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Abstract

A considerable number of individuals infected by COVID-19 died in
self-isolation. This paper uses a graphical inference method to examine
if patients were endogenously assigned to self-isolation during the early
phase of COVID-19 epidemic in Ontario. The endogeneity of patient
assignment is evaluated from a dependence measure revealing relation-
ships between patients’ characteristics and their location at the time of
death. We test for absence of assignment endogeneity in daily samples
and study the dynamic of endogeneity. This methodology is applied to
patients’ characteristics, such as age, gender, location of the diagnos-
ing health unit, presence of symptoms and underlying health conditions.
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1 Introduction

In all countries infected by COVID-19, a considerable number of people died while self-

isolating at home. This paper investigates if patient assignments to self-isolation instead of

medical care might have contributed to the deadly outcome of the infection during the early

phase of the epidemic in Ontario.

In Ontario, 1434 deaths due to COVID-19 were reported between January 23 and May

05, 2020. Among these, 1116 deaths occurred after at least one day of (self)isolation and 318

in hospital. Among the individuals deceased in self-isolation, 262 were diagnosed after death

(post mortem) and 854 were diagnosed before they died. The total number of individuals

diagnosed prior to death and deceased either in isolation or in hospital, is 1172. These counts

are based on the records of the Public Health Ontario (PHO) database containing individual

records of 18722 patients diagnosed with COVID-9 over the period of the first 104 days

of the epidemic between January 23 and May 05, 2020. The database IPHIS-REPORT.csv

combines records from the iPHIS (integrated Public Health Information System) and CORES

(Toronto Public Health Coronavirus Rapid Entry System).

The deceased patients and/or their health care providers, at some point, made a choice

between being self-isolated at home or hospitalized. In the case of elderly patients, the

families might have been involved in making this decision. In particular, 262 deceased who

were not diagnosed prior to death, might have decided by themselves to stay home. Our

records do not contain information on whether they sought medical assistance. However,

the remaining deceased individuals came into contact with health care providers at least

once when tested positive for COVID-19. Therefore, their choice between self-isolation and

hospitalization was, if not determined, at least influenced by the health care providers. Due

to the presumed role of health care providers, the location of individuals prior to their death

will be referred to as the ”patient assignment”.

At the beginning of the epidemic, little was known of the effects of COVID-19, thus

explaining why many patients remained in self-isolation at home, or were sent back home

after seeing a doctor. Some of those patients with apparently mild symptoms experienced

sudden deterioration of health or even death over a short period of time. Another potential

explanation of why only 22% of the deceased died in hospital is the high cost of medical care

and/or a concern about an anticipated shortage of beds in the intensive care units (ICU)

during the upcoming peak [see e.g. Robert et al. (2011) for the impact of ICU admission

on mortality, Palmer et al. (2014) on the Health System Funding Reform and Appendix

4]. During the early phase of the epidemic and under the threat of shortages of ventilators,
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medical staff might have felt pressured to only hospitalize patients with severe symptoms.

The aim of our paper is to give ex-post insights on patient assignments to self-isolation

during the early phase of the epidemic in Ontario. We examine the endogeneity of assignments

by revealing relationships between the characteristics of deceased patients and the states

of self-isolation or hospitalization. We describe a dependence measure that allows us to

quantify the endogeneity, and study its evolution over time. This methodology is applied

to qualitative or quantitative characteristics of patients, such as age, gender, location of the

diagnosing health unit, presence of symptoms and underlying health conditions. We test the

null hypothesis of absence of endogeneity, which is equivalent to testing the independence

between assignment to self-isolation and the deceased patients’ characteristics.

The endogeneity analysis applied to daily data on infections in Ontario over the early

phase of COVID-19 provides little evidence for endogeneity of daily patient assignments to

isolation. This suggests that during the early phase of the epidemic, the daily decisions on

remaining in self-isolation were mostly unrelated to patients’ characteristics. Nevertheless,

we find evidence of endogeneity of daily assignments to isolation for patients over 80 years

old and for asymptomatic patients. Over the entire observational period, the absence of

endogeneity is rejected for age over 50, absence of symptoms, and the Ottawa location of

diagnosing health unit.

The patient assignment also appears unrelated to the increasing demand for ICU beds.

We examine the pressure on ICU beds and show that the point-in-time (PIT) difference of

counts of available and occupied beds underestimates the potentially needed number of beds.

We adjust this PIT measure by adding patients who remained in self-isolation until their

death and account for the exponential increase in the number of infections during the early

phase of the epidemic.

The paper is organized as follows. In Section 2, we quantify the endogeneity of patient

assignments by introducing a dependence measure and test for the absence of endogeneity.

In Section 3, this approach is applied to the data on individuals with various characteristics.

In Section 4, we examine the pressure on the ICU system. Section 5 concludes. Appendix

1 describes the measure of dependence and the test of independence based on a contingency

table. Appendix 2 gives alternative interpretations of the dependence measure. Additional

summary statistics are provided in Appendix 3. Appendix 4 relates our outcomes to the

structural model of patient care in health economics.
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2 The endogeneity of patient assignment

The assignment Y to self-isolation or medical care is a binary variable, which takes values 1

and 0 for isolation and hospitalization, respectively. The state of death is the conditioning

variable, denoted by D, which takes values 1 and 0 for death and life, respectively. The

qualitative or quantitative explanatory variables Z are the characteristics of patients, such

as age, gender, and location of the diagnosing health unit. If the assignment Y to self-

isolation is random, for example, due to a diagnosis error caused by the lack of experience

with COVID-19, then variables Y and Z are independent given D = 1. Otherwise, the

assignment exhibits endogeneity, which is evaluated from the dependence measure discussed

below.

2.1 The dependence measure

Let us consider the variable Y indicating where the patient was assigned at the time of death:

Y =

{
1, if he/she was hospitalized,
0, if he/she was isolated.

Let us introduce a binary characteristic Z of a patient. This can be the gender (male or

female), an indicator of age (age less than 70 years or more than 70 years), or the location

(Toronto area or the rest of Ontario). Then, from the observations on Yi, Zi conditional on

Di = 1, i = 1, ...., n at time t (day or week), we compute a sample-based 2 × 2 contingency

table:

P̂t =

 p̂00t p̂10t

p̂01t p̂11t

 , (2.1)

where p̂00t is the proportion of old individuals who died while self-isolated, p̂10t is the propor-

tion of young individuals who died while self-isolated, p̂01t is the proportion of old individuals

who died hospitalized, and p̂11t is the proportion of young individuals who died hospitalized,

in the population of deceased at time t. Thus, P̂t provides an approximation of the joint

distribution of (Y, Z) given death D = 1 at time t.

If a patient assignment is random, the variables Y and Z are independent1 given death

1There is an alternative interpretation of the conditional independence condition. Let us consider a
physician who can accurately predict the future severity of the disease denoted by S. Then we have a causal
chain : Z → S → Y , i.e., the individual characteristics have an impact on S, and the assignment decision is
based on S. Thus the conditional distribution of Y given S and Z is equal to the conditional distribution of
Y given S only, which means that variables Y and Z are independent given S : Y ⊥ Z|S. This is the case
when S = D that is discussed in our paper.
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D = 1. The conditional independence is denoted by Y ⊥ Z|D. Otherwise, there is a

conditional dependence that may reveal that patients have been endogeneously assigned to

self-isolation. The dependence can change over time, depending on the pressure on a medical

care unit.

An empirical measure of (conditional) dependence at time t can be defined from a log-

linear probability model applied to the 2×2 contingency tables (see Appendix 1). It is given

by:

γ̂t = log [p̂11tp̂00t/(p̂01tp̂10t)] , (2.2)

as an approximation of its theoretical counterpart :

γt = log [p11tp00t/(p01tp10t)] . (2.3)

This measure separates the concordant observations (1,1), (0,0) and the discordant ob-

servations (0,1), (1,0).

The measure of conditional dependence γt (also called the measure of causation2) is equal

to the regression coefficient of variable Z in a dichotomous logit model for Y (and to the

regression coefficient of variable Y in a logit model for Z, by symmetry) (see, Appendix

A2.1).

The variables Y, Z are conditionally independent at time t, if and only if γt = 0. They

are conditionally positively (or negatively) dependent according to the sign of γt.
3

We trace out the daily evolution of γ̂t and the associated confidence intervals [see, Ap-

pendix 1 for the derivation of an asymptotically valid confidence interval at level 95%] to

evaluate the endogeneity of patient assignments over time. This asymptotically valid confi-

dence interval used in this paper, has a simple analytical expression and is valid under the

independence hypothesis and its alternative. We test graphically the null hypothesis

H0t : {γt = 0} against H1t : {γt 6= 0} (2.4)

by verifying if the asymptotically valid confidence interval at level 95% contains 0, which is a

test for absence of endogeneity at date t.4 Thus we do not average the conditional dependence

measure with respect to the threshold as proposed in Chatterjee (2020).

2See e.g. Pearl (2009) for a survey on causal inference and the distinction between measure of association
(marginal dependence) and measure of causation (conditional dependence).

3For a binary variable Z, the selected indicator of outcome has an effect on γ. If Z for outcomes 1, 0 is
changed to 1-Z, for outcomes 0, 1 indicator, then the sign of gamma changes to −γ.

4We check if the condition for asymptotic validity of the test given in A.1.2 is satisfied. Alternatively, the
quality of the asymptotic approximation can be assessed by applying a permutation test with simulations
performed under the null.
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2.2 Age Effect

Let us first consider an age indicator Za, with thresholds of age equal to a = 50, 60, 70, 80.

Variable Za = 1, if the age is greater than a, and 0, otherwise. Figure 1 presents the daily

series γ̂t,a for patients above each threshold of age along with the evolution of their confidence

intervals.

Table 1 shows the counts of assignments among the 1434 deceased by May 04, 1116 of

whom died in self-isolation and 318 in hospitals.

Table 1: Joint Counts: Isolation, Age, Given Death.

assignment > 50 > 60 > 70 > 80
isolation and > age limit 1080 1043 961 781
isolation and < age limit 36 73 155 335
hospital and > age limit 256 203 138 74
hospital and < age limit 62 115 180 244

Figures 1 and 2 display the daily dependence measures along with their confidence in-

tervals over the period of March 22 to May 05, 2020. The coefficients are reported on days

with a sufficient number of observations, i.e. a sufficiently high daily count of deaths. At

the beginning of the epidemic, there are many missing values. For this reason, the figures

illustrate the period starting from March 22, 2020.

We observe positive values of conditional dependence.5 From the interpretation of the

sign of dependence measure γ in terms of conditional probabilities (see, Appendix A2.2), it

follows that the probability to die in isolation is higher for an older individual than for a

younger individual. This effect is observed for all age thresholds with almost equal values of

γ̂t on average. It is important to analyze the lower bounds of the dated confidence intervals,

which are rather wide due to occasionally limited counts of daily deaths. For a = 50, the

dated confidence interval contains zero, and the null hypothesis of no endogeneity on day t

is not rejected. However, when the threshold of age increases, for example to a = 80, at the

end of the observational period (end of April until May 05, 2020), the null hypothesis of no

endogeneity at day t cannot be rejected.

5The condition of asymptotic validity of the Gaussian approximation [see, Appendix A1.2] is satisfied
except on days before April 11, on April 26, 29 and May 01.
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Figure 1: Dated Conditional Dependence Measure, Z=Age. The black dots indicate the
values of the dependence measure given death γ̂t when the thresholds of age equal to 50 and
60. The diamonds indicate the lower and upper bounds of the confidence intervals. The
dots on the line of zero without confidence intervals indicate the missing values of γ̂t due to
insufficient numbers of observations and/or zero frequencies.
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Figure 2: Dated Conditional Dependence Measure, Z=Age, Cont. The black dots indicate
the values of the dependence measure given death γ̂t when the thresholds of age equal to 70
and 80. The diamonds indicate the lower and upper bounds of the confidence intervals. The
dots on the line of zero without confidence intervals indicate the missing values of γ̂t due to
insufficient numbers of observations and/or zero frequencies.
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The above procedure consists in testing the dated null hypothesis in formula (2.4) date by

date. It is a graphical inference method for detecting the occurrence of endogeneity at a given

date and selected level 5%, by examining if the lower bound value of the dated confidence

interval is above or below 0.6 The proposed test, as many other routinely performed tests of

significance, favours the null hypothesis, i.e. the null hypothesis of no endogeneity at date t

and can only detect the presence of sufficiently strong endogeneity at date t.

The slight variation of daily dependence measures over time could be related to the pres-

sure on the ICU [see, Section 4]. As we observe no visible trend in γ̂t for all age thresholds

a, even over the period of increased pressure between April 4 and April 10, γ̂t appear inde-

pendent of the pressure on ICU. This suggests that the standards of medical treatment in

the ICU have not changed during the epidemic.

So far, we have considered patients who were diagnosed either before, or after their death.

As mentioned in the Introduction, 262 Ontarians died undiagnosed in isolation. The age

characteristics of these 262 patients deceased and diagnosed sick of COVID-19 after death

are as follows:

quantile 0% 25% 50% 75% 100%
age 24 76 86 92 102

The average age of these patients is 82 years and standard deviation is 14.14. Likely, the

elderly deceased were residents of the long term facilities who died of COVID-19 without being

diagnosed. They are probably the early victims of the COVID-19 crisis in the retirement

homes in Ontario.

Let us now consider only the 1172 patients who were diagnosed before their death (see

Table 2). Among these 1172 deceased, 854 individuals died in isolation.

Table 2: Joint Counts of Isolation, Age, Given Death and Diagnosed Before Death

assignment > 50 > 60 > 70 > 80
isolation and > age limit 830 804 741 611
isolation and < age limit 24 50 113 243
hospital and > age limit 256 203 138 74
hospital and < age limit 62 115 180 244

Figures 12 and 13 displaying the dated dependence measures for the diagnosed individuals

are given in Appendix 3. We observe that some dated dependence measures are shifted

upwards, but the general conclusions remain unchanged.7

6The test of the joint hypothesis H̄0,T : {γt = 0, ∀t = 1, ..., T} =
∏T

t=1H0,t against H̄1,T : {∃t : γt 6= 0}
could be derived from the dated tests at 5%. It will have a different significance level, which can be bounded
by the Bonferroni inequality [see Barras et.al. (2010) for methods for avoiding ”false discoveries” in a similar,
but not equivalent topic]. However, it has no interest in our auditing framework.

7The condition of asymptotic validity of the Gaussian approximation [see, Appendix A1.2] is satisfied
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2.3 Effect of other individual characteristics and conditioning

The tests of no endogeneity at date t can be applied to other patient characteristics Z. Below,

we examine the endogeneity of assignment given the gender, location of diagnosing health

unit, presence of symptoms and underlying health conditions.

For each variable Z, we first provide the joint distribution of Y, Z conditional on D = 1

over the whole period. Next, we show the plots of the daily measures of dependence. We

also consider the effect of changing the conditioning set, when the sub-population of interest

includes only the deceased who were diagnosed before death.

2.3.1 Gender Effect

Table 3 below shows the joint counts of deceased in either isolation or hospitalization for

variable Z of gender.

Table 3: Joint Counts: Gender, Isolation, Given Death.

assignment count
isolation and men 483
isolation and women 633
hospital and men 155
hospital and woman 163

Figure 3 below illustrates the conditional dependence between gender and isolation.

We observe that the dated dependence measures are close to zero.8 Therefore, we can

conclude about the absence of endogeneity of patient assignments with respect to gender at

the considered dates.

Let us now examine the sample without the 262 patients diagnosed after death presented

in Table 4.

Table 4: Joints Counts of Gender, Isolation, Given Death and Diagnosed Before Death.

assignment count
isolation and men 366
isolation and women 488
hospital and men 155
hospital and woman 163

As shown in Figure 4, the conclusion remains unchanged if the individuals diagnosed post

mortem are removed from the sample.9

except for days before April 15, on April 17, 18, 23, 26, and between April 29-May 01.
8The condition of asymptotic validity of the Gaussian approximation [see, Appendix A1.2] is satisfied

except for days before April 11, on April 26, 29 and May 01.
9The condition of asymptotic validity of the Gaussian approximation [see, Appendix A1.2] is satisfied

except for days before April 15, on April 17, 18, 23, 26, and between April 29-May 01.
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Figure 3: Dated Conditional Dependence Measure, Z=Gender. The black dots indicate
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2.3.2 Area of diagnosis effect

Let us now examine the variable Z of Diagnosis Health Unit Area and the endogeneity tests

applied to the regions of Toronto and Ottawa.

More precisely, we consider three binary variables:

Z1 = 1, if the individual is diagnosed in Toronto region, 0, otherwise,

Z2 = 1, if the individual is diagnosed in Ottawa region, 0, otherwise,

Z = Z1 + Z2 = 1, if the individual is diagnosed either in Toronto, or in Ottawa region.

Table 5: Joint Counts of Location, Isolation, Given Death

assignment count count count
isolation out of Toronto and Ottawa 682 in Toronto 295 in Ottawa 139
isolation in Toronto or Ottawa 434 out of Toronto 821 out of Ottawa 977
hospital out of Toronto and Ottawa 160 in Toronto 147 in Ottawa 11
hospital in Toronto or Ottawa 158 out of Toronto 171 out of Ottawa 307

The counts in Table 5 are crude summaries of the propagation of disease in these two
areas. We observe that both the magnitude and patterns are significantly different. From the
Public Health Ontario (2020a) report, it follows that the total number of COVID-19 cases
before July 4 was 13,372 in Toronto as compared to 2,109 in Ottawa, with populations of
3,120,358 and of 1,054,656, respectively. The peaks of daily number of deaths, were different
too: Toronto had the maximum of 43 deaths on April 19 as compared to 12 deaths on May,
1 in Ottawa.10

The plots of dated dependence measures for deceased patients who were diagnosed in the
Diagnosis Health Unit Area 3895 of Toronto and the Diagnosis Health Unit Area 2251 of
Ottawa are given in Figures 5 and 6 below.11

The daily dependence measures for deceased patients who were diagnosed in Ottawa [resp.
in either Diagnosis Health Unit Area 3895 of Toronto, or 2251 of Ottawa] are given in Figure
7 below (resp. Figure 14, Appendix 3).

Figures 5 and 6 reveal daily negative dependence for the Toronto location and no signifi-
cant dated dependence for the Ottawa location. The observed negative dependence implies
that, all things equal otherwise, the severe cases have a larger probability to be hospitalized
in Toronto than outside Toronto. The dated dependence measures are not significant for
the Ottawa region. This is largely a consequence of rather low daily death counts. Figure
7 reveals the aggregation issue when both regions are put together, which can be explained
from the interpretation of γ in a dichotomous logit model (see, Appendix 2). The dependence
measure in Figures 5 and 6, γ1t, γ2t, say, correspond to dated logit models with regression
terms γ1Z1, and γ2Z2, respectively. In Figure 7, the γ coefficients correspond to the regression
term γZ = γZ1 + γZ2, assuming implicitly that γ1 = γ2 = γ.

10The other areas with high maximum daily counts of deaths are in general close to Toronto and their
peak times are similar. These are: Peel area, maximum count 13 on April 30, for a population of 1,605,952,
Durham area, maximum count 9 on April 20, for a population of 712,402, York area, maximum count 7 on
April 27 for a population of 1, 225,797. Waterloo area had also a high maximum daily count of death of 9
on April 23 for a population of 584,361 [see the interactive map on Public Health Ontario (2020b) ].

11The condition of asymptotic validity of the Gaussian approximation is satisfied except on days before
April 11, on April 26, 29 and May 01.
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displays the dependence measure given death for deceased patients diagnosed in Toronto.
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Figure 7: Dated Conditional Dependence Measure, Z=Diagnosis Health Unit Area Toronto
and Ottawa. The figures show the daily dependence measure for deceased patients diagnosed
in Toronto and Ottawa. The black dots indicate the values of γ̂t, the diamonds indicate the
lower and upper bounds of the confidence intervals. The dots without confidence intervals on
the line of zero indicate the missing values of γ̂t due to insufficient numbers of observations
and/or zero frequencies.

Let us verify if the conditional dependence outside of Toronto and Ottawa remains sig-
nificant in the sample without the 262 deceased patients who were diagnosed post mortem.
Table 6 below presents the relevant counts:

Table 6: Joint counts of Location, Isolation, Given Death and Diagnosed Before Death.

assignment count
isolation, diagnosed out of Toronto and Ottawa 535
isolation, diagnosed in Toronto or Ottawa 319
hospital, diagnosed out of Toronto and Ottawa 160
hospital, diagnosed in Toronto or Ottawa 158

The dated dependence measures are displayed in Figure 14, Appendix 3. We observe that
more γ̂t are located above the line of 0, although the confidence interval still contains 0 on
all days.

2.3.3 Symptoms Effect

Let us now examine the conditional dependence given the absence of symptoms such as
cough, fatigue, fever, headache, shortness of breath, sore throat or other. After removing the
missing values, we get a sample of 817 individuals out of whom 470 died in isolation and 347
in hospital. Table 7 below presents the relevant counts:
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Table 7: Joint Counts: Symptom, Isolation, Given Death.

assignment count
isolation, no symptoms 53
isolation symptoms 417
hospital no symptoms 13
hospital symptoms 334

The dated dependence measures are calculated over 10 day intervals starting from March
22 to ensure the validity of results, displayed in Figure 8.
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Figure 8: Dated Conditional Dependence Measure, Z=Asymptomatic. The black dots in-
dicate the values of γ̂t in absence of symptoms and conditionally on death. The diamonds
indicate the lower and upper bounds of the confidence intervals. The dots without confidence
intervals on the line of zero indicate the missing values of γ̂t due to insufficient numbers of
observations and/or zero frequencies. Intervals of 10 days are used to have a sufficient number
of observations.

We find evidence in favour of endogenous assignment to isolation for the asymptomatic
individuals, starting from mid-April.

2.3.4 Effect of underlying health conditions

A similar analysis can be performed with respect to the presence of at least one underlying
health condition, such as anemia or hemoglobinopathy, asthma, cancer, cardiovascular con-
dition, UMC, chronic liver disease, COPD, diabetes, immune system disorder, neurological
disorder, obesity, postpartum, pregnancy, renal conditions, tuberculosis and other illness.
There are 538 deceased individuals to be examined after eliminating the missing values, 277
of whom died isolated and 261 hospitalized (see Table 8).
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Table 8: Joint Counts: Health Condition, Isolation, Given Death.

assignment count
isolation, underlying 14
isolation, no underlying 263
hospital, underlying 26
hospital, no underlying 235

The dated dependence measures calculated over 10 day intervals to ensure the validity of
results, are shown in Figure 9.
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Figure 9: Dated Conditional Dependence Measure, Z=Underlying Health Conditions. The
black dots indicate the values of γ̂t in presence of underlying health conditions and given
death. The diamonds indicate the lower and upper bounds of the confidence intervals. The
dots without confidence intervals on the line of zero indicate the missing values of γ̂t due to
insufficient numbers of observations and/or zero frequencies. Intervals of 10 days are used to
have a sufficient number of observations.

We find evidence suggesting that in early April (that is the period of pressure - see Section
4 below) patients with underlying health conditions were endogeneously not assigned to
isolation.

2.3.5 Ranking of assignment variables

So far, the test was applied to separate variables in order to detect any occurrence of en-
dogenous treatment at date t and to indicate the effects of patient characteristics. A similar
approach can be applied to the entire period in order to rank the variables with respect to
their explanatory power for patient assignments. We consider a time independent dependence
measure γ and test:

H̄0 : {γ1 = · · · = γT = γ = 0} against H̄T : {γ1 = · · · = γT = γ 6= 0}
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This global test differs from the test of H̄0,T : {γ1 = · · · = γT = 0} against H̄1T = { at least
one γt 6= 0}. In the latter approach, the alternative hypothesis does not assume ex ante the
equality of the γt measures.

The sample dependence measure computed over the whole period T under the assumption
of γt = γ constant over time is denoted by γ̂(T ) and reported in Table 9 summarizing the
effects of various characteristics Z. These values of γ̂(T ) are all statistically significant at
5%, except for the last variable. The statistical significance is related to the larger number of
observations from which these dependence measures are computed, as compared to the daily
dependence measures.

Table 9: Classification of Variables by |γ̂(T )| over the Whole Period.

Z γ̂(T ) std error
Age > 60 2.209 0.186
Age > 70 2.146 0.151
Age > 50 2.125 0.250
Age > 80 2.115 0.152
Ottawa 1.369 0.319
Symptoms 1.183 0.318
Toronto -0.873 0.131
Health condition - 0.732 0.343
Ottawa-Toronto 0.439 0.132
Gender -0.221 0.127

The negative sign of the global dependence measure suggests that patients who were either
diagnosed in Toronto or had some underlying health conditions, were endogenously assigned
to hospitalization rather than to isolation.

The above ordering by conditional dependence is based on the analysis with a single
explanatory variable. In the future, it would be insightful to examine the dependence with
several characteristics considered jointly and include the cross-effects of gender and age, for
example. This would lead to a new class of cross-variable selection algorithm based on our
measure of conditional dependence [see Azadkia, Chatterjee (2020), Section 5 for a similar
approach with quantitative regressors and the interpretation in terms of logit regressions
in Appendix 2]. At the beginning of the outbreak, due to the limited number of available
data (i.e. the limited number of individuals deceased in Ontario) and the missing individual
characteristics in the dataset, the validity of a multivariate analysis with crossed Z variables
cannot be ensured.12

3 Measuring the pressure on ICU beds

Let us now examine ex-post how the numbers of occupied ICU beds would have changed if the
patients deceased in isolation were hospitalized and treated for COVID-19. A simple approach
to measuring the pressure due to COVID-19 on the health system consists in comparing the

12This also explains why machine learning techniques are inapplicable in this context.
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number of occupied ICU beds (including beds with ventilators and/or intubation) with the
total number of available ICU beds. We adjust this simple measure as follows:

i) we add patients deceased in isolation who might not have been correctly diagnosed and
hospitalized early enough;

ii) we account for the exponential increase of infections during the epidemic. This effect
is amplified by the long duration (about 14-20 days) of treatment for COVID-19 in the ICU.

The measure of pressure that accounts for the two aspects given above is an ex-post
measure of pressure rather than a projection of the demand for ICU beds [see e.g. Gibney
(2020), Shoukat et al. (2020)].

i) Adjusting for deceased in self-isolation

For each individual deceased from COVID-19 in self-isolation, the time that patient would
have stayed in ICU if he/she were hospitalized, is set equal to 14 days 13. Then, by summing
up those individuals, we find the count of ICU beds that would have been potentially occupied
in the past. These ex-post daily counts are plotted in Figure 10 over the period from January
23 to May 01, 2020.

The dashed curve represents the counts of occupied beds and the dotted curve shows the
counts of beds potentially occupied if individuals who died in isolation were hospitalized.
The solid line represent the sum of both curves.

ii) Adjusting for the dynamics

To adjust for the propagation of the disease, we first consider the daily increase of the count
of occupied beds (see Figure 10). This increase is approximately x% with x = 0.2 over the
period. We predict the potential total demand (PTD) at horizon of 20 days (3 weeks) by
computing the quantity :

PTD at 20 days
=[Count of occupied beds+ Count of potentially occupied beds] x [1 + 0.2%]20.

The series of PTD at 20 days is plotted in Figure 11. By comparing it with the count of
occupied ICU beds (dashed line), we get insights on the magnitude of underestimation under
the simple approach.

The above measure of PTD still underestimates the true PTD, as it does not account for
the infected and undetected individuals [see Gourieroux, Jasiak (2020)] and the fact that an
increase of detection effort, i.e. the increase of number of tests performed, may also reveal
an additional demand for medical care and beds.

13This scenario does not account for the uncertainty in time spent in the ICU. Under such uncertainty,
random rationing of beds could occur.
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Figure 10: Count of Occupied and Potentially Occupied Beds
dashed line: beds occupied, dotted line: beds potentially occupied, solid line: sum of curves

The daily PTD series have to be compared with the total number of available ICU beds to
see if there was a shortage of beds on some days. Indeed “critical care triage to allow for the
rationing of scarce ICU resources might be needed” [Shoukat et al. (2020)]. The numbers of
critical care beds equipped with ventilators and available for COVID-19 patients was about
2,811 by April 30 [Office of the Premier (2020)]. However, there were only 415 of them on
April 4. Next, their number was increased to “reach the level of 1300 before the peak” [CBS
News (2020)]. Thus, the potential total supply of ICU beds exceeded the potential demand
in Ontario, although the low initial supply of beds created pressure between April 4 and April
10. Under the scenario considered above and based on the data available ex-post, it seems
that there were sufficiently many beds available to treat the patients who died in self-isolation
during the first wave of the pandemic. However, during that early phase, fewer COVID-19
tests were performed daily, and contact tracing was more limited than later on in Summer
2020. Moreover, some data used for calibration were based on public announcements and
could contain error. No data on total daily death counts for inference on undetected infection
rates were available either [see Gourieroux, Jasiak (2020)].
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4 Concluding Remarks

The dated measure of conditional dependence allows us to test if patients’ characteristics
played a role in assigning them to isolation at home or hospitalization at the time of death.

The endogeneity analysis applied to daily individual data on infections in Ontario over
the early phase of COVID-19, provides little evidence for endogeneity of daily patient assign-
ments to isolation and suggests that during the early phase of the epidemic, the decisions
of remaining in self-isolation were unrelated to patients’ characteristics. Nevertheless, after
mid-April, we find daily evidence of assignment endogeneity for patients over 80 years old
and asymptomatic patients. Over the entire observational period, the absence of assignment
endogeneity is rejected for age over 50, the location of diagnosing health unit and the ab-
sence of symptoms. There is no evidence of assignment endogeneity with respect to gender.
Moreover, patients who were diagnosed in Toronto were more likely to be hospitalized than
those who were diagnosed in Ottawa.

The approach developed in this paper can be applied to test at date t for endogeneity of
other decisions concerning the individual medical histories.

i) The selection of individuals to be tested for COVID-19 needs to be exogenous. Several
countries have decided to test mainly symptomatic individuals and/or those in contact with
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symptomatic persons (contact tracing), which is endogenous, while Russia, for example,
tested daily random samples of population to determine the rate of asymptomatics in the
population.

ii) The average time spent in the ICU seems to decrease on average in the world. The dated
dependence measure can be used to test if this is due to enhanced knowledge of COVID-19
and improved treatment (exogenous effect) rather than to endogeneous decision of admitting
patients with better prospects of recovery.

iii) By changing the conditioning set, the approach may also be used to detect at which
stage the assignment decision is taken, for example, by conditioning on the population of
deceased who visited the ER or a walk-in-clinic at the beginning of their infection.

The proposed approach can also be considered as the first-step to deriving patient assign-
ment scores based on the estimation of structural logit models. The second step is beyond
the scope of our paper [see, Appendix 4].

The test of endogeneity is important as a doctor may be held liable for causing the
patient’s loss of a chance to be cured if he/she fails to diagnose the future evolution of
the disease [see Government of Canada (2006), subsection ”Medical Assistance in Dying-
Reporting of Deaths”].

The graphical inference method introduced in this paper can also be used for auditing
not only the medical practice. The detection of abnormal endogeneity can be relevant, for
example, to detect benefit fraud, the use of insider information by investors, or to assess
credit granting decisions.
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Appendix 1

Measure of Dependence and Independence Test for

2× 2 Contingency Tables.

This appendix describes the test of independence between dichotomous variables, which is
an alternative to the chi-square test of independence used, for example, in controlled medical
experiments [see Mantel, Haenzel (1985) for early reference]. The independence test is used
in this paper to test for conditional independence date by date. For ease of exposition, the
time index is omitted in this Appendix. From its logit model interpretation, it follows that
the approach can be extended to include more variables (regressors). Let us consider a (2×2)
contingency table for binary variables Y and Z:

P =

 p00 p01

p10 p11

 ,

which is a 2 × 2 matrix with positive elements that sum up to one. Its sample, i.e. its
frequency-based counterpart:

P̂ =

 p̂00 p̂01

p̂10 p̂11

 ,

is computed from n independent observations on binary variables Y and Z. The vector of
probabilities is denoted by p and given by:

p ≡ (p00, p10, p01, p11)
′.

Its frequency-based counterpart is denoted by p̂ .

A1.1 Log-linear probability model of pk,l
A log-linear probability model of pk,l, k, l = 0, 1 is obtained from an additive representa-

tion of the log-probability in terms of the mean, marginal and cross effects as:

log pkl = µ+ αk + βl + γkl,

subject to the constraints :

α1 + α0 = 0, β1 + β0 = 0, γ1l + γ0l = 0, l = 0, 1, γk1 + γk0 = 0, k = 0, 1,

and the unit mass restriction [see Nerlove, Press (1973), (1986)].

It follows from simple computation that the expression of γ = γ11 is:

γ = log [p11 p00/(p01 p10)] . (a.1)

Parameter γ is a measure of dependence between binary variables Y and Z. It can take any
value in (−∞,+∞). In particular, the measure of dependence is equal to zero, i.e. γ = 0, if
and only if :
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p11 p00 = p01 p10

⇐⇒ det

 p00 p01

p10 p11

 = 0

⇐⇒ the columns of P are linearly dependent

⇐⇒ pkl = pk.p.l ∀k, l, where pk. = pk1 + pk0, p.l = p1l + p0l,

which is the condition of independence for variables Y and Z. Therefore, testing for γ = 0 is
equivalent to testing for independence of Y and Z (see, Section A.3 below).
The measure of dependence γ is positive (resp. negative) if and only if the underlying binary
variables Y, Z are positively (resp. negatively) correlated. Indeed, we have :

cov (Y, Z) = E(Y Z)− EY EZ

= p11 − p1.p.1, since Y, Z and YZ are Bernoulli variables,

= p11 − (p11 + p10)(p11 + p01)

= p11(1− p10 − p01 − p11)− p10 p01

= p11 p00 − p10 p01.

Therefore, cov(Y, Z) > 0, iff γ > 0.

A1.2 Asymptotic distribution of γ̂

Let γ̂ = log[p̂11 p̂00/(p̂01 p̂10)] denote the sample counterpart of γ. For large n, the
asymptotic distribution of the vector of probabilities p̂ is :

√
n(p̂− p) ∼ N(0, diag (p)− pp′), (a.2)

where diag p is the diagonal matrix with the components of p as diagonal elements.
The asymptotic distribution of γ̂ is derived from the above formula by the δ-method. We
get :

√
n(γ̂ − γ)∼

[
1

p00
,− 1

p01
,− 1

p10
,

1

p11

]√
n(p̂− p).

It follows that the asymptotic distribution of γ̂ is:

√
n(γ̂ − γ) ∼ N

[
0,

1

p00
+

1

p01
+

1

p10
+

1

p11

]
. (a.3)

An asymptotically valid confidence interval for γ at level 95 % is:
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(
γ̂ ± 1.96√

n

√
1

p̂00
+

1

p̂01
+

1

p̂10
+

1

p̂11

)
. (a.4)

The above asymptotic confidence interval is valid under the conditions required for the va-
lidity of the Gaussian approximation of a multinomial distribution. These are: n large and
np̂kl larger than 10, say, for any k, l. Otherwise, Poisson approximations have to be used.

A1.3 Test of the independence hypothesis
If the validity condition for the asymptotic Gaussian approximation is satisfied, the null

hypothesis of independence of binary variables Y and Z can be tested. Testing the null
hypothesis of independence of Y and Z is equivalent to testing H0 : γ = 0 against H1 : γ 6= 0.
The asymptotically valid test of H0 at level 5% is as follows. We reject H0 if

| γ̂

(1/
√
n)(

√
1

p̂00
+

1

p̂01
+

1

p̂10
+

1

p̂11
)

| > 1.96

and do not reject, otherwise. Equivalently, H0 is not rejected if the asymptotically valid
confidence interval given above contains zero, and it is rejected, otherwise.

Appendix 2

Conditional Interpretation of Dependence Measure and its Sign

Appendix 1 presented interpretations of γ from the joint distribution of Y and Z. This
appendix provides alternative interpretations in terms of the conditional distribution of Y
given Z (and Z given Y ).

A2.1 The Dichotomous Logit Model
Let us consider a dichotomous logit model for variable Y with binary variable Z as the

explanatory variable. This model is defined by:

P [Y = 1|Z] ≡ [1 + exp(α + γZ)]−1.

Therefore we have:

log
P [Y = 1|Z]

P [Y = 0|Z]
= α + γZ.

It follows that:

log
P [Y = 1|Z = 1]

P [Y = 0|Z = 1]
= log

P [Y = 1, Z = 1]

P [Y = 0, Z = 1]
= α + γ,

log
P [Y = 1|Z = 0]

P [Y = 0|Z = 0]
= log

P [Y = 1, Z = 0]

P [Y = 0, Z = 0]
= α.

Then, by taking the difference, we get:
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γ = log
P [Y = 1, Z = 1]

P [Y = 0, Z = 1]
− logP [Y = 1, Z = 0]

P [Y = 0, Z = 0]

= log
p11p00
p10p01

.

This provides the interpretation of dependence measure γ as a regression coefficient in a logit
model for Y with a binary explanatory variable Z.

A2.2 Conditional Probabilities

The sign of dependence measure γ is easy to interpret in terms of conditional probabilities.
Let logit x = log x

1−x denote the logit transformation. We get:

γ = logitP [Y = 1|Z = 1]− logitP [Y = 1|Z = 0].

As the logit transformation is an increasing transformation, it follows that:

γ > 0 ⇐⇒ P [Y = 1|Z = 1] > P [Y = 1|Z = 0].

This equivalence is used for interpreting the empirical results in the text. Also, it is equivalent
to:

P [Y = 0|Z = 1] < P [Y = 0|Z = 0]

and to

P [Y ∗ = 1|Z = 1] < P [Y ∗ = 1|Z = 0],

where Y ∗ = 1− Y ,

Appendix 3

Additional Figures
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Figure 12: Dated Conditional Dependence Measure, Z=Age, Diagnosed. The figures display
the daily dependence measure given death and diagnosed before death when thresholds of
age equal to 50 and 60. The black dots indicate the values of γ̂t, the diamonds indicate the
lower and upper bounds of the confidence intervals. The dots without confidence intervals on
the line of zero indicate the missing values of γ̂t due to insufficient numbers of observations
and/or zero frequencies.
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Figure 13: Dated Conditional Dependence Measure, Z=Age, Diagnosed Cont. The figures
display the daily dependence measure given death and diagnosed before death when thresh-
olds of age equal to 70 and 80. The black dots indicate the values of γ̂t, the diamonds indicate
the lower and upper bounds of the confidence intervals. The dots without confidence intervals
on the line of zero indicate the missing values of γ̂t due to insufficient numbers of observations
and/or zero frequencies.
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Figure 14: Dated Conditional Dependence Measure, Z=outside of Toronto and Ottawa,
Diagnosed. The figures show the daily dependence measure given death and diagnosed before
death for patient diagnosed outside of Toronto and Ottawa. The black dots indicate the
values of dependence measure γ̂t, the diamonds indicate the lower and upper bounds of the
confidence intervals. The dots without confidence intervals with contours on the line of zero
indicate the missing values of γ̂t due to insufficient numbers of observations and/or zero
frequencies.
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Appendix 4

Medical and Economic Scores

In this paper, we developed a descriptive tool for scoring the patient assignment decisions,
which is a reduced form of a structural model existing in the economic literature. That
structural model considers the utility of a surviving patient based on medical and economic
arguments.

Under the shortage and rationing of ICU beds, the patient can be selected under either
pure medical, or on medical and economic criteria. This approach is used to manage and
control health spending based on a cost/effectiveness (i.e. cost benefit) analysis [see e.g.
Garber, Phelps (1997), Abelson (2003), Bergstrom (2006), Hall (2007), Zenios (2009)]. We
do not discuss the trade-off between the medical and economic aspects, or the ethical rules
for validating such techniques [see e.g. Bayles (1970)].

Let us consider patient i with characteristics Zi. The Health Economics and Ethics
literature determine the expected utility for the society of this individual if he/she is admitted
to the ICU, and if he/she is not.14 In a simplified framework, these expected utilities can be
decomposed as :

U1i = p1(Zi)ERL1(Zi) V al(Zi), if in ICU,

U0i = p0(Zi)ERL0(Zi) V al(Zi), otherwise,

where pk(Zi) is the probability to stay alive in, or out of ICU, ERLk(Zi) is the expected
residual lifetime when alive, and V al(Zi) is the economic value per year of the alive patient.

Then the patient can be selected on the basis of its incremental expected utility for the
society, that is :

∆Ui = U1i − U0i = [p1(Zi)ERL1(Zi)− p0(Zi)ERL0(Zi)]V al(Zi).

In this expression the term between brackets is purely medical, based on the predictions
about the results of the assignment and treatment. The second term V al(Zi) is economic,
known as the price of human life. In this model, it is implicitly assumed for expository
purpose and in order to get a simple decomposition of the expected utility that this value
per year does not depend on age, whereas the health status is changing with age [see Pliskin
et al. (1980)]. This simplifying assumption is usually made in practice. This value is usually
estimated indirectly from market data and the willingness-to-pay to stay alive in good health
[see e.g. Viscusi, Aldi (2003)].

Then, individual 1 will be selected among the two individuals 1,2, if :

∆U1 > ∆U2.

14This utilitarian (or social Darwinian) approach is largely used in public economics for road safety [see
e.g. Blaeij et al. (2003), Department of Transportation (2014)], for designing life insurance contracts, or for
valuation of damages in the loss-of-chance doctrine law.
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The first (medical) component can be estimated from the observations on past treatment
effects. For COVID 19, it is known that the age is a significant factor15 for the survival
probability p1, and also for the ERL, which diminishes with age. The second component is
a topic of philosophical and ethical discussions, which are out of the scope of this Appendix
[see e.g. Bayles (1978), or Baker et al. (2008) for discussions].

15The knowledge of the conditional measure of association provides no information on the measure of
association between Y and D.
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