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Abstract

We study the Functional PCA (FPCA) forecasting method in ap-
plication to functions of intraday returns on Bitcoin. We show that
improved interval forecasts of future return functions are obtained
when the conditional heteroscedasticity of return functions is taken
into account. The Karhunen-Loeve (KL) dynamic factor model is
introduced to bridge the functional and discrete time dynamic models.
It offers a convenient framework for functional time series analysis.
For intraday forecasting, we introduce a new algorithm based on the
FPCA applied by rolling, which can be used for any data observed
continuously 24/7. The proposed FPCA forecasting methods are
applied to return functions computed from data sampled hourly and
at 15-minute intervals. Next, the functional forecasts evaluated at
discrete points in time are compared with the forecasts based on other
methods, including machine learning and a traditional ARMA model.
The proposed FPCA-based methods perform well in terms of forecast
accuracy and outperform competitors in terms of directional (sign) of
return forecasts at fixed points in time.
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1 Introduction

Bitcoin, the world’s first cryptocurrency introduced in 2008, has become one of the most

important digital assets worldwide. Its decentralized, peer-to-peer network, underpinned

by blockchain technology, ensures transparency, security, and independence from traditional

banking systems. Like other cryptocurrencies, Bitcoin is traded 24 hours a day, 7 days a

week.

Recently, Bitcoin prices have increased considerably and its returns remained highly

volatile. The high return volatility and speculative nature of Bitcoin present both oppor-

tunities and challenges for investors. Bitcoin’s price dynamics are influenced by a complex

interplay of factors, including market sentiment, regulatory developments, technological ad-

vancements, macroeconomic trends, and geopolitical events. These factors introduce sub-

stantial uncertainty, making Bitcoin forecasting particularly challenging.

Several studies have employed various methods to forecast Bitcoin returns and volatil-

ity. Katsiampa (2017) applied traditional time series models, such as GARCH, to estimate

Bitcoin’s volatility, providing a foundational approach to understanding its price dynam-

ics. Bouri et al. (2017) explored the return-volatility relationship in the Bitcoin market,

highlighting the asset’s unique risk-return profile. Gradojevic et al. (2023) compared the

performance of Feedforward deep artificial neural network(FF-D-ANN), support vector ma-

chine(SVM) and random forest(RF) in predicting daily and hourly Bitcoin returns from two

linear models: random walk (RW) and ARMAX(1,1).

Since Bitcoin is traded continuously, its returns on a given day can be viewed as functions

of time measured in minutes or seconds of UTC1 [see Jasiak and Zhong (2024) for Bitcoin

returns, and e.g. Aue et al. (2017), Kokoszka et al. (2017) for applications to intraday returns

on stocks, stock market indexes, including S&P500 and ETF’s]. Then, the daily return

functions can be modeled as a functional time series and predicted, using the Functional

Autoregressive process or order 1 (FAR(1)). Aue et al. (2015) show that this approach is

equivalent to predicting from the Karhunen-Loeve expansion of a functional time series and

Vector Autoregressive of order 1 (VAR(1)) model of eigenscores obtained from a Functional

Principal Component Analysis (FPCA) of the covariance matrix. The advantage of the latter

approach is that it can easily be adapted to the return dynamics characterized by conditional

heteroscedasticity. The extension of the FPCA-based model to conditionally heteroscedastic

data is the main objective of this paper.

We introduce a new Functional Principal Component Analysis (FPCA)-based method

1Coordinated Universal Time
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for forecasting daily Bitcoin return functions out of sample. Our approach aims at im-

proved interval forecasting of daily functions of returns and exploits the serial correlation of

eigenscores and squared eigenscores. The novelty of our approach is that it takes into consid-

eration the conditional heteroscedasticity of eigenscores and produces forecast intervals that

are more accurate and narrower than those obtained when the conditional heteroscedasticity

is disregarded. Since the functional dynamic models for serially correlated and conditionally

heteroscedastic functional time series are either complicated, or even not available in the

literature, we introduce the Karhunen-Loeve (KL) dynamic factor model by imposing sim-

plifying assumptions on the Karhunen-Loeve series expansion. This allows us to bridge the

conditionally heteroscedastic dynamic discrete time dynamic models with their functional

counterparts. Moreover, the KL dynamic factor model offers a convenient framework for the

analysis of conditionally heteroscedastic functional time series.

Our second contribution is a rolling FPCA that allows for intraday forecasting of Bitcoin

returns as subsets of a daily function. We observe that Bitcoin and many other financial assets

are traded 24/7, and the delimitation of the day between hours 0:0 and 24:00 of UTC is purely

conventional. This motivates us to consider the FPCA of partially overlapping daily return

functions that start at subsequent time points to forecast a future segment of an incomplete

function of current intraday returns.

The advantage of the functional approach compared to the conventional forecasting of

discrete data is that the function can be evaluated at any time and provide forecasts at any

point of time during the day rather than at a fixed sampling frequency.

In our empirical study, we examine a sample of daily functions of 15 minute and hourly

returns. We model and forecast the return functions and evaluate the performance of our

forecasting methods. Our method of forecasting daily return functions outperforms the

FPCA-based forecasting methods available in the literature in that it produces more accurate

sign forecasts and narrower forecast intervals. Our proposed algorithm for intraday return

forecasting based on a rolling FPCA is shown to outperform the machine learning methods

in terms of forecast accuracy and sign at fixed points of time.

In the literature, the Functional Principal Component Analysis (FPCA) has been used

for forecasting first by Aguilera et al. (1997), who proposed a principal component prediction

model using functional principal component analysis for continuous time stochastic processes.

The method is applicable to forecasting long segments of future functions so that the func-

tional time interval can be divided into the associated ”past”, i.e. t=1,..., T and ”future”, i.e.

t=T+1,...,T+K, say. The FPCA is then applied separately to the divided functional data

relating to the ”past” and ”future” times, and the eigenscores and eigenfunctions are com-
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puted for the ”past” and ”future” independently. The forecast future values of the function

are estimated from a linear combination of the estimated ”future” eigenscores and ”past”

eigenfunctions plus the estimated future mean. Our intraday FPCA forecasting is in part

inspired by this method and allows for forecasting in real time, with the ”future” potentially

reduced to a neighborhood of one point in time.

Aue et al. (2015) proposed an approach to functional forecasting of complete future func-

tions using the FPCA combined with a Vector Autoregressive (VAR(1)) model of eigenscores.

This method was applied to environmental data that follow a stationary (non-trending)

process of pollution concentrations, specifically focusing on forecasting half-hourly measure-

ments of PM10 concentrations in ambient air in Graz, Austria, from October 1, 2010, to

March 31, 2011. Shang (2020) used a similar approach, except that they used univariate

autoregressive-moving average ARMA(p,q) time series models to forecast each eigenscore

process independently in a study of Japanese age-specific mortality rates obtained from the

Japanese Mortality Database. Shang and Kearney (2022) also applied independently the

univariate ARMA(p,q) time series models to forecast the eigenscores in an empirical study

of implied volatility of foreign exchange rates.

Our functional return forecasts improve upon the methods of Aue et al. (2015), Shang

(2020) and Shang and Kearney (2022) by adjusting them to the dynamics of financial returns.

In particular, we observe that the eigenscores of returns are characterized by serial correla-

tion at short lags, which can be efficiently modeled by the Autoregressive AR(1) process

rather than an ARMA(p,q). Most importantly, we evidence serial correlation in the squared

eigenscores, i.e. we show that they are conditionally heteroscedastic and characterized by

the ARCH effect. This characteristic is important, and by accounting for the conditional

heteroscedasticity of eigenscores, we produce improved pointwise interval forecasts of return

functions.

In addition, to account for lagged cross-correlations between the eigenscores and their

squares, we improve the approach of Aue et al. (2015) by replacing the VAR(1) forecast

of eigenscores, by the VAR(1)-sBEKK(1,1) model that accounts for serial correlation and

conditional heteroscedasticity of eigenscores in a multivariate setup. This approach provides

an additional improvement in terms of interval forecast accuracy, as the pointwise VAR-

sBEKK interval forecast outperforms our AR-GARCH based method of forecasting univariate

time series of eigenscores separately.

The paper is organized as follows: Section 2 describes the FPCA and KL dynamic

models, introduces the new forecast method of the forecast interval and compares it with the

existing FPCA forecasting models. Section 3 describes the functional data on Bitcoin and
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presents the results of our forecasting method for daily return functions. Section 4 introduces

a new method of forecasting of returns on Bitcoin from a rolling FPCA when the function

of observations is incomplete, and compares it with other Bitcoin return forecast models.

Section 5 concludes the paper. Additional results are provided in the Appendices A and B..

2 Methodology

This section reviews the Functional Principal Component Analysis (FPCA), introduces the

new approach to functional times series forecasting of conditionally heteroscedastic returns,

and compares it with the existing methods.

2.1 The Functional Principal Component Analysis (FPCA)

In the literature [see, e.g Ramsay and Silverman (2005)] functional data are usually modeled

as ”noise-corrupted observations on a set of trajectories” that are assumed to be realizations

of a smooth random function of time X(t), with unknown mean shape µ(t) and covariance

c(t, s) = cov(X(t), X(s)) (Liu et al., 2017).

Let {Xi(t)}i∈Z be a stationary functional time series, where t ∈ I = [a, b] is a continuum,

and i = 1, 2, ... denote the realization. Each realization can be written as a functionXi(t, ω) in

both time t ∈ I and ω ∈ Ω, an element of probability space. For a fixed ω, and for each i, Xi(t)

is in the Hilbert space H = l2(I), equipped with the inner product ⟨x, y⟩l2 =
∫
I
x(t)y(t)dt of

square-integrable real functions on a support I ⊂ R and the norm ||x||2l2 =
∫
I
x2(t)dt (Loeve,

1978), (Shang and Kearney, 2022). At a given t and for each i, Xi(t, ω) is a stochastic variable

defined on a common probability space with finite second-order moment, i.e. any Xi(t) is

such that EXi(t)
2 <∞ ∀i, t, where E(Xi(t)

2) =
∫
Ω
X2

i (t, ω)dP (ω). The space L
2(Ω,A,P) of

variables with finite second-order moments is another Hilbert space equipped with the inner

product < X, Y >L2=
∫
Ω
X(ω)Y (ω)dP (ω).

Karhunen-Loève Expansion

The Karhunen-Loève expansion can be written for each stochastic function Xi = {Xi(t),

t ∈ [a, b]} that is zero-mean, or demeaned, i.e. replaced by Xi(t) − µ(t), and where µ(t) =

EXi(t) is independent of index i by the stationarity assumption.

The covariance function c(t, s) is:

c(t, s) = E[X(t)− µ(t)][X(s)− µ(s)], ∀t, s ∈ I, (1)

where µ(t) is the mean function. The covariance function c(t, s) allows the covariance covari-
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ance operator of X denoted by K to be defined as:

K(ξ)(s) =

∫
I

c(t, s)ξ(t)dt. (2)

This operator is a function from l2(I) onto l2(I) that associates the element K(ξ) ∈ l2(I)

with any element ξ of l2(I). This operator is continuous, symmetric, positive, i.e. <

ξ,K(ξ) >l2(I)≥ 0, ∀ξ ∈ l2(I).

It follows from Mercer’s and Karhunen-Loève Theorems that there is an orthonormal

sequence (ξj) of functions in l2(I) and a non-increasing sequence of positive numbers (λj)

such that the operator K admits a spectral decomposition:

c(t, s) =
∞∑
j=1

λjξj(t)ξj(s), t, s ∈ I (3)

where λj, j = 1, 2, ... are the eigenvalues in strictly decreasing order and ξj(s), j = 1, 2, .. are

the normalized eigenfunctions, so that K(ξj) = λjξj with < ξj, ξk >l2≡ δj,k = 1, if j = k, and

0, otherwise. Moreover, ξj are continuous functions if the associated λj are strictly positive

and the equality corresponds to both a convergence in L2 for the Karhunen-Loève Theorem

and a uniform convergence in Mercer’s Theorem.

Then, each stochastic function Xi(t, ω), i = 1, 2, ... can be expressed as a linear combi-

nation of these basis functions. Through Karhunen-Loève expansion, a stochastic function

X(t, ω) can be expressed as a linear combination of orthogonal basis functions ξj determined

by the covariance function of the process.

X(t, ω) = µ(t) +
∞∑
j=1

βj(ω)ξj(t),

or, by omitting ω for ease of exposition, as:

X(t) = µ(t) +
∞∑
j=1

βjξj(t), (4)

where βj are eigenscores obtained from a projection in l2(I) of [X(t)−µ(t)] in the direction of

the jth eigenfunction ξj, i.e. βj =< [X(t)−µ(t)], ξj(t) >l2(I). The eigenscores βj, j = 1, 2, ..J

are pairwise uncorrelated random variables with zero mean and variance λj (Benko et al.,

2009). Each of them can be interpreted as the contribution of ξj(t) to X(t) − µ(t). The

functions ξj are continuous real-valued deterministic functions on I = [a, b] that are pairwise

orthogonal in l2(I), i.e. in the time domain. If X(t) is Gaussian, then the random variables

βj are also Gaussian, uncorrelated, and then stochastically independent.
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Alternatively, we can write:

X(t, ω) = µ(t) +
∞∑
j=1

√
λjβ

∗
j (ω)ξj(t),

to see that β∗
j (ω) are orthonormal in L2(Ω,A,P), and ξj are orthonormal in l2(I). It is there-

fore sometimes said that the Karhunen-Loève expansion is bi-orthogonal (bi-orthonormal).

2.2 The KL Dynamic Factor Model

We consider the stationary functional time series indexed by i = 1, ..., N and the Karhunen-

Loève (KL) expansion of Xi(t) for each i:

Xi(t) = µ(t) +
∞∑
j=1

√
λjβ

∗
i,jξj(t), (5)

where the stochastic eigenscores β∗
i,j are zero-mean with unit variance, uncorrelated for dif-

ferent j, stationary in i, but can be correlated for different i.

2.2.1 The Model

The above expansion is an equivalent representation of a stationary functional process (sta-

tionary in i) and imposes no other restriction, except for some weak regularity conditions. It

can be written as:

Xi(t) = µ(t) +
J∑

j=1

√
λjβ

∗
i,jξj(t) + ei(t), (6)

where ei(t) =
∑∞

j=J+1

√
λjβ

∗
i,jξj(t). The truncation error function, denoted by ei(t), is sta-

tionary, with mean zero and finite variance. The tuning parameter J represents the number

of eigenfunctions that are preserved in the approximation, resulting in a dimension reduction

(Shang and Kearney, 2022).

The representation (4) or (6) can be used to define a structural model for functional

time series by specifying the dynamics of the eigenscores, either β∗
i,j, or βi,j =

√
λjβ

∗
i,j. More

precisely, we make the following assumption:

Assumption 1:

i) There exists a true value J0 of J .

ii) The eigenscore series βi|J0 = (βi,1, ..., βi,J0) and βi|J̄0 = (βi,J0+1, βi,J0+2, ...) are inde-

pendent.
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iii) The conditional distribution of βi|J0 = (βi,1, ..., βi,J0) given βi−1|J0 = (βi−1|J0 , βi−2|J0 , ...

has a parametric specification with parameter θ.

iv) The remaining βi|J̄0 = (βi,j|j>J0) are independent white noises.

Definition 1: The KL dynamic factor model satisfies the decomposition (6) and Assumption

1.

It is easily checked that the KL expansion appears as a dynamic factor model with J0 dynamic

factors βi|J0 , i = 1, ..., J0 and an independent and identically distributed (i.i.d.) functional

noise ei(t). The noise is partly degenerate since by construction, we have:

< ei, ξj >l2(I)= 0, ∀j = 1, ..., J0,

and the support of its distribution is in the vector space orthogonal to the space of ξj, j =

1, ..., J0 in l2(I).

Example 1: KL Linear Dynamic Factor Model

For ease of exposition we consider a Gaussian framework with linear dynamics of order

1. Then, the specification is:

Xi(t) = µ(t) +

J0∑
j=1

βi,jξj(t) + ei(t), (7)

where

βi|J0 = Φβi−1|J0 + ϵi, (8)

where βi|J0 is a vector of length J0 containing βi,j, j = 1, ..., J0, the autoregressive matrix Φ

of dimension J0 × J0 has eigenvalues inside the unit circle, (ϵi), i = 1, 2, .. is an independent

and identically distributed (i.i.d.) white noise of dimension J0, ϵi ∼ N(0,Σ),∀i, assumed to

be independent of the functional noise {ei(t), t ∈ [a, b]}, i = 1, ..., N . The functional noise has

a functional Gaussian distribution of infinite dimension denoted by N(0, σ2Ωe), where Ωe =

Id −
∑J0

j=1 ξjξ
′
j, and Id denotes the Identity operator on l2(I) and ξ

′
jΩeξj = 0, j = 1, ..., J0.

The model (7)-(8) depends on the parameters of different types. Some of them are scalar or

multidimensional parameters, such as Φ,Σ, σ2, λj, j = 1, ..., J0, while µ, ξj, j = 1, ..., J0, are

functional parameters.

The above model can be viewed in another way. It is equivalent to consider the functional

series Xi(t), t ∈ I, or the countable set of series βi,N = (βi,1, ..., βi,j, ...) that are related by a

”one-to-one” linear relationship. Therefore, it is equivalent to write a Gaussian autoregressive
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model for the X’s or for the β’s. In the framework of this example, we have introduced a con-

strained Gaussian VAR(1) specification for the β’s. Therefore, a reduced-rank, constrained

functional Gaussian FAR(1) is the associated representation of the functional process.

Let us now justify this representation, as a convenient specification of the dynamics of

β’s for the Functional Vector Autoregressive FAR(1) process:

Xi − µ = Ψ(Xi−1 − µ) + ui, (9)

where the time t is omitted for ease of exposition. Under the approach of Bosq (2000) the

errors (ui, i ∈ Z) are centered (i.i.d.) innovations in l2(I) satisfying E||ui||4 = E[
∫
u2i (t)dt]

2 <

∞ and Ψ is a bounded linear operator satisfying the condition
∫ ∫

ψ2(s, t)dsdt < 1 that

ensures that the above equation has a strictly stationary and causal solution such that ui is

independent of Xi−1, Xi−2, ...

Suppose, µ = 0 and J0 is given by Assumption 1 i). Then, it follows from Aue at al

(2015), Appendix A.1 that for J = J0 the process can be written as

< Xi, ξ̂j > = < Ψ(Xi−1), ξj > + < ui, ξj >

=
∞∑

j′=1

< Xi−1, ξj′ >< Ψ(ξj′), ξj > + < ui, ξj >

=

J0∑
j′=1

< Xi−1, ξj′ >< Ψ(ξj′), ξj > +ϵi,j (10)

where ϵi,j = di,j+ < ui, ξj > with the remainder terms di,j =
∑∞

j′=J0+1 < Yi−1, ξj′ ><

Ψ(ξ̂j′), ξ̂j > being independent white noises by Assumption 1 iv).

Next, the empirical counterpart of the above inner product βi =< Xi, ξ̂j > is written as

follows. Let βi = (βi,1, βi,2, . . . , βi,J0)
′ be a (J0 × 1) vector of eigenscores on day i, and write

βi = Π1βi−1 + ϵi, i = 2, ...N (11)

where Π1 is the coefficient matrix of dimension (J0×J0) with eigenvalues of modulus strictly

less than 1, and ϵi is a multivariate (J0× 1) white noise process with mean zero and variance

Σ. Note that the marginal variance of each eigenscore vector being equal to an Identity

matrix, implies an additional constraint Σ = Id− ΠΠ′ on the parameters of the model.

Example 2: KL Conditionally Heteroscedastic Dynamic Factor Model

Let us consider the model of Example 1, with equation (8) replaced by
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βi|J0 = Φβi−1,J0 + ϵi, where ϵi = H
1/2
i ηi, (12)

and where Hi is the conditional covariance matrix of βi|J0 of dimension J0 × J0 given the

information set Fi−1 generated by the realizations up to and including i − 1, and ηi is an

i.i.d. vector with mean 0 and such that Eηη′ = Id.

Then, a decomposition similar to (10) can be considered under a relaxed assumption on

the errors being L4−m-approximable (Kokoszka et al., 2017) leading to ϵi,j, elements of vector

ϵi = (< ui, ξ̃1 >, ..., < ui, ξ̃J0 >)
′ + white noise, which is a vector of linear transformations of

the conditionally heteroscedastic error plus noise. Therefore it is heteroscedastic too.

It is easy to see that in this context, a complicated multivariate functional ARCH model

would be needed to represent the dynamics of conditional variances and the lagged cross-

effects of the squared values of error functions. To our knowledge, such a multivariate func-

tional model is not available. In contrast, the multivariate dynamics of conditional variance

can be easily specified for the eigenscores in the context of the KL factor model, as follows.

The empirical counterpart of βi =< Xi, ξ̂j > can be specified as the VAR(1) process

in eq. (11) with weak white noise errors and, for example, the BEKK model of conditional

volatility Engle and Kroner (1995). The BEKK model gets computationally costly when the

number of time series data increases. Therefore, we can use its variant, called the scalar

BEKK (sBEKK(1,1)) (Ding and Engle, 2001):

Hi = CC′ + aϵi−1ϵ
′
i−1 + gHi−1, i = 1, ...N (13)

where, Hi is the (J0 × J0) multivariate conditional variance-covariance matrix of βi, a, g ∈ R

with a ≥ 0, g ≥ 0 are scalar parameters, and ϵi is the error vector of the VAR(1) represen-

tation of eigenscores in equation (11). Matrix C is a lower triangular matrix of parameters

of dimension J0 × J0. We assume that the parameters of the sBEKK(1,1) model satisfy

the standard stationarity and non-negativity conditions. Since the marginal variance of each

eigenscore vector is equal to an Identity matrix of dimension J0, the parameters of this model

are constraint too, as illustrated in Appendix B.

Example 3: KL Conditionally Heteroscedastic Univariate Dynamic Factor Model

The KL factor model can be simplified further, as in practice one may prefer to model the

contemporaneously uncorrelated eigenscore processes using either univariate or multivariate

time series models (Shang, 2020; Shang and Kearney, 2022). In addition, for conditionally

heteroscadastic processes we can specify the GARCH dynamics for the associated errors.

Let us suppose that the eigenscores βi,1, .., βi,J0 are independent and follow univariate

AR(p)-GARCH(K,L) models. Then, the dynamic of eigenscore βi,j can be written as:
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βi,j =

p∑
l=1

al,jβi−l,j + ϵi,j, (14)

νi,j = ς0,j +
K∑
k=1

ςk,jνi−k,j +
L∑
l=1

ζl,jϵ
2
i−l,j,

where

ϵi,j =
√
vi,jzi,j, ∀i = 1, .., N,

and where al,j is the autoregressive coefficient on lag l of eigenscore j, ϵi,j is the error term

of eigenscore j, ς0, ςl,j and ζk,j are the coefficients of the conditional variance, and zi,j’s are

i.i.d. N(0,1) variables (Gourieroux, 2012). We assume that the roots of the autoregressive

polynomials 1 −
∑p

l=1 al,jx
l = 0 are outside the unit circle ∀j = 1, .., J0, ς0 > 0, and the

remaining coefficients of the GARCH process satisfy the standard stationarity and non-

negativity conditions. Note that the marginal variance of each eigenscore being equal to

1, implies additional constraints on the parameters of the model, which are illustrated in

Appendix B.

2.2.2 The KL Dynamic Factor-based Functional Forecast

Let us assume a KL dynamic factor model with mean zero satisfying Definition 1. The the-

oretical out-of-sample forecast and the conditional variance are derived below in the general

case that includes Examples 1,2, and 3.

E(XN+1|XN) = E([

J0∑
j=1

βN+1,jξj]|XN) =

J0∑
j=1

[E(βN+1,j|XN)]ξj,

where XN denotes the past curves and E(βN+1,jXN) is the forecast of the random eigen-

score. By definition, the prediction of βN+1,j depends on the past curves through the J0 first

eigenscores only. Therefore, we have:

E(XN+1|XN) =

J0∑
j=1

[E(βN+1,j|βN |J0)]ξj.

It is either based on E(βN+1,j|βN,j) when each eigenscore βN+1,j, j = 1, .., J0 is predicted

from its own past based on a univariate time series model (Example 2), or E(βN+1,j|βN)
where βN = (βN,1, ..., βN,J0) when the eigenscore j is predicted from its own past and the

past values of the remaining J0 − 1 eigenscores (Examples 1 and 3).
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The conditional variance at horizon 1 is:

V (XN+1|XN) =

J0∑
j=1

J0∑
l=1

ξjξ
′
lCov(βN+1,j, βN+1,l|βN |J0) + ω, (15)

where ω = σ2
∑∞

j=J0+1 ξjξ
′
j,

∑∞
j=J0+1 ξjξ

′
j = Id −

∑J0
j=1 ξjξ

′
j where Id denotes the identity

operator on l2(I) and ξ′ denotes the adjoint operator of ξ. Note that
∑∞

j=J0+1 ξjξ
′
j and∑J0

j=1 ξjξ
′
j are orthogonal projectors (symmetric and idempotent) in the KL dynamic factor

model.

2.3 New Approach to FPCA Forecasting of Financial Returns

Suppose the returns on Bitcoin (with a fixed holding period) is a stationary time series of

functionsXi(t), t ∈ I, each defined over one day and observed on consecutive days i = 1, ..., N .

Then, the intraday Bitcoin returns can be treated as a continuous time function.

2.3.1 Estimation

Wee approximate the expansions of stochastic functions in (4) by

Xi(t) = µ(t) +
J∑

j=1

βi,jξj(t) + ei(t), i = 1, ..., N. (16)

The mean µ(t) can be consistently estimated from a sample of N functional observations

as µ̂N(t) = 1
N

∑N
i=1Xi(t). The covariance operator K can be consistently estimated from

ĉN(x) = 1
N
< Xi − µ̂N , x > (Xi − µ̂N) (Ramsay and Silverman, 2005). Aue et al. (2015)

show that under general weak dependence assumptions these estimators are
√
N consistent.

Kokoszka et al. (2017) show the consistency and normality of the mean and covariance

estimators for functional time series that are autocorrelated and conditionally heteroscedastic.

Under the static FPCA, the functional principal components are extracted from c(t, s),

the estimated K̂ yielding the estimated λ̂j, ξ̂j, j = 1, ..., J , where [ξ̂1(t), ξ̂2(t), ...] are the

orthogonal sample eigenfunctions obtained from ĉ(s, t) =
∑J

j=1 λ̂j ξ̂j(t)ξ̂j(s) where λ̂1 > λ̂2 >

· · · ≥ 0 are the sample eigenvalues of ĉ(s, t) under the static approach. The static FPCA

approach has been extended to dynamic FPCA by Aue et al. (2015) for serially correlated

functions. Under the dynamic FPCA, the functional principal components are extracted

from the long-run covariance matrix defined as C(t, s) =
∑∞

l=−∞ cov(X0(s), Xl(t)), i.e. the

marginal covariance of the stationary time series of functions, to ensure the consistency of

the estimates. Shang and Kearney (2022) observe that the estimation of dynamic functional

principal components using long-run covariance benefits the forecast if there are temporal
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dependencies in the functional data. However, Shang (2020) claim that the functional time

series method with dynamic functional principal component decomposition does not always

outperform that with static functional principal component decomposition.

After the estimation, the in-sample fitted functions X̂i(t), i = 1, ..., N are obtained from

the sample of functional observations X1(t) , ...., XN(t) as:

X̂i(t) = µ̂(t) +
J∑

j=1

β̂ij ξ̂j(t), i = 1, ..., N (17)

where µ̂(t) = 1
N

∑N
i=1Xi(t) is the estimated mean function, β̂ij is the j

th estimated principal

component score for the ith observation where β̂i =< [X(t)− µ̂(t)]ξ̂i(t) >.

In practice, the optimal choice of truncation J is crucial for the estimation accuracy.

The choice criteria are discussed in Shang and Kearney (2022), p.1028 and Shang (2020),

p.31. A commonly used approach chooses J set at the minimum, allowing to reach a given

fraction δ of the cumulative covariance explained by the first J leading components. For

example J = argminJ :J≥1{
∑J

j=1 λ̂j/
∑N

j=1 λ̂j1lλ̂j>0 ≥ δ} , with δ = 0.85.

This variance σ2 of e(t) can be estimated from the average of estimated daily variances

of êi(t) = Xi(t) − X̂i(t) over N days, where X̂i(t) is the fitted value defined in eq. (17).

Next, to obtain ω̂, we multiply σ̂2 by diag(Id−
∑J

j=1 ξ̂j ξ̂
′
j), based on the entire sample of N

functions to approximate it according to eq. 15. We expect the result of Id −
∑J

j=1 ξ̂j ξ̂
′
j to

be numerically very close to an identity matrix.

In practice the R-package fda can be used to perform the FPCA, as it is done in this

paper. The estimation of the dynamic parameters of eigenscore models depends on the

dynamic model chosen for forecasting of eigenscores, and it is discussed in the next subsection.

2.3.2 Forecast

In general, the forecast at horizon h is computed for as follows:

X̂N+h|N = µ̂+
J∑

j=1

β̂N+h|N,j ξ̂j, (18)

where ξ̂ = [ξ̂1, ..., ξ̂J ] is the set of estimated functional principal components estimated from

N functional observations and β̂N+h|N,j is the forecast of the jth eigenscore. The forecast

variance is

V (X̂N+h|N) =
J∑

j=1

J∑
l=1

ξ̂j ξ̂
′
lĈov(β̂N+h|N,j, β̂N+h|h,l) + ω̂ (19)
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The forecast of the jth eigenscore is obtained from a time series forecasting method and

motivated by Aue et al. (2015) and the related papers by Shang (2020) and Shang and

Kearney (2022) who documented the serial correlation in eigenscore processes (βi,j), i =

1, 2, ....

2.3.3 Forecast Based on Univariate Time Series Model of Eigenscores

In this case, each future eigenscore β̂(N+1)j, . . . , β̂(N+h)j for j = 1, . . . , J is forecast by using

the observations on the past values of each jth eigenscore β̂1j, . . . , β̂Nj independently. We

estimate the AR(p)-GARCH(K,L) model (14) in one step by the maximum likelihood2 to

forecast each individual eigenscore β(N+1)j, j = 1, . . . , J and predict each eigenscore along

with its future volatility ν(N+1),j.

The out-of sample forecast of eigenscore βN+1,j on day i = N + 1 and the associated

forecast of conditional variance lead to the (1−α)% pointwise forecast interval calculated as:

X̂N+1(t)± zα/2

√√√√ J∑
j=1

ν̂N+1,j ξ̂2j (t) + ω̂(t) (20)

where ν̂N+1,j is the forecast variance of jth eigenscore estimated by the AR-GARCH for

the future function on day N + 1, ξ̂2j (t) is the estimated eigenfunction and zα/2 denotes the

quantile of the standard Normal distribution.

2.3.4 Forecast Based on Multivariate Time Series Model of Eigenscores

For the joint forecast of eigenscores, we apply the sBEKK model to forecast the future

conditional volatility of eigenscores (β(N+1), j = 1, . . . , J0) on day i = N + 1 in two steps.

First, we estimate the VAR model (11) and predict the vector of future scores β̂(N+1). Next,

we apply the sBEKK(1,1) model (13) to the residuals êi, i = 1, ...N of the VAR(1) model

estimated in the first step and forecast the conditional covariance matrix of eigenscores HN+1

one day ahead3.

The pointwise forecast intervals at level (1 − α)% for the returns one-day-ahead are

computed from the diagonal elements of matrix ξ̂′(t)HN+1ξ̂(t) as follows

X̂N+1(t)± zα/2

√
diag(ξ̂′(t)HN+1ξ̂(t)) + ω̂(t) (21)

2The R package rugarch is used to estimate the AR-GARCH in this paper.
3The R package BEKKs is used to estimate the sBEKK(1,1) model in this paper.
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where X̂N+1 is the forecast one-day-ahead function of returns forecast from the eigenscores

β̂(N+1),j, j = 1, . . . , J , estimated by VAR(1)-sBEKK(1,1) model, and ξ̂(t) contains the esti-

mated eigenfunctions (ξ̂1(t), . . . , ξ̂J0(t))
′

2.3.5 Comparison with the Literature

The main difference between our approach compared to Aue et al. (2015), Shang (2020) and

Shang and Kearney (2022) is that the variance of the forecasted jth score is past dependent

and predicted, instead of being considered constant and estimated ex-post as in step 4 of the

algorithm of Aue et al. (2015). In addition, the parameter estimates of the dynamic model of

eigenscores account for conditional heteroscedasticity. Hence, they are more efficient, yielding

more accurate forecasts of eigenscores.

In practice, the discrete time series of financial returns are characterized by conditional

heteroscedasticity, in addition to potential serial correlation. Then, such a time series is

modeled as an autoregressive AR process with GARCH errors, i.e., the AR-GARCH process.

For this reason, we expect that the FPCA of return functions on Bitcoin generates eigenscores

that are serially correlated and conditionally heteroscedastic.

Regarding the method of time series forecasting of eigenscores, Aue et al. (2015) use the

Vector Autoregressive (VAR) model. It is motivated by the fact that although the scores

are contemporaneously uncorrelated, there may exist cross-correlations at higher lags that

are accounted for in a multivariate model. Theorem 3.1 of Aue et al. (2015) shows that

the one-step ahead forecasts of functional time series from the KL expansion with VAR-

based forecasts of eigenscores are asymptotically equivalent to the predictions based on the

Functional Autoregressive process of order 1 (FAR(1)) fitted to the functional time series.

Shang (2020) and Shang and Kearney (2022) use instead independent univariate time se-

ries forecasting models for each βN+h,j, j = 1, ..., J . Then, each future eigenscore β̂(N+1)j, . . . , β̂(N+h)j

for j = 1, . . . , J is forecast by using the observations on the past values of each jth eigen-

score β̂1j, . . . , β̂Nj independently from the autoregressive moving average(ARMA)(p,q) model.

They report that the FPCA provides better out-of-sample forecasting performance than other

functional models.

However, the ARMA model does not account for the potential presence of conditional

heteroskedasticity, which can impact the accuracy of parameter estimators, the forecasts and

the forecast intervals. The commonly used dynamic models for conditionally heteroskedastic

discrete time series data are the Autoregressive and the Generalized Autoregressive Condi-

tional Heteroskedasticity (ARCH and GARCH) models (Liu et al., 2011). Modeling multi-

variate volatilities has played an important role in economics and finance studies. There are
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multivariate GARCH models (MGARCH) that exist in the literature, including the so-called

vec-model of Bollerslev et al. (1988). However, this model does not guarantee a positive

definite conditional covariance matrix. Other types of MGARCH models, such as the con-

stant conditional correlation (CCC) model of Bollerslev (1990) and the dynamic conditional

correlation (DCC) model of Engle (2002), have been criticized in the literature too.

In the existing litrature, the forecast interval for FPCA models is obtained from the

pointwise forecast bands algorithm. It was introduced by Aue et al. (2015), and applied by

Shang (2020) and Shang and Kearney (2022). It follows the steps given below, where for

ease of exposition the horizon h = 1 is considered.

Step 1: Estimate J sample eigenscore vectors (β̂1, . . . , β̂J) and sample eigenfunctions

[ξ̂1(t), . . . , ξ̂J(t)] using all N observations.

Step 2: For k ∈ [J + 1, . . . , N − 1], calculate the in-sample errors of the forecast function

êk+1(t) = Xk+1(t)− X̂k+1(t),

where

X̂k+1 =
J∑

j=1

β̂(k+1)j ξ̂j(t)

and β̂(k+1)j are forecasted by the chosen univariate or multivariate time series model.

Step 3: For each time point t, define the standard deviation of the in-sample errors êk+1(t)

as:

γ(t) =

√ ∑
êk+1(t)2

(N − 1)− (J + 1)

.

Step 4: Seek turning parameters κα, κ̄α such that α× 100% of the errors satisfy

−καγ(t) ≤ ϵ̂k(t) ≤ κ̄αγ(t)

A practical approach to determine the pointwise forecast interval for a reasonable sample of

size N, is:

1

N − J − 1

N−J−1∑
k=1

I(−καγ(t) ≤ ϵ̂k(t) ≤ κ̄αγ(t))

≈ P (−καγ(t) ≤ Xk+1(t)− X̂k+1(t) ≤ κ̄αγ(t))
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for all points of time t = 1, . . . , T . Compared with this approach, we use instead the predicted

volatility of eigenscores for improved forecast intervals.

3 Data Analysis

We examine return functions over one UTC day between hours 0:00 and 24:00, and computed

from 15-minute and hourly data on prices from Bitsatmp, one of the largest cryptocurrency

exchanges, covering the period from January 1, 2022, to December 30, 2023. The 15-minute

data comprises 729 days with 96 observations per day, totaling 69984 observations of prices

observed every 15 minutes and 17472 hourly prices.

Below, we examine separately the return functions computed from data sampled at 15

minutes and hourly.

3.1 Intraday 15 Minute Returns

Let us define the 15-minute return on day i = 1, . . . , N as X∗
i (t) = (ln(pt)− ln(pt−1))× 100

for t ∈ [1, .., 96] and N = 729. The functional return series is displayed in Figure 1.

Figure 1: Functions of BTC 15-Minute Returns

Each line represents one daily function of 15-minute returns

Figure 1 illustrates the daily functions of 15-minute BTC returns. Following the approach of

Ramsay and Silverman (2005), each function is next demeaned:
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Xi(t) = X∗
i (t)−

1

N

N∑
i=1

Xi(t), t = 1, ..., 96

by substracting the 15-minute average return at t=1,...,96 over N days. The demeaned return

functions are displayed in Figure 2 below.

Figure 2: Functions of BTC Demeaned 15-Minute Returns

Each line represents one daily demeaned 15-minute return function

Figure 2 shows the daily functions of demeaned 15-minute returns over N = 729 days.

3.2 Intraday Hourly Returns

A similar approach is applied to compute the hourly returns from hourly Bitcoin prices over

N = 729 days. The hourly returns are next demeaned. Figure 3 shows the BTC hourly

return functions.
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Figure 3: Functions of BTC Hourly Return

Each line represents a daily return function where returns are sampled hourly

Next, each hourly return function is demeaned:

Xi(t) = X∗
i (t)−

1

N

N∑
i=1

Xi(t), t = 1, ..., 24

by subtracting the hourly average returns at t = 1, ..., 24 over N days. We display the

demeaned process in Figure 4 below:

Figure 4: Functions of BTC Hourly Demeaned Return

Each line represents one demeaned daily function of hourly returns

3.3 Forecasts of Daily Return Functions

We consider one-day-ahead forecasts of return functions of 15-minute and hourly returns

based on 250 previous daily functions. This approach ensures a sufficient number of in-
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sample errors allowing us to compare our results with the in-sample error-based forecast

intervals of Aue et al. (2015).

We determine the optimal number J of eigenfunctions by considering the minimum num-

ber of leading components that allow us to explain a given level of the cumulative proportion

of variance (CPV). We follow (Horvath and Kokoszka, 2012), who use

JCPV = argminJ :1≤J≤N


J∑

j=1

λ̂j

N∑
j=1

λ̂j

≥ δ

 ,

where λ̂j represents the J th estimated eigenvalue and δ = 85%4 (Horvath and Kokoszka,

2012).

Let us illustrate the autocorrelation functions (ACF) and cross ACF for the first three

eigenscores in 15-minute data.

4In our 15-Minute case, it takes the first 46 (J = 46) eigenvalues to explain 85 % variance. The number
J equals 16 in our hourly case.
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Figure 5: ACF of 15-Minute Eigenscores Corresponding with Eigenvalues of Order 1 to 3

The diagonal graphs show the ACF of each eigenscore βj , j = 1, 2, 3. The off-diagonal graphs show
the cross ACF between the eigenscores βj , βk for j ̸= k.

Figure 5 shows that the autocorrelations at lag 1 are statistically significant in all βj, j =

1, . . . , 3, and in most eigenscores of higher order (not displayed). There also exist statistically

significant lagged cross-correlations between βj, βk for j ̸= k, which motivates the use of the

VAR model for the conditional means of eigenscores.
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Figure 6: ACF of 15-Minute Squared Eigenscores Corresponding with Eigenvalues of Order
1 to 3

The diagonal graphs show the ACF of the square of each eigenscore βj , j = 1, 2, 3. The off-diagonal
graphs show the cross ACF between the squares of eigenscores βj , βk for j ̸= k.

Figure 6 shows that the GARCH effects exist for βj, j = 1, ...3 and there are also sig-

nificant laggedd cross-correlations between the squares of βj, βk for j ̸= k at short lags. The

serial correlation in the eigenscores and their squares motivates us to use the AR-GARCH

and VAR-sBEKK models of eigenscores.

The figures displaying the ACF for hourly data can be found in the Appendix.

3.3.1 Performance Measures

The root mean square error (RMSE) and mean absolute error (MAE) are used to evaluate

the performance of the forecast at discrete points on each future function predicted one-step

ahead out of sample. The formulas are:

Root Mean Square Error (RMSE)
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RMSE =

√√√√ 1

n

n∑
t=1

(x̂t − xt)2

Mean Absolute Error (MAE)

MAE =
1

n

n∑
t=1

|x̂t − xt|

where n is the number of discrete forecast values in a 1-day-ahead function.

To evaluate the interval forecast accuracy, we use the interval score introduced by Gneit-

ing and Raftery (2007) and Gneiting and Katzfuss (2014).

For pointwise forecast intervals at the 100(1 − ω)% nominal coverage probability, the

lower and upper bounds at ω/2 and 1 − ω/2, denoted by X̂ lb
N+1(t) and X̂

ub
N+1(t). The score

for the forecast interval is :

Sω[X̂
lb
N+1(t), X̂

ub
N+1(t), XN+1(t)] =[X̂ub

N+1(t)− X̂ lb
N+1(t)]

+
2

ω
[X̂ lb

N+1(t)−XN+1(t)]1{XN+1(t) < X̂ lb
N+1(t)}

+
2

ω
[XN+1(t)− X̂ub

N+1(t)]1{XN+1(t) > X̂ub
N+1(t)} (22)

where 1{·} represents the binary indicator function, and ω is the significance level (Gneiting

and Raftery, 2007). The mean score for the one-day-head forecast interval is :

S̄ω =
1

T

T∑
t=1

Sω[X̂
lb
N+1(t), X̂

ub
N+1(t), XN+1(t)]

which rewards a narrow forecast interval if, and only if, the true future observation lies within

the forecast interval (Shang, 2020).

3.3.2 FPCA Forecast with Univariate AR-GARCH Model of Eigenscores

In this section, each eigenscore βj, j = 1, . . . , J is considered an independent time series that

follows the AR(1)-GARCH(1, 1) model to account for the conditional heteroskedasticity.

Our approach is compared with that Shang and Kearney (2022), where the eigenscores are

modeled as ARMA(p,q) processes5 and the conditional heteroskedasticity is disregarded .

5The orders p and q are automatically selected by the auto.arima package in R.
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Figure 7: One-Day-Ahead 15-Min Return Function Forecast and Forecast Intervals

This figure compares the forecast functions and forecast intervals of 15-Min returns on 2022-12-26
based on AR(1)-GARCH(1,1) and ARMA(p,q) models of eigenscores

Figures 7 and 8 show the one-day-ahead forecasts and forecast intervals for the 15-minute

and hourly BTC return functions on 2022-12-26, respectively. The one-day-ahead forecast

functions, red for AR(1)-GARCH(1,1) and green for ARMA(p,q), are calculated as one-period

ahead conditional mean forecasts of AR-GARCH and ARMA(p,q) models, respectively.

The AR(1)-GARCH(1,1) forecast intervals of eigenscores are calculated using formula

20 in Section (2.2). The ARMA(p,q) forecast intervals are calculated following Aue et al.

(2015) and described in Section (2.1).
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Figure 8: One-Day-Ahead Hourly Return Function Forecast and Forecast Intervals

This figure compares the forecast functions and forecast intervals of hourly returns on 2022-12-26
based on AR(1)-GARCH(1,1) and ARMA(p,q) models of eigenscores

We observe that our forecast function overlaps the forecast function of Shang (2020)

and Shang and Kearney (2022) and they are both close to the true functions of returns on

Bitcoin. We also observe a difference in the forecast intervals as those obtained from the

AR(1)-GARCH(1,1) model are narrower than those of Aue et al. (2015). This concerns both

return series sampled at 15-minute and hourly intervals in Figures 7 and 8.

Table 1: Forecast Performance: AR(1)-GARCH(1,1) and AR(p,q) Eigenscore Models

15-Min RMSE MAE Sign S̄ω

AR-GARCH 0.087 0.056 47.9 % 0.607
ARMA 0.086 0.056 46.7% 1.374

Hourly RMSE MAE Sign S̄ω

AR-GARCH 0.168 0.117 49.7 % 1.323
ARMA 0.168 0.117 48.2 3.672

The results in this table are calculated from 960 discrete forecast 15-minute returns and 240 discrete
forecast hourly returns, starting from 2022-12-26.

Table 1 shows the performance statistics of one-day-ahead return function forecasts
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over 10 future days starting from 2022-12-26 computed from the AR(1)-GARCH(1,1) and

ARMA(p,q) models of eigenscores. Columns 1 to 5 report the time series model of eigenscores

(Col.1), the RMSE (Col.2), MAE (Col.3), the percentage of correctly forecast returns (Col.4)

and the interval score (Col.5). The accuracy of forecast return functions evaluated at discrete

points from both models is close. We applied the Diebold-Mariano test to the forecast errors

of return functions at discrete points et = yt − ŷt, and based on the ARMA(p,q) models and

AR(1)-GARCH(1,1) models of eigenscores. Both hourly (p-value of 0.362) and 15-minute

(p-value of 0.201) results do not reject the null hypothesis, which suggests that the models

have the same forecast accuracy level.

The difference is in the accuracy of pointwise forecast intervals. The results indicate that

the forecast interval estimated by the AR(1)-GARCH(1,1) model is narrower than the forecast

interval of Aue et al. (2015) based on ARMA(p,q) as in (Shang and Kearney, 2022) and

(Shang, 2020) for both 15-minute and hourly return functions. Our method also outperforms

the competitors in terms of the correct sign predictions, reported in Column 4 as ”Sign”, and

of the score of interval predictions S̄ω (the lower, the better), given in Column 5. We present

the forecast interval corresponding to a pointwise nominal 95% level (ω = 0.05 in equation

(22)). The actual coverage rate achieved by our method, indicating the proportion of times

true future returns fall within the forecast intervals, is 98.33% for the 15-minute returns and

96.35% for the hourly returns.

3.3.3 FPCA Forecast with VAR-sBEKK Model of Eigenscores

In this section, we take into account the cross-correlation and conditional heteroskedasticity

of eigenscores by using the VAR(1)-sBEKK(1,1) model (equation 13). Figures 9 and 10

compare the forecast function and forecast interval of 15-minute and hourly returns based on

the VAR(1)-sBEKK(1,1) model (11) of eigenscores with the forecast function and forecast

interval obtained from the VAR(1) model following the approach of Aue et al. (2015).
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Figure 9: One-Day-Ahead 15-Min Return Function Forecast and Forecast Interval (VAR-
sBEKK)

This figure compares the forecast function and forecast interval of 15-Min returns based on the VAR-
sBEKK and VAR models of eigenscores
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Figure 10: One-Day-Ahead 15-Min Return Function Forecast and Forecast Interval (VAR-
sBEKK)

This figure compares the forecast function and forecast interval of hourly returns based on the VAR-
sBEKK and VAR models of eigenscores

We observe again that the proposed method based on the VAR(1)-sBEKK(1,1) model of

eigenscores produces forecast intervals that are narrower than those proposed by Aue et al.

(2015).

Table 2: Forecast Performance: VAR-sBEKK and VAR Eigenscore Models

15-Min RMSE MAE Sign S̄BEKK S̄Aue

0.089 0.059 47.6 % 0.552 1.567

Hourly RMSE MAE Sign S̄BEKK S̄Aue

0.185 0.132 45.0% 1.443 4.115

The results in this table are calculated based on the forecast of the same time interval as in Table
1. S̄BEKK represents the forecast interval score of the VAR(1)- sBEKK(1,1) model and S̄Aue

represents the forecast interval score of Aue et al. (2015).
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Table 2 describes the performance of pointwise forecasts and interval forecasts of the

same time interval as Section 3.3.2, obtained by applying VAR(1) and VAR(1)-sBEKK(1,1)
6 Columns 1 to 5 report the observed frequency, followed by the RMS (Col.2), MAE (Col.3),

the percentage of correct forecast sign (Col.4) and the forecast interval score (Col.5). The

RMSE and MAE for our method are identical to those based on the VAR(1) model of Aue

et al. (2015), because our estimation proceeds in two steps, and the first step produces the

conditional mean forecasts. The Sign in Column 4 provides the percentage of successful

sign forecast, which are also identical. The advantage of our approach is in the accuracy

of the pointwise forecast interval, which can be evaluated by comparing the interval score

SBEKK of our model to the score SAUE in Column 5 based on the VAR forecast interval of

Aue et al. (2015). The results indicate that the VAR-sBEKK model outperforms the VAR-

based forecast of Aue et al. (2015) in terms of the accuracy of the forecast intervals in both

15-minute and hourly returns. For the 15-minute returns case, our method’s coverage rate,

corresponding to the nominal 95% confidence interval (ω = 0.05 in equation (22)), is 97.91%,

whereas for the hourly returns case, it stands at 98.75%.

By comparing the results in Tables 1 and 2, we find that the multivariate approach based

on the VAR-sBEKK model performs the best in terms of the interval accuracy score in the

15-minute return case, while the univariate AR-GARCH model performs the best in terms

of the interval accuracy score in the hourly returns.

4 Intraday FPCA Forecast

So far, we have considered predicting the entire function of returns out-of-sample one day

ahead, i.e. for i = N + 1. Let us now consider a new approach for forecasting returns at

shorter intraday horizons of k time units, over 1 or more hours on a given day i = N when

the returns are observed only up to a given hour on that day. For assets traded 24/7, the day

is conventionally determined by the UTC hours 0:00 and 24:00. A daily function of returns

may as well start at a different point and cover 24 consecutive hours. This idea underlies the

forecasting approach based on a ”rolling FPCA” and inspired by the paper of Aguilera et al.

(1997).

6The function ”bekk fit” from the BEKKs R package became unstable for a large number of variables
includes. The functional variables of 15-minute returns are smoothed using a relatively smaller number of
basis functions, so the number of eigenfunctions J included in the sBEKK is small enough to keep ”bekk fit”
stable.
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4.1 FPCA Rolling Forecast Model

Let us consider the following scenario: On day N , We observe N − 1 complete functions

Xi(t) on the interval t = [1, . . . , 24], i = 1, . . . , N − 1. Suppose that on day N the return

function is incomplete: we have observed only the returns up to and including t=23, and we

wish to predict the return over the last hour, i.e in the neighborhood of t = 24. To do that,

we consider an auxiliary set of complete functions Xi(s)
+ on the interval s = [0, . . . , 23], as

illustrated in Table 3 below, observed on days i = 1, ..., N .

First, we perform the FPCA on the set of N −1 functions to get the eigenscores β̂ij, i =

1, . . . , N − 1, j = 1, . . . , J and eigenfunctions ξ̂∗l (t).

Next, we perform the FPCA on the set ofN auxiliary functionsXi(s)
+, s = [0, . . . , 23], i =

1, . . . , N , yielding eigenscores α̂ij, i = 1, . . . , N, j = 1, . . . , J , and eigenfunctions ξ̂+j (s). In or-

der to predict the neighborhood of XN(24), we need to predict the eigenscores βij associated

with XN(t = 1, . . . , 24). This is done by a regression model.

Table 3: Illustration of rolling functions of time

Hour 0(24) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
X+(s) • • • • • • • • • • • • • • • • • • • • • • • •
X(t) • • • • • • • • • • • • • • • • • • • • • • • •

X+(s) and X(t) are both functions on 24 hourly returns with X+(s) shifted one-hour-behind of
X(t)

Table 3 provides an example of X+(s) and X(t) when forecasting the return function over

hour 24 of UTC time. Note that there are 23 overlapping discrete hourly returns between the

functions X+(s) and X(t). For a prediction at horizon k > 1, there will be 24−k overlapping

discrete returns. The algorithm proceeds as follows:

Step 1: Calculate N demeaned functions X+
i (s) by subtracting the sample mean X̄+(s) =

1
N

∑N
i=1X

+
i (s), s = 1− k, . . . , 24− k.

Step 2: Calculate N − 1 demeaned functions Xi(t) by subtracting the sample mean X̄(t) =
1

N−1

∑N
i=1Xi(t), t = 1, ..., 24.

Step 3: Estimate the eigenfunctions ξ̂+j (s), j = 1, . . . , J from the covariance operator of

X+
i (s), i = 1, . . . , N and compute eigenscores α̂ij =< X+

i , ξ̂
+
j (s) >, i = 1, . . . , N ; j = 1, . . . , J

of X+(s) by FPCA.

Step 4: Estimate the eigenfunctions ξ̂l(t), l = 1, . . . , J from the covariance operator of

Xi(t), i = 1, . . . , N − 1, and compute the eigenscores β̂il =< Xi, ξ̂l(t) > by FPCA.
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Step 5: For each j = 1, .., J run a regression model of a vector of eigenscores β̂.j =

[β1,j, ..., βN−1,J ]
′ of lengthN−1 on the (N−1)×J matrix α̂ = [α1,l, ..., αN−1,J ]

′, i = 1, ..., N−1:

β̂.j = α̂c+ vj, for j = 1, . . . , J,

where c = [c1, .., cJ ]
′ is a vector of coefficients and vj is the regression error with mean 0 and

finite variance.

Step 6: Predict the eigenscores βN,j, j = 1, . . . , J of length J on day N by using the

estimated regression coefficients from Step 4 and the 1 × J row vector of eigenscores α̂N

estimated in Step 3 as the explanatory variable:

β̃N,j = α̂Nc for j = 1, . . . , J,

Step 7: The forecast over the 24th hour on the N th function is obtained from:

X̂N(t) =
∑J

j=1 β̃Nj ξ̂j(t) + X̄(t).

The forecast function X̂N(24) evaluated at t = 24, gives the value is the forecast value of the

one-hour-ahead target return.

Note that the FPCA performed on X(t) and X+(s) can differ because the stationarity

is satisfied over days i = 1, ..N . Hence, the covariances and their principal components can

vary over the subsets of time t, although this variation is bounded by the square integrability

of the functions.

4.2 FPCA Rolling Forecast Model: Application to Bitcoin Re-
turns

We forecast the hourly returns on Bitcoin out-of-sample at horizon k = 1 of one hour for a

continuous 200 discrete hourly returns starting from 2019-02-07, which is the same out-of-

sample period as Gradojevic et al. (2023)’s subsample 5 for hourly BTC returns. There is

no optimal way to determine how to choose the best number of daily functions to initiate

the algorithm. We repeat the above process for a chosen range of daily function numbers

of [90, 110]. The results indicate that applying different numbers of daily functions only

changes the MSE slightly; however, the number of daily functions applied does affect the

correct forecast sign rate. Therefore, in this paper, the number of daily functions applied to

the algorithm is chosen by the value that results in the best correct forecast sign rate.
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Figure 11: Rolling FPCA: Hourly BTC Return Forecast

In Step 5 we use various estimators of coefficients c. Because we expect the off-diagonal

elements of the α′α matrix to be close to zero by the orthogonality conditions, and the

diagonal elements for large j to be close to zero as well, we consider the Lasso and Ridge

estimators, to ensure that this matrix is non-singular. The Support Vector Machine (SVM)

is used as it provides optimal weighting and bias correction. We also account for potential

non-linear relations between the eigenscores by using the Random forest (RF), and Neural

Networks (NN).

We compare our forecast performance with the out-of-sample forecast for subsample 5

of Gradojevic et al. (2023), who used the Feedforward Deep Artificial Neural Network(FF-D-

ANN), SVM, RF estimators of the Random Walk (RW) and ARMAX(1,1) (Autoregressive

Moving Average with exogenous inputs) models to forecast one-hour-ahead BTC returns.
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Table 4: Forecast Performance with Different Regression Estimators in Step 5

Estimator RMSE Sign (%)
OLS 0.0345 59.0

Ridge OLS 0.0331 62.5
LASSO OLS 0.0342 63

SVM 0.0321 57.5
RF 0.0335 60.5
NN 0.0437 53.5

The results in this table are calculated by 200 discrete forecast hourly returns starting from 2019-
02-07.

Our proposed algorithm gives the best performance in terms of forecast error when the

SVM method is used in Step 5, which yields an RMSE of 0.0321 while the Ridge OLS results

in the best forecast sign rate of 62.5%. In Gradojevic et al. (2023), the Random Walk model

performs best, resulting in an RMSE of 0.0363 and a correct forecast sign rate of 50.24%.

4.3 FPCA Rolling Forecast Model: the Horizon Effect

So far we have discussed the forecasts at horizon k = 1. At K = 1, the coefficients α are

arbitrarily close to β, so that the coefficient of determination R2 of the Ridge, or Lasso

regression in step 5 is arbitrarily close to 1. When the forecast horizon k increases, the

auxiliary set of functions X+(s) gets shifted backward in time by k and the overlap between

X(t) and X+(s) diminishes. Then, the explanatory power of coefficients α decreases with

the horizon k and the R2 of the regression in step 5 diminishes quickly. We observe that the

R2 is above 0.5 up to about horizon k = 10, as illustrated in Figure 12 below.

Figure 12: R2 for Different Horizons of Using LASSO In Step 5
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Hence we recommend using the above intraday forecasting method at very short horizons.

5 Conclusions

In this paper, we define the KL dynamic factor model for the analysis of conditionally het-

eroscedastic functional processes. We also introduce two new Functional Principal Com-

ponent Analysis (FPCA) based methods for forecasting intraday Bitcoin return. The first

approach aims at improved interval forecasting of daily returns and exploits the serial cor-

relation of eigenscores revealed in the FPCA literature. The novelty of our approach is that

it also takes into consideration the conditional heteroscedasticity of returns and produces

pointwise forecast intervals that are narrower than the existing literature. The second ap-

proach is a rolling FPCA for intraday forecasting of Bitcoin returns. It allows us to consider a

sequence of partially overlapping daily return functions that start at subsequent time points

and forecast the returns intradaily.

The empirical results of forecasting Bitcoin daily 15-minute and hourly return functions

from the proposed methods indicate that accounting for the conditional heteroscedasticity of

returns by forecasting the eigenscores using AR(1)-GARCH(1,1) and VAR(1)-sBEKK(1,1)

models noticeably improves the accuracy of forecast intervals. Our proposed ”rolling” FPCA

method for forecasting one-step-ahead hourly Bitcoin returns shows better performance in

terms of both forecast errors and forecast sign accuracy compared to other methods of Bitcoin

forecasting in the literature (Gradojevic et al., 2023).
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Appendix A

Figure 13: ACF of Hourly Eigenscores Corresponding with Eigenvalue Order 1 to 3

The diagonal graphs show the ACF of each eigenscore. The off-diagonal graphs show the cross ACF
between different eigenscores.
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Figure 14: ACF of Hourly Square of Eigenscores Corresponding with Eigenvalue Order 1 to
3

The diagonal graphs show the ACF of the square of each eigenscore. The off-diagonal graphs show
the cross ACF between different squares of eigenscores.

39



Figure 15: Daily Variance of 15-Minute BTC Return and Daily Variance of In-sample Esti-
mation Errors

The black line illustrates the daily variance of 15-Minute BTC returns. The red line illustrates the
daily variance of the in-sample error êi(t) = Xi(t)− X̂i(t) with a mean of 1.95× 10−6.

Appendix B

This Appendix illustrates the constraints on the parameters implied by the unitary marginal

variance of scores.

a) univariate model

Let us suppose that the eigenscores βi,j=1, .., βi,J0 are independent and follow univariate

AR(1)-GARCH(1, 1) models. Then, the eigenscore j on day i is:

βi = µ+ aβi−l + ϵi

νi = ς0 + ζϵ2i−l + ςνi−1,

where

ϵi =
√
vizi, ∀i = 1, .., N
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Then, the marginal variance σ2 of ϵi satisfies:

σ2 = 1− a2 = ς0/(1− (ζ + ς))

where ζ + ς ̸= 1 by the standard stationarity assumption on the GARCH(1,1).

b) multivariate model

βi = c+Π1βi−1 + ϵi i = 1, ...N (23)

and the conditional variance of ϵi is

Hi = CC′ + aϵi−1ϵ
′
i−1 + gHi−1 i = 1, ...N (24)

Then the marginal variance Σ of ϵi satisfies

Σ = Id− ΠΠ′ = CC ′/(1− (a+ g))

where a+ g ̸= 1.
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