the argument n is introduced to
describe the dependence of the transition frequencies on the number of individuals n, and
consider the assumption A.4 i):

P [Maxm≥n|p̂jk,t(m)− pjk(ft, θ0)| > ϵ|ft] <
1

ϵ2n
gjk(ft, θ0), ∀ϵ > 0, ∀j, k, ft,

Then, it follows that:

P [Maxm≥n|p̂jk,t(m)− pjk(ft, θ0)| > ϵ|ft] <
1

ϵ2n

T∑
t=2

gjk(ft, θ0), ∀j, k, ft.

For n large, the upper bound: 1
ϵ2

T
n

1
T

∑T
t=2 gjk(ft, θ) is equivalent to 1

ϵ2
T
n
E0[gjk(ft, θ0)], by

the geometric ergodicity of factor (ft). Then by Assumption A4 ii), T → ∞, n → ∞ with
T/n→ 0, we infer:

lim
n→∞,T→∞

Supt≤TP [Maxm≥n|p̂jk,t(m)− gjk(ft, θ0)| > ϵ|ft] = 0,

and the required uniformity .

Therefore, after the normalization, the a.s. limit of the normalized composite log-likelihood
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is:

lim
n,T→∞

a.s.
1

T

K∑
k=1

K∑
j=1

T∑
t=2

[
πj p̂jk,t(n) log pjk(θ)

]

= lim
T→∞

a.s.
1

T

K∑
l=1

K∑
k=1

T∑
t=2

[
πj lim

n→∞
p̂jk,t(n) log pjk(θ)

]

= lim
T→∞

a.s.
1

T

K∑
l=1

K∑
k=1

T∑
t=2

[
πjpjk(ft, θ0) log pjk(θ)

]
(by the uniform a.s. convergence)

=
K∑
j=1

K∑
k=1

[
πj lim

T→∞
a.s.

[
1

T

T∑
t=2

pjk(ft, θ0) log pjk(θ)

]]

=
K∑
j=1

[
πj

[ K∑
k=1

pjk(θ0) log pjk(θ)

]]
(since ft is geometrically ergodic).

Therefore, Lcc(θ) converges a.s. uniformly to:

L∞
cc (c, δ, γ) =

K∑
j=1

[
πj

[ K∑
k=1

pjk(θ0) log pjk(θ)

]]
.
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