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Abstract

This paper introduces a new approach to detect bubbles based on mixed
causal and noncausal autoregressive processes and their tail process rep-
resentation during explosive episodes. Departing from traditional defi-
nitions of bubbles as nonstationary and temporarily explosive processes,
we adopt a perspective in which prices are assumed to follow a strictly
stationary process, with the bubble considered an intrinsic component
of its nonlinear dynamics. We illustrate our approach with the phe-
nomenon called the ”green bubble” in the field of renewable energy in-
vestment.
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1 Introduction

This paper introduces a novel method of bubble detection based on strictly stationary non-

causal autoregressive processes and their tail process representation during a bubble. The tail

process was first defined by Basrak and Segers (2009) as the weak limit of finite-dimensional

distributions of the time series, given that an extreme value occurs. This definition was

further generalized to the tail empirical process by Kulik and Soulier (2020), which is based

solely on observations exceeding a high threshold, and interpreted by the authors as ”a model

for the clusters of exceedances”. It is valid for geometrically ergodic Markov processes, and

consequently also for mixed causal-noncausal autoregressive MAR(1,1) and purely noncausal

MAR(0,1) processes – where the notation MAR(r, s) indicates a mixed model where r is the

causal order and s the noncausal one – with locally explosive patterns including bubbles and

spikes. As shown, for example, by Fries and Zakoian (2019) and Cavaliere et al. (2020), the

MAR(1,1) and MAR(0,1) processes are well-suited for modeling variables such as commodity

and cryptocurrency prices. In this context, the paper introduces a simple statistic with an

asymptotic normal distribution that provides an ex ante warning of a potentially emerging

bubble. Ex post, this statistic is a tool to measure the duration of the bubble and identify

its starting and ending dates.

MAR processes have recently received attention in applications to bubble forecasting and

testing. de Truchis et al. (2025) considers the forecasting of extreme trajectories of α-stable

MAR processes, based on a measure describing the conditional distribution of a normalized

path of the process, following a large value. The method is applied to predict the occurrences

of the El Niño and La Niña phases of the temperatures and winds of the Pacific Ocean.

In comparison, our approach focuses on testing rather than predicting the bubbles and is

computationally simple as it does not require determining the length of a future path as a

tuning parameter or normalization. Blasques et al. (2025) introduces a bubble test based on

the detection of a large future shock in the forward-looking component of an MAR process

and applies it to oil prices. Compared to their approach, our proposed test statistic has the

advantage of being easy to compute and having an known normal asymptotic distribution,

rather than depending on the error distribution of a given model.

Alternative methods for detecting bubbles, such as the Dickey-Fuller augmented test

(e.g., SADF and GSADF), assess unit roots and explosive regimes [Phillips et al. (2011);

Phillips et al. (2015)]. However, our approach departs from these conventional methods by

employing mixed autoregressive causal-noncausal models, which capture locally explosive

patterns observed in the data. Unlike those detection approaches, we assume that the series
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follows a strictly stationary process in which bubbles are an inherent part of the dynamics,

rather than distinguishing a stationary and non-stationary (unit root) regime of a time series.

In addition, it accommodates local explosive patterns with various rates of explosion, rather

than a fixed rate of growth of a unit root process.

The literature on green energy stocks is relatively recent and focuses on return analysis.

The pioneering paper by Henriques and Sadorsky (2008) shows that returns on technology

stocks and oil prices are both Granger-caused by the returns of green (alternative) energy

stocks, based on a vector autoregressive (VAR) model. The relationship between green stocks

and oil has also been examined by Sadorsky (2012a), Sadorsky (2012b), and Kumar et al.

(2012). These articles consider carbon prices and do not find their significant impact on

green energy stocks. In contrast, this impact is evidenced after the year 2007 by Managi and

Okimoto (2013). The literature has not yet considered the green stock price dynamics or

detected and explained the presence of bubbles, which is done in this paper.

The rest of the paper is organized as follows. Section 2 reviews the causal-noncausal

autoregressive processes and their estimation techniques, with a focus on the GCov estimator.

Section 3 studies the behavior of the MAR process and its tail dynamics during a bubble

period. Section 4 develops test statistics to detect the bubbles and determine their duration.

In Section 5, we apply our approach to investigate the presence and duration of ”green

bubbles” in the green energy stock market. Section 6 concludes. Appendices A and B

contain additional technical results, and Appendix C presents the simulations.

2 Causal-Noncausal Processes

The causal-noncausal models represent stationary processes characterized by locally explosive

patterns, such as bubbles and spikes. The univariate causal-noncausal models were exam-

ined, for example, by Breidt et al. (1991) and Lanne and Saikkonen (2011), and extended

to multivariate analysis by Lanne and Saikkonen (2013), Gourieroux and Jasiak (2017), and

Davis and Song (2020). In applied research, causal-noncausal models were used to study

various economic and financial variables, including Bitcoin prices [Hencic and Gouriéroux

(2015), Cavaliere et al. (2020)], stock market indices [Gourieroux and Zakoian (2017)], com-

modity prices [Hecq and Voisin (2021), Lof and Nyberg (2017)], and inflation rates [Lanne

and Saikkonen (2013), Hecq and Voisin (2023)].

One of the main advantages of these models is their ability to capture complex nonlin-

ear patterns, such as local trends and conditional heteroskedasticity, while still resembling

traditional linear time series models in specification. However, the standard Box–Jenkins

3



approach to identifying and estimating linear time series processes does not apply here, as

it relies on the assumption of Gaussian errors. Under this assumption, causal and noncausal

dynamics cannot be distinguished (see Gourieroux and Monfort (2015)). Therefore, identifi-

cation requires assuming non-Gaussian error distributions in causal–noncausal processes.

2.1 Univariate Causal-Noncausal Models

A strictly stationary univariate mixed causal-noncausal autoregressive MAR(r, s) model is

defined as:

Φ(L)Ψ(L−1)yt = ϵt, (1)

where the error term ϵt is non-Gaussian, independent, identically distributed (i.i.d.) and such

that E(|ϵt|δ) < ∞ for δ > 0 [Lanne and Saikkonen (2011)]. The polynomial Φ(L) in the lag

operator L is of the order r. The polynomial Ψ(L−1) in the leading operator L−1 is of order

s. Both polynomials Φ(L) and Ψ(L−1) have roots outside the unit circle.

The MAR(r, s) process (1) admits a unique strictly stationary solution, which is a two-

sided moving average of order infinity MA(∞):

yt =
∞∑

h=−∞

chϵt−h,

in past, present and future shocks, with c0 = 1 [Breidt et al. (1991)]. The coefficients ch are

uniquely defined, provided that (ϵt) are non-Gaussian. When yt is purely noncausal (resp.

causal), the coefficients ch are zero for all h > 0 (resp. h < 0). Thus, a purely causal

process is determined only by the past and present shocks, while a purely noncausal process

is influenced only by the present and future shocks. For r = s = 1, we obtain the MAR(1, 1)

process:

(1− ϕL)(1− ψL−1)yt = ϵt, (2)

with |ψ| < 1, |ϕ| < 1, which is purely causal (resp. noncausal) if ψ = 0 (resp. ϕ = 0). For

each of these pure processes, the effects of a large ϵt are easily distinguished, as a large error

leads to a (vertical) jump if ψ = 0 and ϕ > 0, and an explosive bubble with a (vertical) burst

if ψ > 0 and ϕ = 0.

The MAR(1, 1) process can be decomposed into the following unobserved components

[Lanne and Saikkonen (2011)]:

ut ≡ (1− ϕL)yt or, (1− ψL−1)ut = ϵt, (3)

and

vt ≡ (1− ψL−1)yt or, (1− ϕL)vt = ϵt. (4)
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Gourieroux and Jasiak (2016) shows that ut is ϵ-noncausal (dependent on the future and

present values of ϵ) and y-causal (dependent on the past and present values of y), representing

the regular dynamics of yt. In contrast, vt is ϵ-causal (dependent on the past and present

values of ϵ) and y-noncausal (dependent on the future and present values of y), representing

the explosive part of the process, including bubbles and spikes. Thus, ut, vt are the unobserved

causal and noncausal components of yt.

The process yt can be described by the following deterministic representation based on

the unobserved components and used e.g. to simulate the MAR processes:

yt =
1

1− ϕψ
(ϕvt−1 + ut), or yt =

1

1− ϕψ
(vt + ψut+1).

We observe that yt is a linear function of the first lag of the ϵ-causal component vt and of

the current value of the ϵ-noncausal component ut. Alternatively, yt can be expressed as a

linear function of the current value of the ϵ-causal component vt and of the first lag of the

ϵ-noncausal component ut. The noncausal component vt represents the explosive part of the

process, such as bubbles and spikes. On the other hand, ut is the purely causal component

of the process yt.

Moreover, the autocovariances of the latent components defined in eq. (3) and (4),

respectively, help us distinguish the bubble episode in the process (yt). We observe that

the autocovariances at lag h ≥ 1 of ut+h and vt conditional on yt = y are time-varying,

in general, provided that y is not an extreme [see Appendix B]. When y is large, their

behavior is different and can be examined using the concept of a tail process described in

Section 3. In practice, the latent components are computed given the estimated values of

the autoregressive parameters. The estimation methods are discussed in the next section.

Remark 1: An alternative univariate representation of the causal-noncausal process can be

written as:

yt = φ1yt−1 − · · · − φpyt−p + εt,

where εt = − 1
ψs
ϵt [Brockwell and Davis (1987)]. In this representation, the polynomial

Φ(L) = 1− φ1L− · · · − φpL
p has roots both inside and outside the unit circle. Specifically,

the roots outside the unit circle correspond to the causal component of yt, while the roots

inside the unit circle indicate the noncausal component that captures bubbles and other

nonlinear features. Note that in either representation of the model, the error εt is not an

innovation process because εt is not independent of yt−1, yt−2, ....
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2.2 The GCov Estimator

One way to estimate and identify MAR(r, s) models is by using a parametric non-Gaussian

Maximum Likelihood (ML) approach (see, e.g. Hecq et al. (2016)). Alternatively, the semi-

parametric Generalized Covariance (GCov) estimator can be used, which does not require

any distributional assumptions on the errors, other than non-Gaussianity for the identifica-

tion of parameters. It is a one-step estimator that is consistent, asymptotically normally

distributed, and semi-parametrically efficient. It can achieve parametric efficiency in special

cases [Gourieroux and Jasiak (2023)]. The GCov minimizes a portmanteau-type objective

function involving nonlinear autocovariances, that is, the autocovariances of nonlinear trans-

formations of model errors, which successfully identify the causal and non-causal dynamics

[Chan et al. (2006)].

For example, let us consider the nonlinear functions a (εt) =
[
a1 (εt)

′ , . . . , aK (εt)
′] that

satisfy the regularity conditions given in Gourieroux and Jasiak (2023). This increases the

dimension of the process from 1 to K. Let us denote by Γ̂a (h;θ) , h = 1, ..., H the autocovari-

ance matrices at lags h = 0, ..., H, with Γ̂a (0;θ) representing the variance, and θ the vector

of autoregressive parameters. Then, the GCov estimator of the parameter θ̂T minimizes the

following objective function:

θ̂T = argmin
θ

H∑
h=1

Tr
[
Γ̂a (h;θ) Γ̂a (0;θ)−1 Γ̂a (h;θ)′ Γ̂a (0;θ)−1

]
, (5)

where Tr denotes the trace of a matrix and we denote LT (θ̂T , H) the value of the function

at its minimum. Alternatively, when the number of transformations K is large, we can

replace in the above formula Γ̂a (0;θ) with diag
(
Γ̂d(0;θ)

)
, which is the variance matrix

containing only the diagonal elements of Γ̂a(0; θ). This latter version of the GCov estimator

is no longer semiparametrically efficient, as it is not optimally weighted [see Gourieroux and

Jasiak (2023), Cubadda and Hecq (2011)]. Another strategy for the diagonal GCov is the

regularized GCov proposed by Giancaterini et al. (2025).

The choice of an informative set of transformations (ak, k = 1, ..., K) depends on the spe-

cific series under investigation. For example, in financial applications, linear and quadratic

functions can be selected, such as a1(εt) = εt, a2(εt) == ε2t . This implies that a1 is a lin-

ear function of errors in a causal-noncausal process, while a2 transforms the error term by

squaring it for each t = 1, . . . , T , where T represents the total number of observations. In

application to MAR processes with heavy-tailed error distributions, such as stable distri-

butions, including Cauchy, or t-student distribution with low degrees of freedom, one can
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use the square root of absolute values or other fractional powers to ensure the asymptotic

normality of the GCov estimator.

Moreover, the objective function minimized in (5) and evaluated at the estimated param-

eter θ̂T can be used to test the fit of the model. Specifically, we test the null hypothesis:

H0 : {Γa0(h) = 0, h = 1, ..., H},

using the statistic

ξ̂T (H) = TLT (θ̂T , H),

which, under the implicit null hypothesis of serial independence of errors, has an asymptotic

chi-square distribution with degrees of freedom equal to HK2 − dim(θ) [Gourieroux and

Jasiak (2023)].

3 Bubble Analysis

Our approach to bubble analysis assumes that the process of interest follows a strictly sta-

tionary MAR(r, s) process with errors from a heavy-tailed distribution with tail parameter

α ∈ (0, 2) that includes the Cauchy distribution for α = 1, for example, or a t-student dis-

tribution with a low number of degrees of freedom. In this Section, we focus our attention

on MAR processes of combined orders r and s less than or equal to 2, so that the process

of interest is either a MAR(0,1), i.e., a purely noncausal process of order 1, or a MAR(1,1),

or a causal MAR(1,0). These processes are geometrically ergodic. Gourieroux and Zakoian

(2017) and Fries and Zakoian (2019) also show that the MAR(0,1) and MAR(1,1) processes

are Markov of order 1 and 2, respectively. The results can be generalized to higher-order

MAR(r, s) processes, which are Markov too [Fries and Zakoian (2019), Proposition 3.1].

3.1 On-Bubble Dynamics

Consider the locally explosive MAR(0,1) and MAR(1,1) processes. It has been shown in

the literature that during a bubble episode, and conditional on a large yt > y, the causal-

noncausal MAR(0,1) and MAR(1,1) processes with α-stable distributed errors, α ∈ (0, 2)

have distinct dynamics [Fries (2022)], which leads to different behavior of conditional au-

tocovariances of its latent components. In this Section, we describe these dynamics and

generalize the results in Fries (2022) using the concept of a spectral tail process, based only

on observations above a high threshold. We have the following result:
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Proposition 1 [Kulik and Soulier (2020), Chapter 15.3]: Let {yt, t ∈ Z} be a strictly

stationary process with i.i.d. errors ϵt, t = 1, 2, ... from a heavy-tailed distribution with

(Pareto-type) tails of tail index α and with a two-sided MA representation:

yt =
+∞∑

h=−∞

chϵt−h,

with nonnegative coefficients. The process

(
yt+h
yt

)
h

, h ∈ Z, converges weakly to the (spec-

tral) tail process (Xh), so that conditional on a large yt > y, where y is a high threshold, we

have :

L
(
yt+h
yt

, h = −H, ..., H|yt > y

)
w→ L(Xh, h = −H, ..., H),

where
w→ denotes weak convergence, also denoted as

yt+h
yt

d
≈ Xh for h ∈ Z, and

Xh =
ch+N
cN

X0, h ∈ Z, (6)

where X0 = 1. N is an integer-valued random variable, independent of y and such that:

P [N = h] =
cαh∑
h∈Z c

α
h

, ∀h ∈ Z. (7)

Thus, setting X0 = 1, we consider an upward (positive) bubble. Henceforth, we focus our

attention on this case for ease of exposition. Similar results are easily obtained for downward

bubbles, conditional on yt < y where y tends to −∞ with X0 = −1. This result can

be applied to the MAR(1,1) and MAR(0,1) processes as follows. Let us first consider the

MAR(1,1) process defined in Section 2.1, assuming positive coefficients ϕ and ψ.

Proposition 2: The strictly stationary MAR(1,1) process with i.i.d. errors ϵt, t = 1, 2, ...

from a heavy-tailed distribution with tail index α:

(1− ϕL)(1− ψL−1)yt = ϵt,

(i) admits a two-sided MA(∞) representation with the coefficients: ch =
1

1− ϕψ
ψ−h, if

h ≤ 0, and ch =
1

1− ϕψ
ϕh, if h ≥ 0.

(ii) the tail process Xh is such that:

Xh = ψ−1Xh−11lN≤−h + ϕXh−11lN>−h,

with X0 = 1, and the probability P [N = h]:
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P [N = h] =
ψ−hα

[ 1
1−ϕα + 1

1−ψα − 1]
, if h ≤ 0, and P [N = h] =

ϕhα

[ 1
1−ϕα + 1

1−ψα − 1]
, if h ≥ 0,

with 00 = 1, by convention.

Proof: See Appendices A1-A2.

We observe that the distribution of variable N is a mixture of two geometric distributions

(see Proposition 4).

Corollary 1: In the MAR(1,1) process, we have:

Xh = ϕh1lN>Max(−h,0) + ϕ−h−Nψ−N1l0<N≤−h + ϕh+NψN1l−h<N≤0 + ψ−h1lN≤Min(−h,0)

Proof: We proceed in three steps. First, we solve the backward and forward recursive

equations satisfied by the sequences Xh starting from the same initial (terminal) condition

X−N . Next, we determine the value of X−N given the known value X0 = 1. In the last step,

we combine the results.

(i) From Proposition 2 it follows that for N > −h we have :

Xh = ϕXh−1

Since N > −h ⇐⇒ h > −N ⇐⇒ h ≥ −N + 1, this leads to a recursive formula with the

initial condition X−N and the general term

Xh = ϕh+NX−N , for h ≥ −N + 1

(ii) It follows from Proposition 2 that for N ≤ −h, we have:

Xh =
1

ψ
Xh−1,

which can be written as:

Xh−1 = ψXh.

Since N ≤ −h ⇐⇒ −h ≥ N ⇐⇒ h ≤ −N , this leads to a recursive formula with the

terminal condition X−N and the general term:

Xh = ψ−h−NX−N

(iii) These results can be combined, yielding:

Xh = (ϕh+N1lN>−h + ψ−h−N1lN≤−h)X−N
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(iv) The value of X−N is unknown and can be determined from X0 = 1 by evaluating the

above formula for h = 0. We get:

1 = X0 = (ϕN1lN>0 + ψ−N1lN≤0)X−N

⇐⇒ X−N = ϕ−N1lN>0 + ψN1lN≤0

(v) Next, we compute:

Xh = (ϕh+N1lN>−h + ψ−h−N1lN≤−h)(ϕ
−N1lN>0 + ψN1lN≤0)

= ϕh1lN>−h1lN>0 + ψ−h−Nϕ−N1lN≤−h1lN>0 + ϕh+NψN1lN>−h1lN≤0 + ψ−h1lN≤−h1lN≤0

= ϕh1lN>Max(−h,0) + ψ−h−Nϕ−N1l0<N≤−h + ϕh+NψN1l−h<N≤0 + ψ−h1lN≤Min(−h,0)

During a bubble episode, we can distinguish the phases of growth and decline. The

noncausal persistence of MAR(1,1) processes determines the rate at which a bubble keeps

growing up to time t−N . The negative power of ψ indicates that the growth is explosive while

N < 0 given that |ψ| < 1 is assumed for strict stationarity. The above result is consistent

with Proposition 4.2 in Fries (2022) which describes the dynamics of a MAR(1,1) process

conditional on a large value yt > y and yt+1

yt
= yt+2

yt+1
= 1/ψ. In the MAR(1,1), conditional

on yt > y, the bubble either keeps growing to the next value yt+1 = 1
ψ
yt, or it bursts and

decreases to yt+1 = ϕyt. This latter pattern is also consistent with formula (v) for N > 0,

which additionally implies that the bubble bursts at N = 0.

In a MAR(0,1), the bubble bursts vertically to 0, while in the causal AR(1), i.e.,

MAR(1,0), we observe a jump, followed by a decrease determined by the autoregressive

coefficient, as shown below.

Corollary 2: The strictly stationary MAR(0,1) process with i.i.d. errors ϵt, t = 1, 2, , .. from

a heavy-tailed distribution with tail index α:

(1− ψL−1)yt = yt − ψyt+1 = ϵt,

admits a one sided MA(∞) representation with the moving average coefficients:

ch = ψ−h, if h ≤ 0, and ch = 0, if h > 0.

The tail process is such that:

Xh = ψ−1Xh−11lN≤−h,

with X0 = 1 and the probability P [N = h]:
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P [N = h] = 0, if h > 0, and P [N = h] = (1− ψα)ψ−hα, if h ≤ 0,

It follows from Proposition 2 that the variable −N has a geometric distribution on N with

parameter ψα during the growth phase of bubble.

The causal autoregressive processes with errors from a heavy-tailed distribution with tail

index α may admit a tail process behavior following a jump.

Corollary 3: The strictly autoregressive of order 1 (causal AR(1), i.e. MAR(1,0)) process:

yt = ϕyt−1 + ϵt,

with i.i.d. errors ϵt, t = 1, 2, , .. from a heavy-tailed distribution with tail index α and 0 <

ϕ < 1 admits a one sided MA(∞) with coefficients:

ch = ϕh if h ≥ 0, and ch = 0, if h < 0.

The tail process is such that:

Xh = ϕXh−11lN≥h,

with X0 = 1 and the probability P [N = h] :

P [N = h] = 0; if h < 0, and P [N = h] = (1− ϕα)ϕhα; if h ≥ 0,

Hence, the path of yt displays jumps, with a geometric decline. The variable N has a

geometric distribution with parameter ϕα during the decline following a jump. Moreover, the

behavior of pure noncausal autoregressive processes of order 2 (MAR(0,2) with i.i.d. errors

ϵt, t = 1, 2, .. from a heavy-tailed distribution with tail index α is described in Appendix B.

The results given above suggest the following definition of a bubble:

Definition: The bubble is an episode when the observations above a high threshold on

a strictly stationary autoregressive noncausal process with i.i.d. errors from a heavy-tailed

distribution with tail index α increase (decline) at the rate of a tail process.

From Proposition 1, it follows that at any time t when yt > y and y is a high threshold,

the ratios of observations yt+h/yt
d
≈ Xh for any h, where

d
≈ denotes an approximate equality

of distributions.

3.2 Tail Behavior of Latent Components

The latent components are defined in equations (3) and (4) as:

ut+1 = (1− ϕL)yt+1 = yt+1 − ϕyt and vt = (1− ψL−1)yt = yt − ψyt+1, t = 1, ...
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for the MAR(1,1) process. We observe that the ratios of these latent components divided by

yt:
ut+h
yt

=
yt+h − ϕyt+h−1

yt
and

vt+h
yt

=
yt+h − ψyt+h+1

yt

are functions of ratios yt+h/yt for h ∈ −H, ..,H. Our goal is to replace them by the tail

components: Uh = Xh − ϕXh−1 and Vh = Xh − ψXh+1, respectively. Then, when yt > y is

large, they are linear deterministic functions of the components Xh of the tail process.

Let us now examine how Proposition 2 can be used to obtain the asymptotic behavior

(in distribution) of Uh, Vh, h = −H, ..., H.

Proposition 3: At time t such that yt > y, for a high threshold y, we have:

ut+h/yt
d
≈ Xh − ϕXh−1 ≡ Uh, vt+h/yt

d
≈ Xh − ψXh+1 ≡ Vh,

and

Uh = (ψ−1 − ϕ)Xh−11lN≤−h, Vh = (1− ψϕ)Xh1lN>−h−1.

Proof: Let us consider the causal component. It follows from Proposition 2 that:

Uh = Xh − ϕXh−1 = (ψ−1 − ϕ)Xh−11lN≤−h.

Similarly, we have:

Vh = Xh − ψXh+1 = Xh −Xh1lN≤−h−1 − ψϕXh1lN>−h−1 = (1− ϕψ)Xh1lN>−h−1.

Corollary 4: The causal and noncausal tail components Uh, Vh are such that:

Uh = 0, if N > −h <=> t+ h > t−N ,

Vh = 0, if N ≤ −h− 1 <=> t+ h < t−N − 1,

Proposition 3 and Corollary 4 can be interpreted as follows. Let us consider an exogenous

time t when yt > y, for large y. Then t belongs to a bubble episode, with a peak at time

t−N . The noncausal (resp. causal) tail component is equal to zero after (resp. before) the

peak, and has the behavior of a MAR(0,1) tail process before the peak (resp. MAR(1,0) tail

process after the peak). This result can also be used to determine the behavior of products

of the causal and noncausal tail components.

Corollary 5: We have

ξt,h,k =
ut+hvt+k

y2t

d
≈ UhVk = 0, if h− k ≥ 1.
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Proof : We see that UhVk = 0 ⇐⇒ (N > −h) or (N ≤ −k−1). This condition is equivalent

to N ∈ Z that is always satisfied iff:

Z = (−∞,−k − 1] ∪ [−h+ 1,∞]

⇐⇒ −h+ 1 ≤ −k − 1 + 1 = −k

⇐⇒ h− k ≥ 1.

The result follows. In particular, we have:

ξt,h =
ut+h+1vt+h

ypt

d
≈ Uh+1Vh = 0, ∀h

where p = r + s = 2 is the combined autoregressive order of the process, and

ξt,0 =
ut+1vt
ypt

d
≈ U1V0 = 0.

For the MAR(0,1) process with p = 1, we get:

(i) at h = 0.

ξt,0 =
vt
yt

d
≈ 1− ψX1,

where

X1 = ψ−11lN≤−1.

The statistic is: ξt,0 = 1− 1lN≤−1 and is always 0 during the bubble.

(ii) at h = 1.

ξt,1 =
vt+1

yt

d
≈ X1 − ψX2

where

X2 = ψ−1X11lN≤−2

The statistic ξt,1 is equal to 0 as well.

The observed behavior of statistic ξt,h can be used for testing the hypothesis that the process

is in a bubble at time t + h. This approach is pursued in Section 4. Below, we discuss the

behavior of the variable N and associated inference.

3.3 Time to Peak

This section describes the stochastic properties of N , which determines the duration of a

bubble, and of t−N for N ≤ 0, which is interpreted as the time to peak. We consider first

the MAR(1,1) process.
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Proposition 4: In the MAR(1,1) process, the distribution of N is a mixture of two geometric

distributions with P [N ≥ 0] =
1

1− ϕα
/(

1

1− ϕα
+

ψα

1− ψα
). The distribution ofN givenN ≥ 0

is a geometric distribution in N with parameter ϕα, and the distribution of −1 − N , given

N ≤ −1 is a geometric distribution in N with parameter ψα.

Proof: From Proposition 2, it follows that:

P [N ≥ 0] =
1

1− ϕα
/

(
1

1− ϕα
+

ψα

1− ψα

)
.

Then, for h ≥ 0:

P (N = h|N ≥ 0) =
ϕhα

1− ϕα
, which is a geometric distribution in N with the parameter ϕα.

For h < 0, we have:

P (N = h|N < 0) =
ψ(−h−1)α

1− ψα
, which means that −1−N has a geometric distribution on N

with parameter ψα.

Corollary 6: The expected value of N is:

E(N) =
1

1
1−ϕα + 1

1−ψα − 1

(
ϕα

(1− ϕα)2
− ψα

(1− ψα)2

)
.

Proof: We have

E(N) = E(N |N ≥ 0)P (N ≥ 0) + E(N |N ≤ −1)P (N ≤ −1)

= E(Z1)P (N ≥ 0) + E(−1− Z2)P (N ≤ −1),

where Z1, Z2 follow geometric distributions on N with parameters ϕα and ψα, respectively.

It follows that:

E(N) =
1

1
1−ϕα + ψα

1−ψα

[
1

1− ϕα
ϕα

1− ϕα
+

ψα

1− ψα
(−1− ψα

1− ψα
)

]
=

1
1

1−ϕα + ψα

1−ψα

(
ϕα

(1− ϕα)2
− ψα

(1− ψα)2

)
.

The marginal expected value of N depends on the values of ϕ and ψ and is symmetric in ϕ

and ψ. In particular, it is equal to 0 if ϕ = ψ, which corresponds to a symmetric bubble.

In addition, this expectation depends on α. The effects of ϕ, ψ, α are illustrated in Figure 1,

where we observe that, for a fixed ψ, the expected value E(N) increases in ϕ. For a fixed ϕ,

E(N) increases in absolute values in ψ. In addition, the range of values of E(N) depends on

the tail parameter α.
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If the bubble is asymmetric, then E(N) can take either a positive or negative value.

Therefore, one may be interested in computing the conditional expectation of N given N < 0

to approximate the expected time to peak.

It is also interesting to compute the cumulative distribution function (cdf), or survival

function of N , to derive the quantiles of the distribution of N and obtain the prediction

interval for N . We find the quantiles h∗U and h∗L of the distribution of N at levels (1−γ) and

γ, where γ is small, which are: h∗U such that P [N ≤ h∗U ] = γ, and h∗L such that P [N >

h∗L] = 1−γ. Using small γ, we separately consider the geometric distributions of the mixture.

Corollary 7: For h ≤ 0, sufficiently small, we have:

P [N ≤ h] =
ψ−hα

1− ψα
1

[ 1
1−ϕα + 1

1−ψα − 1]
,

and for h > 0, sufficiently large, we have:

P [N > h] =
ϕhα

1− ϕα
1

[ 1
1−ϕα + 1

1−ψα − 1]
.

Proof: see Appendix.

The expected value (median or mode) provides a point prediction of the N . The quantiles

of the distribution of N provide the prediction interval for N .

For the MAR(0,1) process, the variable −N follows a geometric distribution on N with

parameter ψα (by Corollary 2 or Proposition 4) during bubble growth. The cumulative

probability function of N is:

P [N ≤ h] = (1− ψα)
∑
i≤h

ψ−iα = (1− ψα)
∑
i≥−h

ψiα = ψ−hα,

for h ≤ 0. The mean of this geometric distribution is equal to

E(N) = − 1

1− ψα
,

and can be interpreted as the average time to peak. The median is:

med(N) =

[
log 2

α log(ψ)

]
,

or its integer part, and the mode is equal to mode(N) = 0. Since the distribution of −N
is skewed, the expectation, median, and mode provide three different point predictions. We

illustrate the effect of the parameters ψ and α in Figure 1a. We observe that for MAR(0,1),
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Figure 1: E(N) for MAR(0,1) and MAR(1,1)

(a) E(N) for MAR(0,1) (b) E(N) for MAR(1,1), α = 0.5

(c) E(N) for MAR(1,1), α = 1 (d) E(N) for MAR(1,1), α = 1.5
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the absolute value of the expected time to peak increases in ψ. This is consistent with the

dynamics of this process, with a growing phase of a bubble followed by an instantaneous

crash. Moreover, the values of E(N) depend on the parameter α.

Up to the effect of the integer part, both the median and the expectation decrease in ψα.

To build the prediction interval, we use the quantiles of the geometric distribution, which are

determined by inverting the cumulative probability function P [N ≤ h] = ψ−hα. For a level

γ, the quantile is equal to :

h(γ) = − log γ

α logψ

and the prediction interval for N at level 10% is:

(− log 0.05

α logψ
,− log 0.95

α logψ
).

Because the variable is discrete, we round up or down the upper and lower quantiles to integer

values to make it more conservative.

In practice, the predictions and prediction intervals of N can be found by replacing the

unknown parameters ϕ, ψ by their GCov-based estimates based on a sample of T observa-

tions, which are also used for computing the test statistics given in the next section. The tail

parameter α can be approximated by the Hill estimator, which suffers from the bias-variance

trade-off in finite samples. Kulik and Soulier (2020) shows that under the tail process ap-

proach, the Hill estimator is consistent and asymptotically normally distributed.

4 Inference

4.1 The Statistics

Let us show how the results derived in Section 3.2 can be used to build diagnostic tools to

test the MAR(1,1) process for bubbles. Diagnostics are based on the counterparts of

ξt,0 =
ut+1vt
y2t

=

(
yt+1

yt
− ϕ0

)(
1− ψ0

yt+1

yt

)
,

where ϕ0, ψ0 denote the true values of the parameters. These quantities depend on the

observations and the unknown parameters. The unknown parameters can be replaced by

consistent and asymptotically normally distributed estimators ϕ̂T , ψ̂T of ϕ, ψ obtained from

the sample of T observations. Then, the sample counterpart of ξt,0 is:

ξ̂t,T =

(
yt+1

yt
− ϕ̂T

)(
1− ψ̂T

yt+1

yt

)
.
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The statistics ξ̂t,T , t = 1, ..., T can be used as follows. From Corollary 5, we know that if yt

is sufficiently large at time t, then ξt
d
≈ U1V0 and that U1V0 = 0. Therefore, we expect that

ξ̂t,T is close to 0. We can also consider another lag h with:

ξt(h) =
ut+h+1vt+h

y2t
=

(
yt+h+1

yt
− ϕ0

yt+h
yt

)(
yt+h
yt

− ψ0
yt+h+1

yt

)
.

It was shown in Corollary 5 that ξt,h
d
≈ Uh+1Vh and Uh+1Vh = 0. The sample counterpart is

ξ̂t,T (h) =
ût+h+1v̂t+h

y2t
=

(
yt+h+1

yt
− ϕ̂T

yt+h
yt

)(
yt+h
yt

− ψ̂T
yt+h+1

yt

)
.

4.2 Confidence Band

Consider the statistic ξ̂t,T . The zero value of the transformed tail process can be considered

as the true value of some tail parameter θ1 = U1V0, which is deterministic and equal to 0 if

yt is sufficiently large, and it is stochastic, otherwise. Then, at each exogenous time t, we

can consider the null hypothesis:

H0,1 = {θ1 = 0}.

The difficulty is that we have a double asymptotic in the level of threshold y and in the

number of observations T . To derive reliable confidence bands, we assume that during the

bubble episode, the uncertainty in the approximation ξt,0
d
≈ U1V0 is negligible with respect

to the asymptotics in T . Then, during a bubble episode when H0,1 is satisfied and yt > y,

with large y, we have conditional on yt, yt+1:

√
T (ξ̂t,T − ξt,0)

d
=

√
T (ξ̂t,T − U1V0)

=
√
T ξ̂t,T

d→ N(0, σ2
t ),

where σ2
t is obtained by the delta method as follows:

σ2
t = Vt

{[
−
(
1− ψ0

yt+1

yt

)
,
−yt+1

yt

(
yt+1

yt
− ϕ0

)]√
T

(
ϕ̂T − ϕ0

ψ̂T − ψ0

)}
.

This quantity is then consistently estimated from:

σ̂2
t,T =

(
v̂t
yt
,
yt+1ût+1

y2t

)
Ω̂T


v̂t
yt

yt+1ût+1

y2t

 ,

where Ω̂T is a consistent estimator of the asymptotic variance matrix of the parameter es-

timators. Then, under the assumption of a MAR(1,1) process and following a large yt, we
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have

|
√
T ξ̂t,T/σ̂t,T | ≤ 1.96,

with an asymptotic probability of 95%. This leads to a functional diagnostic tool that consists

of reporting for any time t the quantities ξ̂t,T , t = 1, ..., T along with the band(
ξ̂t,T ± 1.96

σ̂t,T√
T

)
.

Since the tail process does not depend on the level of yt and the values of yt+1, the width

of the band is independent of time t, t = 1, ..., T . Then, the times at which the statistic is

inside the band are the times associated with a bubble with probability 95%.

This approach is easily extended to other lags. From the statistic ξ̂t,T (h), we can test the

null hypothesis:

H0,h = {θh = 0}

where θh = Uh+1Vh and yt > y. Then, conditional on yt, yt+h, yt+h+1 we have:

√
T (ξ̂t,T (h)− ξt,h)

d
=

√
T (ξ̂t,T (h)− Uh+1Vh)

=
√
T ξ̂t,T (h)

d→ N(0, σ2
t (h))

where σ2
t (h) is:

σ2
t (h) = Vt

{[
−yt+h
yt

(
yt+h
yt

− ψ0
yt+h+1

yt

)
,
−yt+h+1

yt

(
yt+h+1

yt
− ϕ0

yt+h
yt

)]√
T

(
ϕ̂T − ϕ0

ψ̂T − ψ0

)}
.

This quantity is then consistently estimated from:

σ̂2
t,T (h) =

(
yt+hv̂t+h

y2t
,
yt+h+1ût+h+1

y2t

)
Ω̂T


yt+hv̂t+h

y2t
yt+h+1ût+h+1

y2t

 .

Under the assumption of a MAR(1,1) process and following a large yt > y:

|
√
T ξ̂t,T (h)/σ̂t,T (h)| ≤ 1.96,

with the asymptotic probability of 95 %. This leads to a set of functional diagnostic tools,

where for any time t and h the quantities ξ̂t,T (h), t = 1, ..., T are reported along with the

band: (
ξ̂t,T (h)± 1.96

σ̂t,T (h)√
T

)
.
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In practice, the above procedure may not distinguish between a bubble and a short-lasting

spike with the same growth rate. In addition, there can be times t during the bubble when

the statistic is outside the band because either (i) the MAR(1,1) model is misspecified, or

(ii) the MAR(1,1) is well specified, but the value of yt is not sufficiently large.

This method easily provides the test statistics for the MAR(0,1) and MAR(1,0) processes,

based on Corollary 5, with ξ̂t,T = v̂t/yt, and ξ̂t,T = ût+1/yt, respectively. The above results

applied to MAR(1,0) processes provide a tool for jump detection in the causal autoregressive

process. In each case, the confidence bands are independent of the tail parameter α.

ξ̂t,T can be used as a bubble detection tool in the MAR(1,1) and MAR(0,1) processes, as

it is constant and close to 0 during the bubble growth and decline periods, and it is time-

varying otherwise. Hence, the first difference ∆ξ̂t,T is also constant and close to 0 during the

bubble growth and decline periods.

Consider a sequence of ξ̂t,T , evaluated at t = 1, 2, .. following a high threshold value yt. A

close to zero value of ξ̂t+1,T following a large yt is a warning of an upcoming bubble. Since

this statistic remains close to 0 throughout the duration of the bubble, the number of values

of ξt(1), for t = t+1, t+2, ... that are not statistically significant, is a measure of the duration

of the bubble. The first time tj when ξ̂tj ,T ≈ 0 marks the start of the bubble. The last time

tJ , such that ξ̂tJ ,T (1) ≈ 0 marks the end of the bubble.

4.3 Illustration

Our approach is illustrated in Figure 2 by a bubble episode of a simulated MAR(1,1) process

with ψ = 0.9, ϕ = 0.3 and Cauchy distributed errors with scale coefficient 1.

The top panel of the Figure displays the bubble episode of the MAR(1,1) process. The first

difference ∆ξ̂t from the statistic

∆ξ̂t = ∆
îcovt,1(u, v)

y2t
, yt ̸= 0

is computed and displayed graphically to detect periods when it is approximately constant

and close to 0. The statistic ∆ξ̂t indicates the times when the process becomes a ”tail

process”, which can be used to approximate the start and end of a bubble. The bottom

panel shows the first difference ∆ξt. The first difference ∆ξt is constant and close to zero

during the entire bubble episode.
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Figure 2: Bubble detection in MAR(1,1) process
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(b) Path of ∆ξt

Figure 3 below shows an example of the path of a simulated MAR(1,1) process with

ϕ = 0.3 and ψ = 0.9, and i.i.d. errors from a t(3) distribution.
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Figure 3: Simulated Path
The vertical lines mark times 127, 137 (red), 151, 161 (blue), 163(green)

We observe a bubble with a peak of 52.051 at t = 163. The estimates of the GCov

parameter of the MAR(1,1) model are ϕ̂=0.3085 and ψ̂ =0.908, with standard errors of 0.028

and 0.030, and these estimates are based on K = 4 power transformations and H = 3. The

test statistic ξ̂t,T evaluated during the bubble, conditional on observation y(160) = 37.951

is -0.0220 and is within the confidence interval of ±0.05646. Therefore, the null hypothesis

θ1 = 0 at time t = 160 is not rejected.

Next, we examine the effect of the conditioning values and perform the test using ξ̂t,T (h)

on increasing horizons h=1 to 10, conditional on y127 =-0.7522 and y151 =21.810. The results
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are reported in Table 2. The columns of Table 1 report: the horizon (col. 1), the value of

the test statistic (cols. 2 and 5), the confidence interval of the form 0.0±CI, and the result

of the test of H0,h : θh = 0 coded 1 for not rejected and 0 for rejected. We observe that,

conditional on the large value at time t = 151, the test does not reject the null hypothesis

of a bubble over the upward-sloping sequence of the next 10 observations. Conditional on a

close proximity to the mean value of the process at time t = 127, the test rejects the null

hypothesis of a bubble over the next 10 observations, which remain close to the mean.

To evaluate the performance of the test in finite samples, we perform the following exper-

iment. We generate MAR(0,1) processes in samples of length T=400 5 with t(3), t(4), and

t(5) distributed errors and with different values of coefficients ϕ and ψ.

Table 1: Test at horizons 1 to 10

horizon Conditional on y127 Conditional on y151
h ξ̂t,T (h) CI test ξ̂t,T (h) CI test
1 -4.7826 ± 0.5263 0 -0.0322 ± 0.0581 1
2 -4.5177 ± 0.5720 0 -0.0365 ± 0.0746 1
3 -4.1350 ± 0.5166 0 -0.0340 ± 0.0686 1
4 2.9267 ± 0.1242 0 -0.0326 ± 0.0637 1
5 -1.1938 ± 0.1028 0 -0.0338 ± 0.0671 1
6 -2.7478 ± 0.2047 0 -0.0374 ± 0.0799 1
7 -7.2927 ± 1.1972 0 -0.0377 ± 0.0829 1
8 -6.1137 ± 1.0591 0 -0.0432 ± 0.1054 1
9 -6.7780 ± 1.2766 0 -0.0485 ± 0.1324 1
10 -2.0080 ± 0.2329 0 -0.0552 ± 0.1704 1

Next, we set y = qy(0.975) to be used as a conditioning large positive threshold value at time

t to study the size of the test. To study the power of the test, we use y = qy(0.525) as the

conditioning value at time t followed by a moderate decrease or increase, and preceded by

a random pattern, where by moderate we mean that yt+1 is less than or equal to qy(0.975).

The empirical size and power of the test are reported in Tables 4 and 5, Appendix C. Table

6 considers the MAR(1,1) with Cauchy distributed errors. A similar exercise is performed

for the MAR(1,1) processes with t-student distributed errors, estimated by the GCov with

K = 2 power transformations and lag H = 4. The size and power are reported in Tables 6

and 7, Appendix C.

There are some challenges involved in this analysis. It is difficult to accurately estimate

the quantiles of the marginal distribution of the process from 400 observations, especially

for processes with high persistence and low degrees of freedom. Hence, the estimates of

5We generate a series of length 800 and discard the first and last 200 observations.
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y = qy(0.975) as the conditioning value, obtained from the replicated paths of the process,

may vary. Moreover, without observing the trajectory, we do not know a priori whether the

process admits a bubble or a jump instead, the latter occurring in the MAR(1,1) processes

due to the causal component. In processes with ψ = 0.9, bubbles are infrequent and grow

slowly at a rate of about 1.1 6. In processes with ψ = 0.6, the bubbles are more frequent and

grow faster. We distinguish the bubble from jumps by checking if, following the conditioning

value of y = qy(0.975), the process grows at a rate close to the theoretical rate. Another

difficulty is the asymptotic normality of the estimators, which impacts the results in the

processes with t(3) distributed errors estimated by the OLS. In Table 4, we observe that the

test over-rejects when the error distribution is t(5), especially for higher values of ψ. Table

5 shows that the power of the test is slightly lower when the noncausal persistence is higher.

Table 6, illustrating processes with ψ = 0.9 and Cauchy distributed error, shows that the

test tends to under-reject for closer to 0.9 values of parameters ϕ. In addition, the power of

the test decreases for higher values of ϕ.

In Table 7, we observe that the size of the GCov-based test is closer to the nominal value

for moderate values of ψ = 0.7 and ψ = 0.8. The test is conservative for ψ = 0.6 and over-

rejects for ψ = 0.9 in processes with t(3) distributed errors. For each ψ, the test is the most

conservative in processes with t(5) distributed errors. This error distribution is the closest

to the normal among the three error distributions considered, leading to potential parameter

identification problems. We find that the size is close to the nominal value for moderate

values of causal persistence ϕ, regardless of ψ. Table 8 shows that the test has good power,

especially for ψ = 0.7 and ψ = 0.8. It deteriorates in processes with t(5) distributed errors

for ψ = 0.6 and ψ = 0.9 and for higher values of causal persistence, making bubbles harder

to distinguish from regular dynamics.

5 Green Stock Indexes and ETFs

The transition to a clean energy economy has recently gained significant attention, driven

by global events such as the COVID-19 pandemic and the Russia-Ukraine war. In fact, in

response to these crises, governments, industries, and investors have increasingly prioritized

clean energy investments, recognizing their long-term benefits for a stable and environmen-

tally friendly energy system [Mohammed et al. (2023)]. This growing focus on clean energy

is also driven by the need to achieve net zero emissions by 2050, which requires substantial

6The tests of Phillips et al. (2011) and Phillips et al. (2015) are intended to test bubbles with a growth
rate of 1. Gourieroux and Zakoian (2017) show that unit root tests are unreliable in applications to a MAR
(0,1) process with Cauchy-distributed errors.
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investment in clean energy from both developed and developing countries; see Khalifa et al.

(2022). In 2023, global investment in the energy sector was estimated at USD 2.8 trillion,

an increase of 0.6 trillion USD from five years earlier. Almost all of this growth was directed

toward clean energy and infrastructure, increasing total clean energy spending to 1.8 trillion

USD, compared to 1 trillion USD for fossil fuels.7 These large investments pose the risk of

”green bubbles” – rapid stock price increases followed by crashes. Specifically, such bubbles

occur when overinvestment and speculative behavior drive the market value of clean energy

assets beyond sustainable levels. Consequently, rising interest rates can increase financial

pressure on investors, potentially triggering bubble bursts and undermining the credibility of

the clean energy transition [Wimmer (2016)].

5.1 The Data

We have considered the Renixx Index, the WHETF, and the iShare green stock ETFs. For

Renixx, we used daily data from https://www.renewable-energy-industry.com/stocks

and sampled them at a monthly frequency by taking the last day of each month of the closing

price series. When the last day of the month is a bank holiday, we consider the previous

available day. The Renixx index tracks the global renewable energy market, covering sectors

such as wind, solar, bioenergy, geothermal, hydropower, electronic mobility, and fuel cells.

It comprises 30 companies, each of which derives more than 50% of its revenues from these

sectors (see www.iwr.de/renixx). The WHETF tracks the WilderHill Clean Energy ETF,

which includes companies listed in the United States that focus on developing cleaner energy

and conservation efforts. In particular, WHETF allocates a minimum of 90% of its total

assets to common stocks included in this ETF. It is rebalanced and reconstituted quarterly.

Finally, iShare tracks the S&P Global Clean Energy ETF, which provides exposure to the 30

largest and most liquid publicly traded companies worldwide operating in the clean energy

sector. The latter uses a modified market capitalization weighting system.

We investigate Renixx on its whole available sample and both WHETF and iShare from

2009 onward. We consequently have a total of T = 266 observations for Renixx and T = 182

observations for WHETF and iShare, with potentially two bubble patterns for Renixx and a

single bubble for both the WHETF and iShare. Figure 4a shows that the Renixx index (from

January 2002 to February 2024) experienced significant bubbles in 2008 and 2020, coinciding

with two major global events: the 2008 financial crisis and the outbreak of the COVID-19

pandemic. In 2008, the financial crisis rocked global markets, leading to widespread economic

7IEA (2023), World Energy Outlook 2023, IEA, Paris https://www.iea.org/reports/world-energy-outlook-
2023, License: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A).
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instability and investor panic. The collapse of major financial institutions, coupled with a

credit crunch and falling stock markets, triggered a flight to safety among investors. This risk

aversion had a significant impact on the renewable energy sector, with reduced investment

in renewable energy projects and a decrease in the demand for renewable energy stocks [see

Giorgis et al. (2024)]. Similarly, in 2020, the COVID-19 pandemic caused unprecedented

economic disruption around the world. Lockdown measures, supply chain disruptions, and

reduced consumer spending resulted in a global economic downturn. The renewable energy

sector was particularly affected by the decrease in energy demand due to reduced economic

activity and travel restrictions. The same trends are observed in WETHF and iShare; Figures

4b and 3c, respectively. However, only the COVID period bubble appears in the data, as the

sample for both variables spans from January 2009 to February 2024, and therefore does not

include data from the global financial crisis.

5.2 Prices vs. Returns

Although most studies in green energy finance focus on returns [e.g., Henriques and Sadorsky

(2008); Sadorsky (2012a)], our analysis is based on prices, allowing for a direct examination

of bubble dynamics that would otherwise be obscured by log-differencing. In fact, in financial

analysis, especially in commodity pricing, it is crucial to focus on the price process rather

than returns or first differences. This approach aligns with the financial theory that underlies

commodity pricing, as discussed in Hull and Basu (2016). Transforming the price series into

returns or first differences can obscure critical aspects of the price process, including the

presence of bubbles. Moreover, differencing can eliminate noncausal components essential

to understanding bubble dynamics [Giancaterini et al. (2022)]. We employ the detrended

cubic spline method to address this issue and eliminate trend components while preserving

significant bubble patterns, as detailed in Hall and Jasiak (2024). This method fits a cubic

spline, a piecewise function composed of polynomial segments of degree three, to the time

series data. The points where these segments connect, known as knots, allow separate cubic

polynomials to be fitted within each segment. We place knots every two years to effectively

detrend the series, balancing data smoothing and avoiding overfitting. By applying this

approach, we successfully isolate the cyclical variations that contain the bubble patterns

from the trend component. The detrended series are also shown in the right panels of Figure

4. 8

8An alternative detrending technique that may help us preserve the bubble patterns is the HP filter
method (see Giancaterini et al. (2022), Hecq and Voisin (2023)). However, as indicated by Hall and Jasiak
(2024), the HP filter requires you to choose a value for the smooth parameter lambda, which is typically a
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Figure 4: Green Index and ETFs from January 2009 to February 2024. The panels on the left show the
original series, while those on the right display their detrended versions.
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5.3 Summary Statistics and MAR Estimations

The detrended data is non-Gaussian, as evidenced by the Kolmogorov-Smirnov and Shapiro-

Wilk’s tests, which both reject the null hypothesis of normality. Table 2 presents the sum-

mary statistics, which confirm that the distributions of the series are non-Gaussian, given

the reported excess kurtosis. We test the spline-detrended data for causal and noncausal

persistence by using the test introduced in Jasiak and Neyazi (2023) [see Section 2.2]. We

choose K = 2, including the time series and its squares as (non)linear transformations, and

H = 3 as the number of lags in the objective function of the test. The null hypothesis of

the absence of nonlinear serial dependence is rejected since the test value is 514.98, while the

function that increases with the sampling frequency of the data. In our examination of monthly data, a high
lambda value may result in computational inaccuracies, thus justifying our preference for using a cubic spline
to detrend the data. However, we have investigated several detrending methods, including the HP filter, as
well as polynomial trends of different degrees (results upon request). We only report the results with the
spline detrending approach as it passes the absence of nonlinear serial dependence test [Jasiak and Neyazi
(2023)].
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critical value at a 5% significance level from the chi-square distribution is χ2(12) = 21.026.

Table 2: Summary statistics of Renixx, WHETF, and iShare

T Mean Min Max SD Skewness Ex.Kurt.

Renixx 266 748.57 155.47 2070.38 475.09 1.03 2.85
WHETF 182 23.08 3.66 119.57 25.31 1.67 5.28
iShare 182 13.60 6.36 29.83 5.46 0.74 2.36

We apply the GCov estimator to obtain the parameters of MAR models for the three

series. Specifically, we use H = K = 2 and aj(ϵt) = ϵjt , for j = 1, 2, in (5), i.e., the residuals

and their squares as transformations in the GCov estimation of Renixx [see Cubadda et al.

(2023)] and aj(ϵt) = log(|ps|)j for j = 1, 2, for WHETF and iShare. Table 3 presents the

estimation results. To identify the dynamics of the underlying processes, we evaluate all

combinations of r and s such that r+s = p. We begin with p = 1 and gradually increase p to

find the values of r and s that provide i.i.d. residuals based on the GCov specification test.

The last row of 3 shows the results of the GCov test. This approach allows us to identify the

Renixx index and the two ETFs as MAR(1, 1) processes. The GCov specification test results

indicate that these processes are correctly specified and provide a good fit to the data.

Figure 5: Causal and noncausal components

(a) Causal (blue) and Noncausal (red)
components of Renixx

(b) Causal (blue) and Noncausal (red)
components of WHETF

(c) Causal (blue) and Noncausal (red)
components of iShare

Figure 5 shows the estimated latent components ût and v̂t defined in eq. (3) and (4)

for the threee series of interest. We observe that the changes in the noncausal component

anticipate the dynamics of the observed series, followed by the causal component. In the

next section, these estimates are used to compute the statistic ξt,T for each series.
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Table 3: Estimated MAR(1,1) coefficients and GCov tests

MAR(1, 1) Renixx WHETF iShare

ϕ 0.24 0.07 0.32
(0.11) (0.01) (0.02)

ψ 0.70 0.89 0.62
(0.08) (0.03) (0.02)

GCov Test 7.14 4.86 2.40
(Critical Value) (12.59) (12.59) (12.59)

5.4 Bubble Detection

The bubbles in the price series can manifest themselves as periods of high volatility. We

estimate local variances to detect periods of high volatility in Renixx and the ETFs. We

consider a rolling window of 5 observations and estimate the local variance for the three

series. The plot of rolling estimates provides a graphical tool for preliminary analysis. Figure

6 displays the rolling estimates of the variances of the Renixx index and two ETFs. Two

bubble periods, one that occurred during the financial crisis of 2008 and one associated with

the COVID pandemic, are observable in Figure 6. Since the data on ETFs before 2009 are

not available and the observations on bubbles during that period are incomplete, we focus

on the bubble observed during the COVID period.

Figure 6: Local variance of time series with H = 5 rolling window size

(a) Renixx (b) WHETF (c) iShare

To detect and determine the dates of bubbles in the three price series, we focus specifically

on the period between 12/01/2020 and 05/31/2021. Figure 7 illustrates how the method

introduced in Section 4 can be applied to Renixx and the ETFs to test for bubbles, and to

determine the dates at which that bubble starts and ends. Figure 7a and 7b show the test

statistics ξ̂t,T computed over that period and the associated confidence band. We observe
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that the bubble of Renixx and WTETF started on 12/01/2020 and ended on 03/01/2021.

The bubble for ishare ended on 04/30/2021. Note that in Figure 7c the confidence intervals

depend on the parameter variance reported in Table 3 and are larger for Renixx compared

to the other estimated processes.

Given a tail index value, the time to peak depends on the rate of bubble growth. It takes

longer for the bubble to grow when ψ̂ is large. As shown in Section 3.3, the time to peak is

also determined by the tail parameter, which is estimated from the Hill estimator R-package.

For α̂ = 1.3, the expected time to peak for Renixx is 1.5 months (computed as the conditional

expectation of N given N < 0), and the probability that N exceeds 3 months is 0.232.

Figure 7: Bubble detection statistics for Renixx, WHETF, and ishare

(a) Renixx (b) WHETF (c) iShare

Given α̂ = 1.7 for WHETF, the expected time to peak is 4.5 months, and the probability

that it exceeds 5 months is 0.37. With α̂ = 1.15, the time to peak for iShare is slightly longer

than 1 month, and the probability that it exceeds 3 months is 0.17.

6 Conclusions

This paper introduced a new statistical test for detecting financial bubbles, derived from

the tail process representation of mixed causal–noncausal autoregressive models. Unlike

traditional unit-root and explosiveness-based methods, our approach is grounded in strictly

stationary noncausal dynamics, which provide a natural framework for capturing locally

explosive behavior. Classical tests such as SADF or GSADF are often sensitive to heavy

tails or may misinterpret short-lived spikes as bubbles. By contrast, our test exploits the

tail process properties of causal and noncausal dynamics, which remain constant and close

to zero during a bubble episode. This feature allows us to separate persistent speculative

bubbles from short-lived spikes and regular fluctuations.

We applied univariate MAR(r, s) models to the Renixx index and two green energy ETFs
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(WHETF and iShare), estimating the underlying dynamics using the GCov approach. This

combination provides a robust identification strategy: the GCov estimator ensures reliable

parameter estimation under non-Gaussianity, while the proposed test captures the tail process

behavior that signals bubble formation. The empirical results reveal clear bubble patterns

in all three series, showing that the test performs well in detecting and dating speculative

episodes in green financial markets.
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Appendix A

1. Derivation of the MA(∞) representation of MAR(1,1)

We have:

(1− ϕL)(1− ψL−1) = −ψL−1(1− ϕL)(1− ψ−1L).

It follows using the partial fraction decomposition of the polynomial that:

1

(1− ϕL)(1− ψL−1)
= −ψ−1L

1

(1− ϕL)(1− ψ−1L)

=
−ψ−1L

ϕ− ψ−1

(
ϕ

1− ϕL
− ψ−1

1− ψ−1L

)
=

1

1− ϕψ

(
ϕL

1− ϕL
− ψ−1L

1− ψ−1L

)
=

1

1− ϕψ

(
ϕL

1− ϕL
+

1

1− ψL−1

)
=

1

1− ϕψ

(
∞∑
h=1

ϕhLh +
∞∑
h=0

ψhL−h

)

=
1

1− ϕψ

(
∞∑
h=1

ϕhLh +
−∞∑
h=0

ψ−hLh

)
,

where we observe that the first sum inside the brackets is equal to
1

1− ϕL
−1, and the second

sum is equal to
1

1− ψL−1
. The moving average coefficients are:

ch =
ϕh

1− ϕψ
, if h > 0, and ch =

ψ−h

1− ϕψ
, if h ≤ 0,

since the two formulas coincide for h = 0 and the convention 00 = 1 is used (if ϕ or ψ i zero).

2. Proof of Proposition 2:

The tail process takes the values either 1/ψXh−1, or ϕXh−1. Then, we have:

a) if N + h ≤ 0 ⇐⇒ N ≤ −h : Xh =
1

1− ϕψ
ψ−N−h/

1

1− ϕψ
ψ−N−h−1Xh−1 = ψ−1Xh−1,

b) if N + h > 0 ⇐⇒ N > −h : Xh =
1

1−ϕψϕ
N+h/

1

1− ϕψ
ϕN+h−1Xh−1 = ϕXh−1,

with X0 = 1.

Then, the probability distribution of N is such that :

P [N = h] =
(1− ϕψ)−1ψ−hα

(1− ϕψ)−1[ 1
1−ϕα + 1

1−ψα − 1]
=

ψ−hα

[ 1
1−ϕα + 1

1−ψα − 1]
; if h ≤ 0,

P [N = h] =
(1− ϕψ)−1ϕhα

(1− ϕψ)−1[ 1
1−ϕα + 1

1−ψα − 1]
=

ϕhα

[ 1
1−ϕα + 1

1−ψα − 1]
; if h ≥ 0,
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with 00 = 1, by convention.

3. Tail process representation of AR(2) processes with at least one root inside

the unit circle

The autoregressive of order 2, AR(2), process:

yt = t1yt−1 + t2yt−2 + ϵt => yt(1− t1L− t2L
2) = ϵt

with i.i.d. errors ϵt, t = 1, 2, , .. from a heavy-tailed distribution with tail index α can admit

a tail process behavior. We distinguish the following cases:

a) 1−t1L−t2L2 = (1−λ1L)(1−λ2L), the root reciprocals λ1 and λ2 are real, distinct, and
such that λ1 and λ2 are real, distinct, and such that |λ1| < 1 and |λ2| < 1 (causal process),

or |λ1| > 1 and |λ2| > 1 (noncausal process). Then, the process can be written as a strictly

stationary pure causal or noncausal process.

The causal process admits a one-sided MA(∞) representation with the coefficients

ch = 1
λ1+λ2

[(λ2)
h + (λ1)

h], for h ≥ 0. The noncausal process admits a one-sided MA(∞)

representation with coefficients ch =
1

λ1−λ2 [(λ2)
h+1 − (λ1)

h+1], for h ≤ 0

b) 1 − t1L − t2L
2 = (1 − λL)2, the root reciprocal λ is real and such that either |λ| < 1

(double causal root), or |λ| > 1 (double noncausal root). This case does not satisfy the

geometric ergodicity condition and is excluded.

d) 1− t1L− t2L
2 = (1−λ1L)(a−λ2L), the roots 1/λ1 and 1/λ2 are imaginary and equal

to a pair of complex conjugates of modulus greater than 1. This case is excluded as it results

in local explosive oscillations, while a bubble requires local explosive growth.

4. Comparison with Fries (2022) For illustration, let us consider h = 0 and the MAR(1,1)

process with α-stable distributed errors using the approach of Fries (2022). It follows from

Propositions 1 and 2 that, conditional on a bubble onset at time t and large yt > y we have:

E

(
ut+1vt
y2t

|yt > y

)
= E

((
yt+1 − ϕyt

yt

)(
yt − ψyt+1

yt

)
|yt > y

)
≈ E((X1 − ϕ)(1− ψX1))

= p+
(
ψ−1 − ϕ

) (
1− ψψ−1

)
+ p− (ϕ− ϕ) (1− ψϕ)

= 0

where we replace yt
yt

by X0 = 1, yt+1

yt
by X1, independent of t and y, and the probabilities

p+ and p− for h ≤ −1 and h ≥ 0, of bubble growth and burst, respectively, are defined in

Proposition 2.
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Let us consider h = 0 and the MAR(0,1) process. In this process, component ut = 1 and

only the component vt is relevant. Hence, conditional on the bubble onset at time t for large

yt > y we have:

E

(
ut+1vt
yt

|yt > y

)
= E

((
yt − ψyt+1

yt

)
|yt > y

)
≈ E(1− ψX1)

= p+
(
1− ψψ−1

)
= 0,

where we replace
yt+1

yt
by X1, independent of t and y,

yt
yt

= X0 = 1 and the probability p+ of

bubble growth is given in Corollary 2.

5. The cumulative probability distribution of N

a) For the MAR(1,1) process:

If h < 0, we have:

P [N ≤ h] =
∑
i≤h

ψ−iα

[ 1
1−ϕα + 1

1−ψα − 1]

=
∑
i≥−h

ψiα

[ 1
1−ϕα + 1

1−ψα − 1]

=
ψ−hα

1− ψα
1

[ 1
1−ϕα + 1

1−ψα − 1]

If h > 0, then:

P [N > h] =
ϕhα

1− ϕα
1

[ 1
1−ϕα + 1

1−ψα − 1]

b) For the MAR(0,1) process with N ≤ 0 and h ≤ 0, we have:

P [N ≤ h] = (1− ψα)
∑
i≤h

ψ−iα = (1− ψα)
∑
i≥−h

ψiα = ψ−hα

.
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Appendix B

This Appendix describes the conditional covariance of the latent components when the pro-

cess does not take extreme values. For ease of exposition, consider the MAR(1,1) process

defined in Section 2.1.

The latent components ut, vt are strictly stationary. When ϵt has finite moments of orders 1

and 2, the latent components have marginal means E(ut) = E(vt) = 0 and their marginal

covariance is always known to be zero E(ut+1vt) = 0.

Let us consider the conditional moments that exist regardless of the existence of marginal

moments. Since the MAR(1,1) process is Markov of order 2 [see, e.g. Fries and Zakoian

(2019), Proposition 3.1], the conditioning set considered is y
t
= {yt, yt−1}. Then E(ut+1|yt) =

E[yt+1|yt] − ϕyt and E(vt|yt) = yt − ψE[yt+1|yt]. To interpret the statistic ξ, we write the

conditional covariance of latent components E(ut+1vt|yt):

E(ut+1vt|yt) = E[(yt+1 − ϕyt)(yt − ψyt+1)|yt] = −ϕy2t − ψE[y2t+1|yt] + (ϕψ + 1)ytE[yt+1|yt].

and observe that it depends on the autoregressive coefficients ϕ and ψ, and the squared values

of the process. Gourieroux and Zakoian (2017) and Fries and Zakoian (2019) show that

MAR(r,s) processes display conditional heteroskedasticity. More specifically, the conditional

volatility of a MAR(1,1) process with Cauchy distributed errors is a quadratic function of

the past values of the process, similar to the conditional heteroscedasticity of the Double

Autoregressive (DAR) model of Ling (2004) with variance-induced mean reversion. The

conditional covariance of the latent components given above depends on the squared past

values of the process, and therefore captures the conditional heteroscedasticity of the MAR

process, in addition to its conditional autocovariance.

For the MAR (1,1) process with Cauchy-distributed errors and ψ > 0, the formulas of

conditional covariances are easy to compute. We know the equivalence of the conditioning

sets y
t
= ut and from Proposition 5, Gourieroux, Zakoian Gourieroux and Zakoian (2017), it

follows that:

E(ut+1|ut) = ut, E(u2t+1|ut) =
1

ψ
u2t +

σ2

ψ(1− ψ)
.

Since ut+1 = yt+1 − ϕyt, we can write yt+1 = ϕyt + ut+1. Hence,

E(yt+1|yt) = E(ut+1|yt) + ϕyt = ut + ϕyt = (yt − ϕyt−1) + ϕyt

and from Proposition M.1, Fries and Zakoian (2019) we get:
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E[y2t+1|yt] = ay2t − 2bytyt−1 + cy2t−1 +
σ2

|ψ|(1− |ψ|)

where a = ϕ2 + 2ϕ sign(ψ) + 1
|ψ| , b = ϕ2sign(ψ) + ϕ

|ψ| and c =
ϕ2

|ψ| . For clarity of exposition,

let us assume ψ > 0. Then, we get:

E[(ut+1vt)|yt]

= −ϕy2t − ψ

(
ay2t − 2bytyt−1 + cy2t−1 +

σ2

|ψ|(1− |ψ|)

)
+ (ϕψ + 1)(y2t + (1− L)ϕy2t )

= y2t [(ϕ− 1)ϕψ] + ytyt−1[2ϕ− ϕ(1− ϕψ)]− y2t−1 +
σ2

(1− |ψ|)

The conditional covariance of the latent components is equal to the constant σ2

(1−|ψ|) when

yt = yt−1 = 0 and it is time-varying otherwise. In particular, for E[(ut+1vt)|yt] the ratio

Etξt =
E[(ut+1vt)|yt]

y2t
for yt ̸= 0

is time-varying. In general, for h > 1 we have E(ut+1+hvt+h|yt) where

E(ut+1+hvt+h|yt) = E[(yt+1+h − ϕyt+h)(yt+h − ψyt+1+h)|yt]

= −ϕE[y2t+h|yt]− ψE[y2t+h+1|yt] + (ϕψ + 1)E[yt+hyt+h+1|yt]

The conditional covariance of the latent components is a function of the conditional second

moments and the conditional covariance of yt at lag h. The first two terms of covt(u, v) capture

the time-varying conditional heteroscedasticity of yt. For positive ϕ, ψ these terms become

big and negative when the conditioning value is large. The third term is the conditional au-

tocovariance at horizon h. The conditional second moments and conditional autocovariances

at lag h can be found from the formula of E[ytyt+h|yt] given in Proposition M.1, Fries and

Zakoian (2019) and obtained from the following representation of the process:

yt+h = Ph(L)yt−1 +Qh(L
−1)ut,

where for h = 0, we have yt = ϕyt−1 + ut with P0(L) = ϕ and Q0(L
−1) = 1. For h = 1, we

have

yt+1 = ϕ2yt−1 + ϕut + ut+1

with P1(L) = ϕ2 and Q1(L
−1) = ϕ + L−1. Next, yt+2 = ϕ3yt−1 + ut+2 + ϕut+1 + ϕ2ut, with

P2(L) = ϕ3 and Q2(L
−1) = L−2 + L−1 + ϕ2, etc.
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A Appendix C

Table 4: Empirical size of the test for MAR(0,1) estimated by OLS (1000 replications) at 5% from samples
of T=400. Each row corresponds to an error distribution: t(3), t(4), t(5). Columns give the rejection
frequency (Size) for different values of the noncausal autoregressive coefficient ψ (from 0.1 to 0.9). The
statistic is evaluated conditional on extreme events, defined as observations exceeding the 97.5th percentile of
the simulated series.

ψ

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t(3) .012 .012 .012 .014 .015 .013 .035 .053 .076
t(4) .050 .021 .029 .027 .045 .051 .069 .088 .122
t(5) .154 .102 .056 .072 .091 .085 .115 .133 .138

Table 5: Empirical power of the test for MAR(0,1) estimated by OLS (1000 replications) at 5% from sam-
ples of T=400. Each row corresponds to an error distribution: t(3), t(4), t(5). Columns give the rejection
frequency (Power) for different values of the noncausal autoregressive coefficient ψ (from 0.1 to 0.9). The
statistic is evaluated at the observation corresponding to the 210th largest value among 400 simulated obser-
vations (52.5th percentile).

ψ

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t(3) .592 .582 .555 .515 .499 .531 .486 .511 .496
t(4) .579 .589 .574 .544 .541 .537 .523 .502 .512
t(5) .561 .585 .559 .525 .517 .512 .500 .514 .472

Table 6: Empirical size and power of the test for MAR(1,1) with Cauchy distributed errors estimated by GCov
(1000 replications) at 5% from samples of T=400. Columns give the rejection frequency (Size) for different
values of the noncausal autoregressive coefficient ψ (from 0.1 to 0.9). The statistic is evaluated conditional
on extreme events, defined as observations exceeding the 97.5th percentile of the simulated series (size), and
210th largest value among 400 simulated observations (52.5th percentile) (power).

ψ = 0.9
ϕ 0.1 0.2 0.3 0.4 0.5. 0.6 0.7 0.8 0.9
size 0.08 0.05 0.04 0.08 0.04 0.06 0.04 0.01 0.01

power 0.72 0.84 0.86 0.68 0.56 0.62 0.54 0.46 0.47
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Table 7: Empirical size of the test for MAR(1,1) estimated by GCov (1000 replications) at 5% from samples
of T=400. Rows correspond to an error distribution: t(3), t(4), t(5). Columns report the rejection frequency
(Size) for different values of the causal coefficient ϕ (0.1–0.9) with ψ fixed. The statistic is evaluated condi-
tional on extreme events, defined as observations exceeding the 97.5th percentile of the simulated series.

ψ = 0.6
ϕ

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t(3) .015 .015 .012 .010 .010 .012 .015 .016 .012
t(4) .006 .007 .008 .006 .006 .008 .011 .010 .005
t(5) .006 .004 .002 .002 .002 .002 .004 .004 .002

ψ = 0.7
ϕ

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t(3) .049 .064 .055 .057 .049 .041 .045 .050 .051
t(4) .023 .025 .033 .031 .028 .023 .031 .040 .036
t(5) .016 .021 .018 .016 .013 .012 .012 .022 .034

ψ = 0.8
ϕ

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t(3) .056 .052 .053 .052 .054 .049 .046 .043 .077
t(4) .036 .033 .034 .036 .040 .044 .043 .038 .065
t(5) .025 .020 .028 .028 .029 .027 .027 .023 .052

ψ = 0.9
ϕ

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t(3) .055 .065 .072 .071 .078 .080 .078 .071 .064
t(4) .045 .032 .037 .043 .045 .047 .042 .040 .036
t(5) .035 .045 .046 .044 .051 .062 .059 .052 .047
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Table 8: Empirical power of the test for MAR(1,1) estimated by GCov (1000 replications) at 5% from sam-
ples of T=400. Each row corresponds to an error distribution: t(3), t(4), t(5). Columns give the rejection
frequency (Power) for different values of the noncausal autoregressive coefficient ψ (from 0.1 to 0.9). The
statistic is evaluated at the observation corresponding to the 210th largest value among 400 simulated obser-
vations (52.5th percentile).

ψ = 0.6
ϕ

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t(3) .730 .775 .783 .795 .800 .790 .781 .764 .759
t(4) .730 .785 .757 .740 .756 .767 .756 .738 .724
t(5) .660 .695 .707 .715 .720 .713 .707 .690 .681

ψ = 0.7
ϕ

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t(3) .740 .785 .793 .797 .802 .802 .791 .769 .747
t(4) .750 .750 .737 .738 .740 .763 .759 .744 .726
t(5) .800 .775 .763 .765 .760 .762 .759 .746 .723

ψ = 0.8
ϕ

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t(3) .750 .795 .793 .782 .764 .763 .761 .738 .714
t(4) .800 .765 .753 .752 .756 .747 .739 .729 .709
t(5) .740 .775 .753 .755 .752 .735 .737 .731 .700

ψ = 0.9
ϕ

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t(3) .760 .725 .717 .713 .706 .698 .687 .676 .642
t(4) .690 .720 .683 .677 .666 .670 .650 .636 .611
t(5) .720 .730 .703 .688 .680 .647 .641 .625 .596
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Fries, S. (2022). Conditional moments of noncausal alpha-stable processes and the prediction

of bubble crash odds. Journal of Business & Economic Statistics 40 (4), 1596–1616.

Fries, S. and J.-M. Zakoian (2019). Mixed causal-noncausal ar processes and the modelling

of explosive bubbles. Econometric Theory 35 (6), 1234–1270.

39



Giancaterini, F., A. Hecq, J. Jasiak, and A. M. Neyazi (2025). Regularized generalized

covariance (rgcov) estimator. arXiv preprint arXiv:2504.18678 .

Giancaterini, F., A. Hecq, and C. Morana (2022). Is climate change time-reversible? Econo-

metrics 10 (4), 36.

Giorgis, V., T. A. Huber, and D. Sornette (2024). ‘salvation and profit’: deconstructing the

clean-tech bubble. Technology Analysis & Strategic Management 36 (4), 827–839.

Gourieroux, C. and J. Jasiak (2016). Filtering, prediction and simulation methods for non-

causal processes. Journal of Time Series Analysis 37 (3), 405–430.

Gourieroux, C. and J. Jasiak (2017). Noncausal vector autoregressive process: Represen-

tation, identification and semi-parametric estimation. Journal of Econometrics 200 (1),

118–134.

Gourieroux, C. and J. Jasiak (2023). Generalized covariance estimator. Journal of Business

& Economic Statistics 41 (4), 1315–1327.

Gourieroux, C. and A. Monfort (2015). Pricing with finite dimensional dependence. Journal

of Econometrics 187 (2), 408–417.

Gourieroux, C. and J.-M. Zakoian (2017). Local explosion modelling by non-causal process.

Journal of the Royal Statistical Society Series B: Statistical Methodology 79 (3), 737–756.

Hall, M. and J. Jasiak (2024). Modelling common bubbles in cryptocurrency prices. working

paper at www.jjstats.com.

Hecq, A., L. Lieb, and S. Telg (2016). Identification of mixed causal-noncausal models

in finite samples. Annals of Economics and Statistics/Annales d’Économie et de Statis-
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