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Abstract

This paper introduces a new approach to detect bubbles based on mixed
causal and noncausal autoregressive processes and their tail process rep-
resentation during explosive episodes. Departing from traditional defi-
nitions of bubbles as nonstationary and temporarily explosive processes,
we adopt a perspective in which prices are assumed to follow a strictly
stationary process, with the bubble considered an intrinsic component
of its nonlinear dynamics. We illustrate our approach with the phe-
nomenon called the ”green bubble” in the field of renewable energy in-
vestment.
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1 Introduction

This paper introduces a novel method of bubble detection based on strictly stationary non-
causal autoregressive processes and their tail process representation during a bubble. The tail
process was first defined by Basrak and Segers (2009) as the weak limit of finite-dimensional
distributions of the time series, given that an extreme value occurs. This definition was
further generalized to the tail empirical process by Kulik and Soulier (2020), which is based
solely on observations exceeding a high threshold, and interpreted by the authors as ”a model
for the clusters of exceedances”. It is valid for geometrically ergodic Markov processes, and
consequently also for mixed causal-noncausal autoregressive MAR(1,1) and purely noncausal
MAR(0,1) processes — where the notation MAR(r, s) indicates a mixed model where 7 is the
causal order and s the noncausal one — with locally explosive patterns including bubbles and
spikes. As shown, for example, by Fries and Zakoian (2019) and Cavaliere et al. (2020), the
MAR(1,1) and MAR(0,1) processes are well-suited for modeling variables such as commodity
and cryptocurrency prices. In this context, the paper introduces a simple statistic with an
asymptotic normal distribution that provides an ex ante warning of a potentially emerging
bubble. Ex post, this statistic is a tool to measure the duration of the bubble and identify
its starting and ending dates.

MAR processes have recently received attention in applications to bubble forecasting and
testing. de Truchis et al. (2025) considers the forecasting of extreme trajectories of a-stable
MAR processes, based on a measure describing the conditional distribution of a normalized
path of the process, following a large value. The method is applied to predict the occurrences
of the El Nino and La Nina phases of the temperatures and winds of the Pacific Ocean.
In comparison, our approach focuses on testing rather than predicting the bubbles and is
computationally simple as it does not require determining the length of a future path as a
tuning parameter or normalization. Blasques et al. (2025) introduces a bubble test based on
the detection of a large future shock in the forward-looking component of an MAR process
and applies it to oil prices. Compared to their approach, our proposed test statistic has the
advantage of being easy to compute and having an known normal asymptotic distribution,
rather than depending on the error distribution of a given model.

Alternative methods for detecting bubbles, such as the Dickey-Fuller augmented test
(e.g., SADF and GSADF), assess unit roots and explosive regimes [Phillips et al. (2011);
Phillips et al. (2015)]. However, our approach departs from these conventional methods by
employing mixed autoregressive causal-noncausal models, which capture locally explosive

patterns observed in the data. Unlike those detection approaches, we assume that the series



follows a strictly stationary process in which bubbles are an inherent part of the dynamics,
rather than distinguishing a stationary and non-stationary (unit root) regime of a time series.
In addition, it accommodates local explosive patterns with various rates of explosion, rather
than a fixed rate of growth of a unit root process.

The literature on green energy stocks is relatively recent and focuses on return analysis.
The pioneering paper by Henriques and Sadorsky (2008) shows that returns on technology
stocks and oil prices are both Granger-caused by the returns of green (alternative) energy
stocks, based on a vector autoregressive (VAR) model. The relationship between green stocks
and oil has also been examined by Sadorsky (2012a), Sadorsky (2012b), and Kumar et al.
(2012). These articles consider carbon prices and do not find their significant impact on
green energy stocks. In contrast, this impact is evidenced after the year 2007 by Managi and
Okimoto (2013). The literature has not yet considered the green stock price dynamics or
detected and explained the presence of bubbles, which is done in this paper.

The rest of the paper is organized as follows. Section 2 reviews the causal-noncausal
autoregressive processes and their estimation techniques, with a focus on the GCov estimator.
Section 3 studies the behavior of the MAR process and its tail dynamics during a bubble
period. Section 4 develops test statistics to detect the bubbles and determine their duration.
In Section 5, we apply our approach to investigate the presence and duration of ”green
bubbles” in the green energy stock market. Section 6 concludes. Appendices A and B

contain additional technical results, and Appendix C presents the simulations.

2 Causal-Noncausal Processes

The causal-noncausal models represent stationary processes characterized by locally explosive
patterns, such as bubbles and spikes. The univariate causal-noncausal models were exam-
ined, for example, by Breidt et al. (1991) and Lanne and Saikkonen (2011), and extended
to multivariate analysis by Lanne and Saikkonen (2013), Gourieroux and Jasiak (2017), and
Davis and Song (2020). In applied research, causal-noncausal models were used to study
various economic and financial variables, including Bitcoin prices [Hencic and Gouriéroux
(2015), Cavaliere et al. (2020)], stock market indices [Gourieroux and Zakoian (2017)], com-
modity prices [Hecq and Voisin (2021), Lof and Nyberg (2017)], and inflation rates [Lanne
and Saikkonen (2013), Hecq and Voisin (2023)].

One of the main advantages of these models is their ability to capture complex nonlin-
ear patterns, such as local trends and conditional heteroskedasticity, while still resembling

traditional linear time series models in specification. However, the standard Box—Jenkins



approach to identifying and estimating linear time series processes does not apply here, as
it relies on the assumption of Gaussian errors. Under this assumption, causal and noncausal
dynamics cannot be distinguished (see Gourieroux and Monfort (2015)). Therefore, identifi-

cation requires assuming non-Gaussian error distributions in causal-noncausal processes.

2.1 Univariate Causal-Noncausal Models

A strictly stationary univariate mixed causal-noncausal autoregressive MAR(r, s) model is
defined as:

O(L)P(L )y = e, (1)
where the error term ¢, is non-Gaussian, independent, identically distributed (i.i.d.) and such
that E(|]°) < oo for § > 0 [Lanne and Saikkonen (2011)]. The polynomial ®(L) in the lag
operator L is of the order r. The polynomial ¥(L™!) in the leading operator L™! is of order
s. Both polynomials ®(L) and ¥(L~!) have roots outside the unit circle.

The MAR(r, s) process (1) admits a unique strictly stationary solution, which is a two-

sided moving average of order infinity MA(oc0):

00
yt == E Ch€t—h,

h=—o0
in past, present and future shocks, with ¢g = 1 [Breidt et al. (1991)]. The coefficients ¢, are
uniquely defined, provided that (¢;) are non-Gaussian. When y; is purely noncausal (resp.
causal), the coefficients ¢, are zero for all h > 0 (resp. h < 0). Thus, a purely causal
process is determined only by the past and present shocks, while a purely noncausal process
is influenced only by the present and future shocks. For r = s = 1, we obtain the MAR(1, 1)
process:

(1= oL)(1 = yL )y =&, (2)
with 1| < 1,]¢| < 1, which is purely causal (resp. noncausal) if ¢» = 0 (resp. ¢ = 0). For
each of these pure processes, the effects of a large ¢, are easily distinguished, as a large error
leads to a (vertical) jump if ) = 0 and ¢ > 0, and an explosive bubble with a (vertical) burst
if » > 0 and ¢ = 0.

The MAR(1,1) process can be decomposed into the following unobserved components
[Lanne and Saikkonen (2011)]:

uy = (1 —¢L)y, or, (1 —yL Ny, = ¢, (3)

and
vy = (1— ¢L_1)yt or, (1—¢L)v, =¢. (4)
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Gourieroux and Jasiak (2016) shows that wu; is e-noncausal (dependent on the future and
present values of €) and y-causal (dependent on the past and present values of y), representing
the regular dynamics of y;. In contrast, v, is e-causal (dependent on the past and present
values of €) and y-noncausal (dependent on the future and present values of y), representing
the explosive part of the process, including bubbles and spikes. Thus, wu;, v; are the unobserved
causal and noncausal components of ;.

The process y; can be described by the following deterministic representation based on

the unobserved components and used e.g. to simulate the MAR processes:

Yt (Pve—1 +uy), or y, = (v + PUupyr).

1 1
1y 1—¢¢
We observe that y; is a linear function of the first lag of the e-causal component v, and of
the current value of the e-noncausal component u;. Alternatively, i, can be expressed as a
linear function of the current value of the e-causal component v; and of the first lag of the
e-noncausal component u;. The noncausal component v; represents the explosive part of the
process, such as bubbles and spikes. On the other hand, u; is the purely causal component
of the process ;.

Moreover, the autocovariances of the latent components defined in eq. (3) and (4),
respectively, help us distinguish the bubble episode in the process (y;). We observe that
the autocovariances at lag h > 1 of w;y, and v, conditional on y, = y are time-varying,
in general, provided that y is not an extreme [see Appendix B]. When y is large, their
behavior is different and can be examined using the concept of a tail process described in
Section 3. In practice, the latent components are computed given the estimated values of

the autoregressive parameters. The estimation methods are discussed in the next section.

Remark 1: An alternative univariate representation of the causal-noncausal process can be

written as:

Yt = P1Yt—1 — *** — PplYt—p + &,
where ¢, = —wiet [Brockwell and Davis (1987)]. In this representation, the polynomial
S(L)y=1—¢pL—---— ©pLP has roots both inside and outside the unit circle. Specifically,

the roots outside the unit circle correspond to the causal component of y;, while the roots
inside the unit circle indicate the noncausal component that captures bubbles and other
nonlinear features. Note that in either representation of the model, the error £; is not an

innovation process because ¢; is not independent of 4;_1, y;_o, ....



2.2 The GCov Estimator

One way to estimate and identify MAR(r, s) models is by using a parametric non-Gaussian
Maximum Likelihood (ML) approach (see, e.g. Hecq et al. (2016)). Alternatively, the semi-
parametric Generalized Covariance (GCov) estimator can be used, which does not require
any distributional assumptions on the errors, other than non-Gaussianity for the identifica-
tion of parameters. It is a one-step estimator that is consistent, asymptotically normally
distributed, and semi-parametrically efficient. It can achieve parametric efficiency in special
cases [Gourieroux and Jasiak (2023)]. The GCov minimizes a portmanteau-type objective
function involving nonlinear autocovariances, that is, the autocovariances of nonlinear trans-
formations of model errors, which successfully identify the causal and non-causal dynamics
[Chan et al. (2006)].

For example, let us consider the nonlinear functions a (e;) = [a1 (;),...,ax ()] that
satisfy the regularity conditions given in Gourieroux and Jasiak (2023). This increases the
dimension of the process from 1 to K. Let us denote by ['® (h;0),h =1, ..., H the autocovari-
ance matrices at lags h =0, ..., H, with I (0; 8) representing the variance, and @ the vector
of autoregressive parameters. Then, the GCov estimator of the parameter 6+ minimizes the

following objective function:

H
6, = argmin Z Tr [f“ (h;0)T%(0;0)' T (h; 6)' T (0; 0)_1] : (5)
h=1
where T'r denotes the trace of a matrix and we denote LT(éT, H) the value of the function
at its minimum. Alternatively, when the number of transformations K is large, we can
replace in the above formula [ (0;0) with diag <f‘d(0; 0)), which is the variance matrix
containing only the diagonal elements of f‘a(O; 0). This latter version of the GCov estimator
is no longer semiparametrically efficient, as it is not optimally weighted [see Gourieroux and
Jasiak (2023), Cubadda and Hecq (2011)]. Another strategy for the diagonal GCov is the
regularized GCov proposed by Giancaterini et al. (2025).

The choice of an informative set of transformations (ax, k = 1, ..., K') depends on the spe-
cific series under investigation. For example, in financial applications, linear and quadratic
functions can be selected, such as ai(g;) = &, as(e;) == €. This implies that a; is a lin-
ear function of errors in a causal-noncausal process, while ay transforms the error term by
squaring it for each ¢t = 1,..., T, where T represents the total number of observations. In
application to MAR processes with heavy-tailed error distributions, such as stable distri-

butions, including Cauchy, or t-student distribution with low degrees of freedom, one can



use the square root of absolute values or other fractional powers to ensure the asymptotic
normality of the GCov estimator.
Moreover, the objective function minimized in (5) and evaluated at the estimated param-

eter @7 can be used to test the fit of the model. Specifically, we test the null hypothesis:
Hy : {T¢(h) =0, h=1,...,H},

using the statistic
Er(H) = TLy(r, H),

which, under the implicit null hypothesis of serial independence of errors, has an asymptotic
chi-square distribution with degrees of freedom equal to HK? — dim(0) [Gourieroux and
Jasiak (2023)].

3 Bubble Analysis

Our approach to bubble analysis assumes that the process of interest follows a strictly sta-
tionary MAR(r, s) process with errors from a heavy-tailed distribution with tail parameter
a € (0,2) that includes the Cauchy distribution for o = 1, for example, or a t-student dis-
tribution with a low number of degrees of freedom. In this Section, we focus our attention
on MAR processes of combined orders r and s less than or equal to 2, so that the process
of interest is either a MAR(0,1), i.e., a purely noncausal process of order 1, or a MAR(1,1),
or a causal MAR(1,0). These processes are geometrically ergodic. Gourieroux and Zakoian
(2017) and Fries and Zakoian (2019) also show that the MAR(0,1) and MAR(1,1) processes
are Markov of order 1 and 2, respectively. The results can be generalized to higher-order
MAR(r, s) processes, which are Markov too [Fries and Zakoian (2019), Proposition 3.1].

3.1 On-Bubble Dynamics

Consider the locally explosive MAR(0,1) and MAR(1,1) processes. It has been shown in
the literature that during a bubble episode, and conditional on a large y; > vy, the causal-
noncausal MAR(0,1) and MAR(1,1) processes with a-stable distributed errors, a € (0,2)
have distinct dynamics [Fries (2022)], which leads to different behavior of conditional au-
tocovariances of its latent components. In this Section, we describe these dynamics and
generalize the results in Fries (2022) using the concept of a spectral tail process, based only

on observations above a high threshold. We have the following result:



Proposition 1 [Kulik and Soulier (2020), Chapter 15.3]: Let {y;,t € Z} be a strictly
stationary process with i.i.d. errors ¢,t = 1,2,... from a heavy-tailed distribution with

(Pareto-type) tails of tail index o and with a two-sided MA representation:

+oo

Y = E Ch€t—h,

h=—o00

Yt+-h

Yt
tral) tail process (X},), so that conditional on a large y; > y, where y is a high threshold, we

with nonnegative coefficients. The process ( ) ,h € Z, converges weakly to the (spec-
h

have :

L (y'**h, h=—H,.. Hly > y) A L(Xy, h=—H,...,H),
Yt

d
where = denotes weak convergence, also denoted as Yk & X, for h € Z, and
Yt

Xp = Ch+NX0, h € Z, (6)
CN

where Xy = 1. N is an integer-valued random variable, independent of y and such that:

COC
P[N=hl=="—, VheL (7)

2 hez
Thus, setting Xy = 1, we consider an upward (positive) bubble. Henceforth, we focus our
attention on this case for ease of exposition. Similar results are easily obtained for downward
bubbles, conditional on y; < y where y tends to —oo with Xy = —1. This result can
be applied to the MAR(1,1) and MAR(0,1) processes as follows. Let us first consider the

MAR(1,1) process defined in Section 2.1, assuming positive coefficients ¢ and .

Proposition 2: The strictly stationary MAR(1,1) process with i.i.d. errors ¢,t = 1,2, ...

from a heavy-tailed distribution with tail index a:

(1= ¢L)(1 =YL )y = e,

(i) admits a two-sided MA(oco0) representation with the coefficients: ¢, = Yhif

1

1 =g
(ii) the tail process X}, is such that:

1=

h<0, and ¢, = ", if h > 0.

X =0 X Iy p + ¢ X 1 Iys

with Xy = 1, and the probability P[N = h|:



—ha ha
PIN=h = —— Y th<0,and PIN = h) = ——— Jif h >0,
[W—i_l,wa_l] [m+1,¢a_1]

with 0° = 1, by convention.
Proof: See Appendices A1-A2.

We observe that the distribution of variable N is a mixture of two geometric distributions

(see Proposition 4).

Corollary 1: In the MAR(1,1) process, we have:

Xp = <Z5h]1N>Maz(—h,0) + ¢7h7N"¢7N]10<N§7h + ¢h+N¢N]Lh<N§o + z/7h]lj\fgzmn(—h,o)

Proof: We proceed in three steps. First, we solve the backward and forward recursive
equations satisfied by the sequences X}, starting from the same initial (terminal) condition
X_n. Next, we determine the value of X_y given the known value Xy = 1. In the last step,
we combine the results.

(i) From Proposition 2 it follows that for N > —h we have :
Xp = ¢Xp1

Since N > —h <= h > —-N <= h > —N + 1, this leads to a recursive formula with the

initial condition X_y and the general term

X, =¢"™NX_y, forh > —-N+1
(ii) It follows from Proposition 2 that for N < —h, we have:

1
Xp = EXh—ly

which can be written as:
Xp—1 =YXy,

Since N < —h <= —h > N <= h < —N, this leads to a recursive formula with the

terminal condition X_x and the general term:

X, =9 " NX_y

(iii) These results can be combined, yielding:

Xy = ("M ysop + 0" Ny )X n



(iv) The value of X_py is unknown and can be determined from X, = 1 by evaluating the

above formula for h = 0. We get:

1=Xg = (¢"yso+ ¢ V<o)X n

= X n=0¢Vlys0+ ¢V ngg
(v) Next, we compute:

Xy = ("M ysp + ¢_h_N]1N§—h)(¢_N]1N>0 + ¢N]1N§0)
= "Ins nlyso + 0NNV Iy plnso + "N N s g ly<o + M Iv<nln<o

= ¢"Insmtar-no) + ¥ "N N loen<n + " TVYN I en<o + U Incasing-no)

During a bubble episode, we can distinguish the phases of growth and decline. The
noncausal persistence of MAR(1,1) processes determines the rate at which a bubble keeps
growing up to time t—N. The negative power of ¢ indicates that the growth is explosive while
N < 0 given that /| < 1 is assumed for strict stationarity. The above result is consistent
with Proposition 4.2 in Fries (2022) which describes the dynamics of a MAR(1,1) process
conditional on a large value y, > y and % = Z:—ﬁ = 1/¢. In the MAR(1,1), conditional
on y; > y, the bubble either keeps growing to the next value 3,1 = iyt, or it bursts and
decreases to y11 = ¢y, This latter pattern is also consistent with formula (v) for N > 0,
which additionally implies that the bubble bursts at N = 0.

In a MAR(0,1), the bubble bursts vertically to 0, while in the causal AR(1), i.e.,
MAR(1,0), we observe a jump, followed by a decrease determined by the autoregressive

coefficient, as shown below.

Corollary 2: The strictly stationary MAR(0,1) process with i.i.d. errors €, = 1,2,, .. from

a heavy-tailed distribution with tail index «:
(1—=oL Yy =t — Yye1 = &,
admits a one sided MA(oco) representation with the moving average coefficients:

cp,=1"" ifh<0, and ¢, =0, if h > 0.

The tail process is such that:
Xp =0 Xp1dy<on,

with Xy = 1 and the probability P[N = h]:

10



P[N =h]=0,if h >0, and P[N = h] = (1 —¢*)yp~"* if L <0,

It follows from Proposition 2 that the variable —N has a geometric distribution on N with
parameter ¢ during the growth phase of bubble.

The causal autoregressive processes with errors from a heavy-tailed distribution with tail
index o may admit a tail process behavior following a jump.

Corollary 3: The strictly autoregressive of order 1 (causal AR(1), i.e. MAR(1,0)) process:

Yy = QYp—1 + €,

with i.i.d. errors ¢,t = 1,2,,.. from a heavy-tailed distribution with tail index o and 0 <
¢ < 1 admits a one sided MA(co) with coefficients:

cp=0¢" if h>0, and ¢, =0, if h <0.

The tail process is such that:
Xp = ¢Xn-1ln>p,

with Xy = 1 and the probability P[N = h] :
PIN=h]=0;if h <0, and P[N = h] = (1 — ¢*)ph®; if h > 0,

Hence, the path of y, displays jumps, with a geometric decline. The variable N has a
geometric distribution with parameter ¢® during the decline following a jump. Moreover, the
behavior of pure noncausal autoregressive processes of order 2 (MAR(0,2) with i.i.d. errors
€,t=1,2,.. from a heavy-tailed distribution with tail index « is described in Appendix B.

The results given above suggest the following definition of a bubble:

Definition: The bubble is an episode when the observations above a high threshold on
a strictly stationary autoregressive noncausal process with i.i.d. errors from a heavy-tailed

distribution with tail index « increase (decline) at the rate of a tail process.

From Proposition 1, it follows that at any time ¢t when g, > y and y is a high threshold,
d d
the ratios of observations y;yp/y: = X}, for any h, where ~ denotes an approximate equality

of distributions.
3.2 Tail Behavior of Latent Components
The latent components are defined in equations (3) and (4) as:

U1 = (1 — ¢L)Yri1 = yer1 — dye and vy = (1 — L Vy =y — ye1,t =1, ...

11



for the MAR(1,1) process. We observe that the ratios of these latent components divided by

Yt:
Ut+h Yirh — PYirh—1 Vt4h Yirh — VYirhs1
= and =
Yt Yt Yt Yt

are functions of ratios y;.p/y; for h € —H,.., H. Our goal is to replace them by the tail

components: U, = X, — ¢X;_1 and V), = X}, — ¥ X1, respectively. Then, when y; > y is
large, they are linear deterministic functions of the components X}, of the tail process.

Let us now examine how Proposition 2 can be used to obtain the asymptotic behavior
(in distribution) of Uy, V,,, h = —H, ..., H.

Proposition 3: At time ¢ such that 3, > y, for a high threshold y, we have:

d d
U/ Ye = X — 0 X1 = Up, Ven/ye = X — 0 X1 = Vi,
and
Uh = (¢_1 - ¢)Xh—1]1N§—h7 Vh = (1 - ¢¢)XhIlN>_h_1.

Proof: Let us consider the causal component. It follows from Proposition 2 that:
Up=Xn—¢Xn1= 0" = ) Xn1ln< .
Similarly, we have:

Vh = Xh - thJrl = Xh - Xh]lNgfhfl - w¢XhﬂN>fh71 = (1 - ¢w)XhﬂN>fh71-

Corollary 4: The causal and noncausal tail components Uy, V}, are such that:

U,=0,f N>—-h<=>t+h>t— N,
Vi=0,f N —-h—-1<=>t+h<t—N-1,

Proposition 3 and Corollary 4 can be interpreted as follows. Let us consider an exogenous
time t when y; > y, for large y. Then ¢ belongs to a bubble episode, with a peak at time
t — N. The noncausal (resp. causal) tail component is equal to zero after (resp. before) the
peak, and has the behavior of a MAR(0,1) tail process before the peak (resp. MAR(1,0) tail
process after the peak). This result can also be used to determine the behavior of products

of the causal and noncausal tail components.
Corollary 5: We have

UtrnVetk d

Sthpk=—75— UV =0, if h—k>1

Yi

12



Proof: We see that U,V =0 <= (N > —h) or (N < —k—1). This condition is equivalent
to N € Z that is always satisfied iff:

Z = (—o00,—k—1U[-h+1,0]
— —-h+1<—-k-1+1=-k

<— h-k>1.
The result follows. In particular, we have:

Ut h1Ve4+h d
gt,h = = Uh+1vh =0, Vh

Yy

where p = r + s = 2 is the combined autoregressive order of the process, and

Ut 41Vt

d
ft,oz D ~ U Vp=0.

t

For the MAR(0,1) process with p = 1, we get:

(i) at A = 0.
v d
o= — =1 — Xy,
Yt
where
X = 1/}71]1N§—1-
The statistic is: {0 =1 — Iy<_; and is always 0 during the bubble.
(i) at h = 1.
Vir1 d
§t1 = MAEPN X1 —9¥Xo
Yt
where

Xy = ¢_1X1]1N§—2

The statistic & ; is equal to 0 as well.
The observed behavior of statistic & j can be used for testing the hypothesis that the process
is in a bubble at time ¢ 4+ h. This approach is pursued in Section 4. Below, we discuss the

behavior of the variable N and associated inference.

3.3 Time to Peak

This section describes the stochastic properties of N, which determines the duration of a
bubble, and of t — N for N < 0, which is interpreted as the time to peak. We consider first
the MAR(1,1) process.

13



Proposition 4: In the MAR(1,1) process, the distribution of N is a mixture of two geometric

1 1 @
distributions with P[N > 0] = + L4 o ). The distribution of N given N > 0

1— ¢a/ ( 1— ¢a 1 —
is a geometric distribution in N with parameter ¢“, and the distribution of —1 — N, given

N < —1 is a geometric distribution in N with parameter 1.

Proof: From Proposition 2, it follows that:

R 1 P
A2 o/ (gt )

Then, for h > 0:

ho
P(N =h|N >0) = 1 ¢ et which is a geometric distribution in N with the parameter ¢.
For h < 0, we have:
w(—h—l)a
P(N = h|N <0) = T which means that —1 — N has a geometric distribution on N

with parameter .

Corollary 6: The expected value of N is:

1 ¢° v )
E(N) = _ _
) T%§”+T4&?_]-((1“¢ay (1—9)?

Proof: We have

E(N) = E(N|N > 0)P(N > 0)+ E(N|N < —1)P(N < —1)
= E(Z)P(N >0)+ E(—1 - Z)P(N < —1),

where 7y, Z5 follow geometric distributions on N with parameters ¢* and ¥*, respectively.
It follows that:

E(N) =

1 1 QSCV ¢a wa
_1_
1_1(15&_'_11_/);& |:1_¢a1_¢a+1—’¢0‘( 1_wa):|

- e )
s (=9 (L= )

o= T 1-y®

The marginal expected value of N depends on the values of ¢ and ¥ and is symmetric in ¢
and . In particular, it is equal to 0 if ¢ = v, which corresponds to a symmetric bubble.
In addition, this expectation depends on «. The effects of ¢, 1, a are illustrated in Figure 1,
where we observe that, for a fixed 1, the expected value E(N) increases in ¢. For a fixed ¢,
E(N) increases in absolute values in . In addition, the range of values of F(N) depends on

the tail parameter a.
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If the bubble is asymmetric, then F(N) can take either a positive or negative value.
Therefore, one may be interested in computing the conditional expectation of N given N < 0
to approximate the expected time to peak.

It is also interesting to compute the cumulative distribution function (cdf), or survival
function of N, to derive the quantiles of the distribution of N and obtain the prediction
interval for N. We find the quantiles hj; and h} of the distribution of N at levels (1 —~) and
7, where 7 is small, which are: hj; such that P[N < hj;] =+, and h} such that P[N >

h%] = 1—~. Using small vy, we separately consider the geometric distributions of the mixture.

Corollary 7: For h < 0, sufficiently small, we have:

wfhoz 1
PIN < h] =
= 1_1/’06[1—1455*+1—1¢‘3‘_1]7

and for h > 0, sufficiently large, we have:

tha 1
o 1 1 :
I §Z5 [1_¢a + 1—yp> 1]

PIN > h| =

Proof: see Appendix.

The expected value (median or mode) provides a point prediction of the N. The quantiles

of the distribution of N provide the prediction interval for N.

For the MAR(0,1) process, the variable —N follows a geometric distribution on N with
parameter ) (by Corollary 2 or Proposition 4) during bubble growth. The cumulative
probability function of NV is:

PIN<Bh =1—¢")) v@=1—¢) ) ¢ =¢p

i<h i>—h

for h < 0. The mean of this geometric distribution is equal to

1
E(N)=———
( ) 1 _ wa 3
and can be interpreted as the average time to peak. The median is:
log 2 }
med(N) = | ———|,
W) {alog(d})

or its integer part, and the mode is equal to mode(N) = 0. Since the distribution of —N
is skewed, the expectation, median, and mode provide three different point predictions. We
illustrate the effect of the parameters ¢ and « in Figure 1la. We observe that for MAR(0,1),

15



Figure 1: E(N) for MAR(0,1) and MAR(1,1)

(a) E(N) for MAR(0,1) (b) E(N) for MAR(1,1), « = 0.5

E(N)

(¢) E(N) for MAR(1,1), . =1 (d) E(N) for MAR(1,1), & = 1.5
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the absolute value of the expected time to peak increases in ¢. This is consistent with the
dynamics of this process, with a growing phase of a bubble followed by an instantaneous
crash. Moreover, the values of F(N) depend on the parameter «.

Up to the effect of the integer part, both the median and the expectation decrease in ¢®.
To build the prediction interval, we use the quantiles of the geometric distribution, which are
determined by inverting the cumulative probability function P[N < h] = =" For a level

v, the quantile is equal to :

log ~y
h(vy) = —

) alog
and the prediction interval for N at level 10% is:
_log0.05  log0.95

alogy’  alogy

( )-

Because the variable is discrete, we round up or down the upper and lower quantiles to integer
values to make it more conservative.

In practice, the predictions and prediction intervals of N can be found by replacing the
unknown parameters ¢, by their GCov-based estimates based on a sample of 1" observa-
tions, which are also used for computing the test statistics given in the next section. The tail
parameter o can be approximated by the Hill estimator, which suffers from the bias-variance
trade-off in finite samples. Kulik and Soulier (2020) shows that under the tail process ap-

proach, the Hill estimator is consistent and asymptotically normally distributed.

4 Inference

4.1 The Statistics

Let us show how the results derived in Section 3.2 can be used to build diagnostic tools to

test the MAR(1,1) process for bubbles. Diagnostics are based on the counterparts of

ft,O _ ut+;vt _ (yt+1 B ¢0) (1 - oytH) ’
Yy Yt Yt

where ¢, 1y denote the true values of the parameters. These quantities depend on the

observations and the unknown parameters. The unknown parameters can be replaced by
consistent and asymptotically normally distributed estimators QAST, @@T of ¢, obtained from

the sample of T observations. Then, the sample counterpart of &  is:
&T _ <yt+1 - AT) (1 B ATyt+1) ‘
Yt Ye
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The statistics ft;p,t = 1,...,T can be used as follows. From Corollary 5, we know that if y,
d
is sufficiently large at time ¢, then & ~ U;V, and that U;Vy = 0. Therefore, we expect that

ft,T is close to 0. We can also consider another lag h with:

Ut+h+1Vt+h Yt+h+1 Yt+-h Yt+h Yt+n
ft(h)z t++2 t+ :(t++ — b t+)(t+ — 4y t++1).
Yt Yt Yt Yt Yt

d
It was shown in Corollary 5 that &, ~ Up41V) and Up41V), = 0. The sample counterpart is

&T(h) _ Ut+h+;vt+h _ (yt+h+1 _ quytJrh) (yt—l—h _ &Tyt+h+1) .

4.2 Confidence Band

Consider the statistic ét’T. The zero value of the transformed tail process can be considered
as the true value of some tail parameter 6; = U;Vp, which is deterministic and equal to 0 if
y; is sufficiently large, and it is stochastic, otherwise. Then, at each exogenous time ¢, we

can consider the null hypothesis:
HO,l == {91 = 0}

The difficulty is that we have a double asymptotic in the level of threshold y and in the

number of observations 7. To derive reliable confidence bands, we assume that during the
d
bubble episode, the uncertainty in the approximation & o ~ U;Vj is negligible with respect

to the asymptotics in 7. Then, during a bubble episode when Hj; is satisfied and y; > y,

with large y, we have conditional on v, ys11:

ﬁ(gt,T —&10) 4 ﬁ(ét,T - UiW)
= VT&r 5 N(0,0}),

where o2 is obtained by the delta method as follows:

o (o) (o)) (222))
Ye Yt Yt r — o

This quantity is then consistently estimated from:

U
52— ﬁ Ye+1Ug+1 Q (A
t,T ) 2 T U )
Ye o Yi Y1t
2
Yt

where Q7 is a consistent estimator of the asymptotic variance matrix of the parameter es-

timators. Then, under the assumption of a MAR(1,1) process and following a large y;, we
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have
VT &.r/607| < 1.96,

with an asymptotic probability of 95%. This leads to a functional diagnostic tool that consists
of reporting for any time ¢ the quantities ét,T, t=1,...,T along with the band

. &
(@,T + 1.96t—\/’_;) :

Since the tail process does not depend on the level of y, and the values of 3,1, the width
of the band is independent of time ¢, ¢t = 1,...,T. Then, the times at which the statistic is
inside the band are the times associated with a bubble with probability 95%.

This approach is easily extended to other lags. From the statistic étﬁT(h), we can test the
null hypothesis:
HO,h - {¢9h - O}

where 6, = U1V}, and y; > y. Then, conditional on v, yi1n, Yronir1 We have:

VT(Er(h) = &n) £ VT (Er(h) — UniaVa)
= VTér(h) % N(0,0%(h))

where o2(h) is:

o2(h) =V, { [_yt+h <?Jt+h _ ¢0yt+h+1) ’ " Yithtl (yt+h+1 _ ¢Oyt+h>} \/T( ¢;T — o )}

Yt Yt Yt Yt Yt Yt Yy — g

This quantity is then consistently estimated from:

Yish Veth
2 Yt+rhVtth Yerhi1Utrhtl | A y?
o T(h’) = 2 ’ 2 Q ]
’ Yy Y Yt+h+1Ut+h+1
2
Yt

Under the assumption of a MAR(1,1) process and following a large y; > y:
|ﬁét,T(h)/é-t,T(h)| < 1.96,

with the asymptotic probability of 95 %. This leads to a set of functional diagnostic tools,
where for any time ¢t and h the quantities ét,T(h), t =1,...,T are reported along with the
band:

2urt))

(gt,T(h) £196=7
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In practice, the above procedure may not distinguish between a bubble and a short-lasting
spike with the same growth rate. In addition, there can be times ¢ during the bubble when
the statistic is outside the band because either (i) the MAR(1,1) model is misspecified, or
(ii) the MAR(1,1) is well specified, but the value of y; is not sufficiently large.

This method easily provides the test statistics for the MAR(0,1) and MAR(1,0) processes,
based on Corollary 5, with €t7T = 0y/y;, and ét,T = Uy11/Ys, respectively. The above results
applied to MAR(1,0) processes provide a tool for jump detection in the causal autoregressive
process. In each case, the confidence bands are independent of the tail parameter «.

&7 can be used as a bubble detection tool in the MAR(1,1) and MAR(0,1) processes, as
it is constant and close to 0 during the bubble growth and decline periods, and it is time-
varying otherwise. Hence, the first difference Aét,T is also constant and close to 0 during the
bubble growth and decline periods.

Consider a sequence of ft,T, evaluated at t = 1,2, .. following a high threshold value ;. A
close to zero value of €t+17T following a large 1, is a warning of an upcoming bubble. Since
this statistic remains close to 0 throughout the duration of the bubble, the number of values
of (1), for t = t+1,t+2, ... that are not statistically significant, is a measure of the duration
of the bubble. The first time ¢; when étj 1 ~ 0 marks the start of the bubble. The last time
t 7, such that ftJyT(l) ~ 0 marks the end of the bubble.

4.3 Illustration

Our approach is illustrated in Figure 2 by a bubble episode of a simulated MAR(1,1) process
with ¥ = 0.9, ¢ = 0.3 and Cauchy distributed errors with scale coefficient 1.
The top panel of the Figure displays the bubble episode of the MAR(1,1) process. The first

difference Aét from the statistic

A 1covg 1 (u, v
A& = A%7 yr # 0
t

is computed and displayed graphically to detect periods when it is approximately constant
and close to 0. The statistic Aét indicates the times when the process becomes a "tail
process”, which can be used to approximate the start and end of a bubble. The bottom
panel shows the first difference A&;. The first difference A&, is constant and close to zero

during the entire bubble episode.
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Figure 2: Bubble detection in MAR(1,1) process
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Figure 3 below shows an example of the path of a simulated MAR(1,1) process with
¢ =0.3 and ¢ = 0.9, and i.i.d. errors from a t(3) distribution.
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Figure 3: Simulated Path
The vertical lines mark times 127, 137 (red), 151, 161 (blue), 163(green)

We observe a bubble with a peak of 52.051 at ¢ = 163. The estimates of the GCov
parameter of the MAR(1,1) model are q§:O.3085 and 1@ =0.908, with standard errors of 0.028
and 0.030, and these estimates are based on K = 4 power transformations and H = 3. The
test statistic fth evaluated during the bubble, conditional on observation y(160) = 37.951
is -0.0220 and is within the confidence interval of +0.05646. Therefore, the null hypothesis
01 = 0 at time ¢ = 160 is not rejected.

Next, we examine the effect of the conditioning values and perform the test using &T(h)

on increasing horizons h=1 to 10, conditional on y;97 =-0.7522 and y,5; =21.810. The results
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are reported in Table 2. The columns of Table 1 report: the horizon (col. 1), the value of
the test statistic (cols. 2 and 5), the confidence interval of the form 0.0 & C'I, and the result
of the test of Hyy : 0, = 0 coded 1 for not rejected and 0 for rejected. We observe that,
conditional on the large value at time ¢t = 151, the test does not reject the null hypothesis
of a bubble over the upward-sloping sequence of the next 10 observations. Conditional on a
close proximity to the mean value of the process at time t = 127, the test rejects the null
hypothesis of a bubble over the next 10 observations, which remain close to the mean.

To evaluate the performance of the test in finite samples, we perform the following exper-
iment. We generate MAR(0,1) processes in samples of length T=400 ° with t(3), t(4), and
t(5) distributed errors and with different values of coefficients ¢ and .

Table 1: Test at horizons 1 to 10

horizon Conditional on g;97 Conditional on y5;
h Er(h) CI test | &r(h) CI test
1 -4.7826 | £0.5263 | 0 |-0.0322 | = 0.0581 | 1
2 -4.5177 | £0.5720 | 0 |-0.0365 | = 0.0746 | 1
3 -4.1350 | £ 0.5166 | 0 | -0.0340 | £ 0.0686 | 1
4 2.9267 | £0.1242 | 0 |-0.0326 | £ 0.0637 | 1
5 -1.1938 | £0.1028 | 0 |-0.0338 | = 0.0671 | 1
6 -2.7478 | £0.2047 | 0 |-0.0374 | £0.0799 | 1
7 -7.2927 | £1.1972 | 0 |-0.0377 | £0.0829 | 1
8 -6.1137 | £1.0591 | 0 |-0.0432 | £0.1054 | 1
9 -6.7780 | £ 1.2766 | 0 |-0.0485 | £0.1324 | 1
10 -2.0080 | £0.2329 | 0 |-0.0552 | £0.1704 | 1

Next, we set y = ¢,(0.975) to be used as a conditioning large positive threshold value at time
t to study the size of the test. To study the power of the test, we use y = ¢,(0.525) as the
conditioning value at time ¢ followed by a moderate decrease or increase, and preceded by
a random pattern, where by moderate we mean that y;., is less than or equal to ¢,(0.975).
The empirical size and power of the test are reported in Tables 4 and 5, Appendix C. Table
6 considers the MAR(1,1) with Cauchy distributed errors. A similar exercise is performed
for the MAR(1,1) processes with t-student distributed errors, estimated by the GCov with
K = 2 power transformations and lag H = 4. The size and power are reported in Tables 6
and 7, Appendix C.

There are some challenges involved in this analysis. It is difficult to accurately estimate
the quantiles of the marginal distribution of the process from 400 observations, especially

for processes with high persistence and low degrees of freedom. Hence, the estimates of

5We generate a series of length 800 and discard the first and last 200 observations.
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y = ¢,(0.975) as the conditioning value, obtained from the replicated paths of the process,
may vary. Moreover, without observing the trajectory, we do not know a priori whether the
process admits a bubble or a jump instead, the latter occurring in the MAR(1,1) processes
due to the causal component. In processes with ¢ = 0.9, bubbles are infrequent and grow
slowly at a rate of about 1.1 . In processes with 1 = 0.6, the bubbles are more frequent and
grow faster. We distinguish the bubble from jumps by checking if, following the conditioning
value of y = ¢,(0.975), the process grows at a rate close to the theoretical rate. Another
difficulty is the asymptotic normality of the estimators, which impacts the results in the
processes with t(3) distributed errors estimated by the OLS. In Table 4, we observe that the
test over-rejects when the error distribution is t(5), especially for higher values of 1. Table
5 shows that the power of the test is slightly lower when the noncausal persistence is higher.

Table 6, illustrating processes with ¢ = 0.9 and Cauchy distributed error, shows that the
test tends to under-reject for closer to 0.9 values of parameters ¢. In addition, the power of
the test decreases for higher values of ¢.

In Table 7, we observe that the size of the GCov-based test is closer to the nominal value
for moderate values of 1 = 0.7 and 1 = 0.8. The test is conservative for ¢» = 0.6 and over-
rejects for ¢ = 0.9 in processes with t(3) distributed errors. For each v, the test is the most
conservative in processes with t(5) distributed errors. This error distribution is the closest
to the normal among the three error distributions considered, leading to potential parameter
identification problems. We find that the size is close to the nominal value for moderate
values of causal persistence ¢, regardless of 1. Table 8 shows that the test has good power,
especially for ¢» = 0.7 and ¢ = 0.8. It deteriorates in processes with t(5) distributed errors
for 1» = 0.6 and ¥ = 0.9 and for higher values of causal persistence, making bubbles harder

to distinguish from regular dynamics.

5 Green Stock Indexes and ETF's

The transition to a clean energy economy has recently gained significant attention, driven
by global events such as the COVID-19 pandemic and the Russia-Ukraine war. In fact, in
response to these crises, governments, industries, and investors have increasingly prioritized
clean energy investments, recognizing their long-term benefits for a stable and environmen-
tally friendly energy system [Mohammed et al. (2023)]. This growing focus on clean energy

is also driven by the need to achieve net zero emissions by 2050, which requires substantial

5The tests of Phillips et al. (2011) and Phillips et al. (2015) are intended to test bubbles with a growth
rate of 1. Gourieroux and Zakoian (2017) show that unit root tests are unreliable in applications to a MAR
(0,1) process with Cauchy-distributed errors.
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investment in clean energy from both developed and developing countries; see Khalifa et al.
(2022). In 2023, global investment in the energy sector was estimated at USD 2.8 trillion,
an increase of 0.6 trillion USD from five years earlier. Almost all of this growth was directed
toward clean energy and infrastructure, increasing total clean energy spending to 1.8 trillion
USD, compared to 1 trillion USD for fossil fuels.” These large investments pose the risk of
"green bubbles” — rapid stock price increases followed by crashes. Specifically, such bubbles
occur when overinvestment and speculative behavior drive the market value of clean energy
assets beyond sustainable levels. Consequently, rising interest rates can increase financial
pressure on investors, potentially triggering bubble bursts and undermining the credibility of

the clean energy transition [Wimmer (2016)].

5.1 The Data

We have considered the Renixx Index, the WHETF, and the iShare green stock ETF's. For
Renixx, we used daily data from https://www.renewable-energy-industry.com/stocks
and sampled them at a monthly frequency by taking the last day of each month of the closing
price series. When the last day of the month is a bank holiday, we consider the previous
available day. The Renixx index tracks the global renewable energy market, covering sectors
such as wind, solar, bioenergy, geothermal, hydropower, electronic mobility, and fuel cells.
It comprises 30 companies, each of which derives more than 50% of its revenues from these
sectors (see www.iwr.de/renixx). The WHETF tracks the WilderHill Clean Energy ETF,
which includes companies listed in the United States that focus on developing cleaner energy
and conservation efforts. In particular, WHETF allocates a minimum of 90% of its total
assets to common stocks included in this ETF. It is rebalanced and reconstituted quarterly.
Finally, iShare tracks the S&P Global Clean Energy ETF, which provides exposure to the 30
largest and most liquid publicly traded companies worldwide operating in the clean energy
sector. The latter uses a modified market capitalization weighting system.

We investigate Renixx on its whole available sample and both WHETF and iShare from
2009 onward. We consequently have a total of T' = 266 observations for Renixx and 7" = 182
observations for WHETF and iShare, with potentially two bubble patterns for Renixx and a
single bubble for both the WHETF and iShare. Figure 4a shows that the Renixx index (from
January 2002 to February 2024) experienced significant bubbles in 2008 and 2020, coinciding
with two major global events: the 2008 financial crisis and the outbreak of the COVID-19

pandemic. In 2008, the financial crisis rocked global markets, leading to widespread economic

"IEA (2023), World Energy Outlook 2023, IEA, Paris https://www.iea.org/reports/world-energy-outlook-
2023, License: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A).
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instability and investor panic. The collapse of major financial institutions, coupled with a
credit crunch and falling stock markets, triggered a flight to safety among investors. This risk
aversion had a significant impact on the renewable energy sector, with reduced investment
in renewable energy projects and a decrease in the demand for renewable energy stocks [see
Giorgis et al. (2024)]. Similarly, in 2020, the COVID-19 pandemic caused unprecedented
economic disruption around the world. Lockdown measures, supply chain disruptions, and
reduced consumer spending resulted in a global economic downturn. The renewable energy
sector was particularly affected by the decrease in energy demand due to reduced economic
activity and travel restrictions. The same trends are observed in WETHF and iShare; Figures
4bh and 3¢, respectively. However, only the COVID period bubble appears in the data, as the
sample for both variables spans from January 2009 to February 2024, and therefore does not

include data from the global financial crisis.

5.2 Prices vs. Returns

Although most studies in green energy finance focus on returns [e.g., Henriques and Sadorsky
(2008); Sadorsky (2012a)], our analysis is based on prices, allowing for a direct examination
of bubble dynamics that would otherwise be obscured by log-differencing. In fact, in financial
analysis, especially in commodity pricing, it is crucial to focus on the price process rather
than returns or first differences. This approach aligns with the financial theory that underlies
commodity pricing, as discussed in Hull and Basu (2016). Transforming the price series into
returns or first differences can obscure critical aspects of the price process, including the
presence of bubbles. Moreover, differencing can eliminate noncausal components essential
to understanding bubble dynamics [Giancaterini et al. (2022)]. We employ the detrended
cubic spline method to address this issue and eliminate trend components while preserving
significant bubble patterns, as detailed in Hall and Jasiak (2024). This method fits a cubic
spline, a piecewise function composed of polynomial segments of degree three, to the time
series data. The points where these segments connect, known as knots, allow separate cubic
polynomials to be fitted within each segment. We place knots every two years to effectively
detrend the series, balancing data smoothing and avoiding overfitting. By applying this
approach, we successfully isolate the cyclical variations that contain the bubble patterns
from the trend component. The detrended series are also shown in the right panels of Figure
4,8

8An alternative detrending technique that may help us preserve the bubble patterns is the HP filter
method (see Giancaterini et al. (2022), Hecq and Voisin (2023)). However, as indicated by Hall and Jasiak
(2024), the HP filter requires you to choose a value for the smooth parameter lambda, which is typically a
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Figure 4: Green Index and ETFs from January 2009 to February 2024. The panels on the left show the
original series, while those on the right display their detrended versions.
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5.3 Summary Statistics and MAR Estimations

The detrended data is non-Gaussian, as evidenced by the Kolmogorov-Smirnov and Shapiro-
Wilk’s tests, which both reject the null hypothesis of normality. Table 2 presents the sum-
mary statistics, which confirm that the distributions of the series are non-Gaussian, given
the reported excess kurtosis. We test the spline-detrended data for causal and noncausal
persistence by using the test introduced in Jasiak and Neyazi (2023) [see Section 2.2]. We
choose K = 2, including the time series and its squares as (non)linear transformations, and
H = 3 as the number of lags in the objective function of the test. The null hypothesis of

the absence of nonlinear serial dependence is rejected since the test value is 514.98, while the

function that increases with the sampling frequency of the data. In our examination of monthly data, a high
lambda value may result in computational inaccuracies, thus justifying our preference for using a cubic spline
to detrend the data. However, we have investigated several detrending methods, including the HP filter, as
well as polynomial trends of different degrees (results upon request). We only report the results with the
spline detrending approach as it passes the absence of nonlinear serial dependence test [Jasiak and Neyazi
(2023)].
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critical value at a 5% significance level from the chi-square distribution is x?(12) = 21.026.

Table 2: Summary statistics of Renixx, WHETF, and iShare

T Mean Min Max SD Skewness Ex.Kurt.

Renixx 266 748.57 155.47 2070.38 475.09 1.03 2.85
WHETF 182 23.08  3.66 119.57  25.31 1.67 5.28
iShare 182 13.60  6.36 29.83 5.46 0.74 2.36

We apply the GCov estimator to obtain the parameters of MAR models for the three
series. Specifically, we use H = K = 2 and a;(¢) = e, for j =1,2, in (5), i.e., the residuals
and their squares as transformations in the GCov estimation of Renixx [see Cubadda et al.
(2023)] and a;(e;) = log(|ps|)? for j = 1,2, for WHETF and iShare. Table 3 presents the
estimation results. To identify the dynamics of the underlying processes, we evaluate all
combinations of r and s such that r+s = p. We begin with p = 1 and gradually increase p to
find the values of r and s that provide i.i.d. residuals based on the GCov specification test.
The last row of 3 shows the results of the GCov test. This approach allows us to identify the
Renixx index and the two ETFs as MAR(1, 1) processes. The GCov specification test results

indicate that these processes are correctly specified and provide a good fit to the data.

Figure 5: Causal and noncausal components

rrrrr

(a) Causal (blue) and Noncausal (red)(b) Causal (blue) and Noncausal (red) (c¢) Causal (blue) and Noncausal (red)
components of Renizz components of WHETF components of iShare

Figure 5 shows the estimated latent components @; and 0; defined in eq. (3) and (4)
for the threee series of interest. We observe that the changes in the noncausal component
anticipate the dynamics of the observed series, followed by the causal component. In the

next section, these estimates are used to compute the statistic & p for each series.
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Table 8: Estimated MAR(1,1) coefficients and GCov tests

MAR(1,1) Renixx WHETF iShare

10) 0.24 0.07 0.32
(0.11) (0.01) (0.02)

(0 0.70 0.89 0.62
(0.08) (0.03) (0.02)

GCov Test, 7.14 4.86 2.40

(Critical Value) (12.59) (12.59) (12.59)

5.4 Bubble Detection

The bubbles in the price series can manifest themselves as periods of high volatility. We
estimate local variances to detect periods of high volatility in Renixx and the ETFs. We
consider a rolling window of 5 observations and estimate the local variance for the three
series. The plot of rolling estimates provides a graphical tool for preliminary analysis. Figure
6 displays the rolling estimates of the variances of the Renixx index and two ETFs. Two
bubble periods, one that occurred during the financial crisis of 2008 and one associated with
the COVID pandemic, are observable in Figure 6. Since the data on ETFs before 2009 are
not available and the observations on bubbles during that period are incomplete, we focus
on the bubble observed during the COVID period.

Figure 6: Local variance of time series with H = 5 rolling window size
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(a) Renizz (b) WHETF (c) iShare

To detect and determine the dates of bubbles in the three price series, we focus specifically
on the period between 12/01/2020 and 05/31/2021. Figure 7 illustrates how the method
introduced in Section 4 can be applied to Renixx and the ETF's to test for bubbles, and to
determine the dates at which that bubble starts and ends. Figure 7a and 7b show the test

statistics ét’T computed over that period and the associated confidence band. We observe
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that the bubble of Renixx and WTETF started on 12/01/2020 and ended on 03/01/2021.
The bubble for ishare ended on 04/30/2021. Note that in Figure 7c the confidence intervals
depend on the parameter variance reported in Table 3 and are larger for Renixx compared
to the other estimated processes.

Given a tail index value, the time to peak depends on the rate of bubble growth. It takes
longer for the bubble to grow when zZAJ is large. As shown in Section 3.3, the time to peak is
also determined by the tail parameter, which is estimated from the Hill estimator R-package.
For & = 1.3, the expected time to peak for Renixx is 1.5 months (computed as the conditional

expectation of N given N < 0), and the probability that N exceeds 3 months is 0.232.

Figure 7: Bubble detection statistics for Renizx, WHETF, and ishare

(a) Renizz (b) WHETF (c) iShare

Given & = 1.7 for WHETF, the expected time to peak is 4.5 months, and the probability
that it exceeds 5 months is 0.37. With @ = 1.15, the time to peak for iShare is slightly longer
than 1 month, and the probability that it exceeds 3 months is 0.17.

6 Conclusions

This paper introduced a new statistical test for detecting financial bubbles, derived from
the tail process representation of mixed causal-noncausal autoregressive models. Unlike
traditional unit-root and explosiveness-based methods, our approach is grounded in strictly
stationary noncausal dynamics, which provide a natural framework for capturing locally
explosive behavior. Classical tests such as SADF or GSADF are often sensitive to heavy
tails or may misinterpret short-lived spikes as bubbles. By contrast, our test exploits the
tail process properties of causal and noncausal dynamics, which remain constant and close
to zero during a bubble episode. This feature allows us to separate persistent speculative
bubbles from short-lived spikes and regular fluctuations.

We applied univariate MAR(r, s) models to the Renixx index and two green energy ETFs
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(WHETF and iShare), estimating the underlying dynamics using the GCov approach. This
combination provides a robust identification strategy: the GCov estimator ensures reliable
parameter estimation under non-Gaussianity, while the proposed test captures the tail process
behavior that signals bubble formation. The empirical results reveal clear bubble patterns
in all three series, showing that the test performs well in detecting and dating speculative

episodes in green financial markets.
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Appendix A

1. Derivation of the M A (cc) representation of MAR(1,1)
We have:

(1=¢L)(1—¢L7") = —¢L7'(1 - ¢L)(1 —¢~'L).
It follows using the partial fraction decomposition of the polynomial that:

_1 1
= Y liTopa— e

_ —@D*lL ¢ L
B <1—¢L 1—¢—1L>

oL 1L
1—¢L 1—1 1L)

1
(1 —oL)(1 —L)

1—¢¢

_ oL 1

B @5@/1(1 ¢L 1—yL~t )
¢< ot S

— 1_@ (;wLM%w—th),

<

where we observe that the first sum inside the brackets is equal to —1, and the second

1
1— oL

sum is equal to The moving average coefficients are:

1
1—L-1
" "
,if A >0, and ¢, = ,
L— ¢y " 1oy

since the two formulas coincide for i = 0 and the convention 0° = 1 is used (if ¢ or ¥ i zero).

Cp = lthO,

2. Proof of Proposition 2:
The tail process takes the values either 1/9X}_;, or $X}_;. Then, we have:

a)ifN+h§O<:>N§—h:th W wwN’“Xhlfw X1,
1
b)if N+h>0 <= N>—h:X,= w¢N+h/ W¢N+h X1 = 0 X,
Then, the probability distribution of /N is such that :
- —1,/,—ha —ha
PN =) = — L= 00)7W v h<o,
(1 =) it + = — 1 e + g — 1
1 tha ha
PIN = h] = u W) ¢ " o,
I-¢) e+ — 1 [ + e — 1
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with 0° = 1, by convention.

3. Tail process representation of AR(2) processes with at least one root inside
the unit circle

The autoregressive of order 2, AR(2), process:

Y = tlyt—l + tgyt_g + €t => yt(l - tlL - t2L2> = €t

with i.i.d. errors ¢;,t = 1,2, ,.. from a heavy-tailed distribution with tail index « can admit
a tail process behavior. We distinguish the following cases:

a) 1—t;L—tyL? = (1—\L)(1—XyL), the root reciprocals A\; and )\, are real, distinct, and
such that A\; and A, are real, distinct, and such that |A\;| < 1 and |Ag| < 1 (causal process),
or [A\;| > 1 and |A\y| > 1 (noncausal process). Then, the process can be written as a strictly
stationary pure causal or noncausal process.

The causal process admits a one-sided MA(oco) representation with the coeflicients

o /\1}”\2 [(A2)" 4+ (M\1)"], for b > 0. The noncausal process admits a one-sided MA (oc0)
representation with coefficients ¢;, = /\1i/\2 (M) — (A", for b <0

b) 1 —t;L —tyL? = (1 — AL)?, the root reciprocal A is real and such that either |\ < 1
(double causal root), or |A\| > 1 (double noncausal root). This case does not satisfy the
geometric ergodicity condition and is excluded.

d) 1—t,L —t,L* = (1 — M\ L)(a— X L), the roots 1/\; and 1/\y are imaginary and equal
to a pair of complex conjugates of modulus greater than 1. This case is excluded as it results

in local explosive oscillations, while a bubble requires local explosive growth.

4. Comparison with Fries (2022) For illustration, let us consider A = 0 and the MAR(1,1)
process with a-stable distributed errors using the approach of Fries (2022). It follows from

Propositions 1 and 2 that, conditional on a bubble onset at time ¢ and large y; > y we have:

() - 5((2255) (252
~ E((Xi—9¢)(1—-vX1))
Pt =) 1—vv™) +p (0 —0) (1 — o)

I
o

where we replace % by Xo =1, y;—tl by Xi, independent of ¢ and y, and the probabilities
pt and p~ for h < —1 and h > 0, of bubble growth and burst, respectively, are defined in

Proposition 2.
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Let us consider h = 0 and the MAR(0,1) process. In this process, component u; = 1 and
only the component v, is relevant. Hence, conditional on the bubble onset at time ¢ for large

y; > y we have:

B (Ut+1vt|yt - y) _ ((yt — ¢yt+1> Y > y)
Yt Yt

= p(1-vy)
= 0,

where we replace Y1 by X, independent of ¢ and v, % = X, = 1 and the probability p* of
Yt ¢
bubble growth is given in Corollary 2.

5. The cumulative probability distribution of N
a) For the MAR(1,1) process:
If h < 0, we have:

PN<n = 3

i<h [W + e
- Z 1 1/110‘1
o lime T
phe 1
L =9 [ + = — U

— 1]

If A > 0, then:

(z)ha 1

1- ¢a [1_1¢a + l_lwa - 1]

P[N > h| =

b) For the MAR(0,1) process with N < 0 and h < 0, we have:

PIN <hl=(1-9) > w7 =(1-9p") Y gio=yhe

i<h i>—h
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Appendix B

This Appendix describes the conditional covariance of the latent components when the pro-
cess does not take extreme values. For ease of exposition, consider the MAR(1,1) process
defined in Section 2.1.

The latent components u;, v; are strictly stationary. When ¢, has finite moments of orders 1
and 2, the latent components have marginal means E(u;) = E(v;) = 0 and their marginal

covariance is always known to be zero E(uy1v;) = 0.

Let us consider the conditional moments that exist regardless of the existence of marginal
moments. Since the MAR(1,1) process is Markov of order 2 [see, e.g. Fries and Zakoian
(2019), Proposition 3.1], the conditioning set considered is y, = {Yt,y1-1}. Then E(utﬂlgt) =
E[yt+1|gt] — ¢y, and E(vt|gt) =y — ¢E[yt+1|gt]. To interpret the statistic &, we write the

conditional covariance of latent components E(u;1vy,):

E(ut+1vt|yt) = E[(Ye+1 — oy) (s — ¢yt+1)lgt] = —dy; — ¢E[yt2+1|gt] + (o9 + 1)ytE[yt+1|gt]-

and observe that it depends on the autoregressive coefficients ¢ and 1, and the squared values
of the process. Gourieroux and Zakoian (2017) and Fries and Zakoian (2019) show that
MAR(r,s) processes display conditional heteroskedasticity. More specifically, the conditional
volatility of a MAR(1,1) process with Cauchy distributed errors is a quadratic function of
the past values of the process, similar to the conditional heteroscedasticity of the Double
Autoregressive (DAR) model of Ling (2004) with variance-induced mean reversion. The
conditional covariance of the latent components given above depends on the squared past
values of the process, and therefore captures the conditional heteroscedasticity of the MAR,
process, in addition to its conditional autocovariance.

For the MAR (1,1) process with Cauchy-distributed errors and ¢ > 0, the formulas of
conditional covariances are easy to compute. We know the equivalence of the conditioning
sets y, = u, and from Proposition 5, Gourieroux, Zakoian Gourieroux and Zakoian (2017), it

follows that:

2
2 O-

1
AT

Since w11 = Y1 — Py, We can write y, 1 = ¢y + ug 1. Hence,

E(ugyr|uy) = ug, E(u§+1|ﬂt> =

E(?/t+1|ﬂt) = E(ut+1|gt) + oy = we + oy = (Y — SYe—1) + Y

and from Proposition M.1, Fries and Zakoian (2019) we get:

34



0.2

E[yl?-i-l’gt] = ayf — 2bysys—1 + C?Jt2—1 +

[ = [¢])
where a = ¢? + 2¢ sign(¢) + ﬁ, b= ¢?sign(v) + % and ¢ = % For clarity of exposition,
let us assume 1) > 0. Then, we get:
E[(utJrlvt)th]
2 2 2 o’ 2 2
= —oy; — (ayt = 20yryr—1 + ey + m) + (o0 +1)(y; + (1 = L)oy;)
2
o
= Y16 = 1)o¢] + vy 1120 — (1 — ¢9)] — iy + =1
The conditional covariance of the latent components is equal to the constant (1—U—|2w|) when

Y = yi—1 = 0 and it is time-varying otherwise. In particular, for E[(us1v;)[y,] the ratio

El(ugqv
By = —K tHQ t>|gt] for y; # 0

Yi

is time-varying. In general, for & > 1 we have E(u¢r114vinly,) where

E(uritnveenly,) = ElWer14n — 0Yeen) Wern — VYe14n)|y,]
= —¢E[y152+h|£t] - ¢E[yf+h+1|gt] + (o9 + 1)E[yt+hyt+h+1|gt]

The conditional covariance of the latent components is a function of the conditional second
moments and the conditional covariance of y; at lag h. The first two terms of cov,(u, v) capture
the time-varying conditional heteroscedasticity of y,. For positive ¢, these terms become
big and negative when the conditioning value is large. The third term is the conditional au-
tocovariance at horizon h. The conditional second moments and conditional autocovariances
at lag h can be found from the formula of Efy.y:1sly,] given in Proposition M.1, Fries and

Zakoian (2019) and obtained from the following representation of the process:

Yirn = Prn(L)ye—1 + Qh(Lil)Ut,

where for h = 0, we have y; = ¢y,—1 + u; with Py(L) = ¢ and Qo(L™') = 1. For h = 1, we
have

Y1 = ¢2yt,1 + Quy + Ut

with P (L) = ¢* and Qi(L™') = ¢ + L%, Next, ysr0 = @3y 1 + Usyo + usir + ¢>uy, with
Py(L) = ¢ and Qo(L™') = L2 + L' + ¢?, etc.
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A Appendix C

Table 4: Empirical size of the test for MAR(0,1) estimated by OLS (1000 replications) at 5% from samples
of T=400. Each row corresponds to an error distribution: t(3), t(4), t(5). Columns give the rejection
frequency (Size) for different values of the noncausal autoregressive coefficient b (from 0.1 to 0.9). The
statistic is evaluated conditional on extreme events, defined as observations exceeding the 97.5th percentile of
the simulated series.

(0
Distribution 0.1 0.2 03 04 05 06 07 08 09

t(3) 012 012 .012 .014 .015 .013 .035 .053 .076
£(4) 050 .021 .029 .027 .045 .051 .069 .088 .122
t(5) 154 102 .056 .072 .091 .085 .115 .133 .138

Table 5: Empirical power of the test for MAR(0,1) estimated by OLS (1000 replications) at 5% from sam-
ples of T=400. Each row corresponds to an error distribution: t(3), t(4), t(5). Columns give the rejection
frequency (Power) for different values of the noncausal autoregressive coefficient ¢ (from 0.1 to 0.9). The
statistic is evaluated at the observation corresponding to the 210th largest value among 400 simulated obser-
vations (52.5th percentile).

W
Distribution 0.1 02 03 04 05 06 07 08 09

t(3) D92 H82 555 515 499 531 486 511 496
t(4) D79 B89 .B74 544 541 537 523 502 512
t(5) D61 B8 559 525 517 512 500 514 472

Table 6: Empirical size and power of the test for MAR(1,1) with Cauchy distributed errors estimated by GCov
(1000 replications) at 5% from samples of T=400. Columns give the rejection frequency (Size) for different
values of the noncausal autoregressive coefficient ¥ (from 0.1 to 0.9). The statistic is evaluated conditional
on extreme events, defined as observations exceeding the 97.5th percentile of the simulated series (size), and
210th largest value among 400 simulated observations (52.5th percentile) (power).

=09
& 01 02 03 04 05 06 07 08 09
size 0.08 0.05 0.04 0.08 0.04 0.06 0.04 001 0.01
power 0.72 0.84 0.86 0.68 0.56 0.62 0.54 0.46 0.47
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Table 7: Empirical size of the test for MAR(1,1) estimated by GCov (1000 replications) at 5% from samples
of T=400. Rows correspond to an error distribution: t(3), t(4), t(5). Columns report the rejection frequency
(Size) for different values of the causal coefficient ¢ (0.1-0.9) with 1 fized. The statistic is evaluated condi-
tional on extreme events, defined as observations exceeding the 97.5th percentile of the simulated series.

Y = 0.6
¢
Distribution 0.1 0.2 03 04 05 06 07 08 0.9
t(3) .015 .015 .012 .010 .010 .012 .015 .016 .012
t(4) .006 .007 .008 .006 .006 .008 .011 .010 .005
t(5) 006 .004 .002 .002 .002 .002 .004 .004 .002
v =0.7
¢
Distribution 0.1 02 03 04 05 06 07 08 0.9
t(3) 049 .064 .055 .057 .049 .041 .045 .050 .051
t(4) 023 .025 .033 .031 .028 .023 .031 .040 .036
t(5) 016 .021 .018 .016 .013 .012 .012 .022 .034
Y = 0.8
¢
Distribution 0.1 02 03 04 05 06 07 08 0.9
t(3) 056 .052 .053 .052 .054 .049 .046 .043 .077
t(4) 036 .033 .034 .036 .040 .044 .043 .038 .065
t(5) 025 .020 .028 .028 .029 .027 .027 .023 .052
Y =10.9
¢
Distribution 0.1 0.2 03 04 05 06 07 08 0.9
t(3) 055 .065 .072 .071 .078 .080 .078 .071 .064
t(4) 045 .032 .037 .043 .045 .047 .042 .040 .036
t(5) 035 .045 .046 .044 .051 .062 .059 .052 .047
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Table 8: Empirical power of the test for MAR(1,1) estimated by GCouv (1000 replications) at 5% from sam-
ples of T=400. Fach row corresponds to an error distribution: t(3), t(4), t(5). Columns give the rejection
frequency (Power) for different values of the noncausal autoregressive coefficient 1 (from 0.1 to 0.9). The
statistic is evaluated at the observation corresponding to the 210th largest value among 400 simulated obser-
vations (52.5th percentile).

W= 0.6
¢
Distribution 0.1 02 03 04 05 06 07 08 0.9
£(3) 730 775 783 795 800 .790 .781 .764 .759
£(4) 730 785 757 740 .756 .767 .756 .738 .724
t(5) 660 .695 .707 715 .720 .713 707 .690 .681
W =07
¢
Distribution 0.1 0.2 03 04 05 06 07 08 0.9
£(3) 740 785 793 797 .802 .802 .791 .769 .747
£(4) 750 750 737 738 740 763 759 744 726
t(5) 800 .775 763 .765 .760 .762 .759 746 .723
D =0.8
¢
Distribution 0.1 02 03 04 05 06 07 08 0.9
£(3) 750 .795 .793 782 .764 .763 .761 .738 .714
£(4) 800 765 .753 .752 .756 .747 .739 .729 .709
£(5) 740 775 753 755 752 735 737 731 .700
=09
¢
Distribution 0.1 02 03 04 05 06 07 08 0.9
£(3) 760 725 717 713 706 .698 .687 .676 .642
£(4) 690 .720 .683 .677 .666 .670 .650 .636 .611
£(5) 720 730 .703 .688 .680 .647 .641 .625 .596
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