Annals of Economics and Statistics, Number 145, March 2022

LONG RUN PREDICTIONS
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This paper reexamines the modelling of long run risk in the econometric literature.
We show that, if the macro or financial series are driven by the short and long run
factors, then it is possible to identify all short run parameters, but not all long run
parameters. We also develop techniques of evaluation of the long run estimation risk
based on finite sample methods.
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1. INTRODUCTION

This paper reexamines the modelling of long run risk in the econometric literature. We
argue that the observed macro or financial series are driven by the short and long run
factors and, if the number of observations over time is large, then under mild regularity
conditions it is possible to identify and consistently estimate all the parameters charac-
terizing the short run dynamics. Then it is possible to identify and consistently estimate
some long run parameters as well. but not all of them. The uncertainty on these uniden-
tified long run parameters can be evaluated by applying the “finite sample” techniques,
which are either frequentist, or Bayesian. This difficulty arises even with a large number
of observations. This has important consequences for the long run predictions, long run
impulse responses, and for determining the required capital, or hedging against the long
run risk. The reason is that the prediction intervals have to account for the “finite sam-
ple” uncertainty that is usually disregarded by the standard prediction softwares used by
the practitioners. As mentioned in Hansen (2018) : “We (even) still see some academics
or econometricians willingly deciding to take oft uncertainty because policy makers are
demanding precise answers”.

Several articles report the confidence intervals for the long run parameters and large
prediction intervals for the long run predictions based on Monte-Carlo studies : “The
confidence intervals typically are wide” (Stock, 1991), or “These prediction sets may
strike some readers as too large” (Miiller and Watson, 2016), or Péstor and Stambaugh
(2012) in stock volatility. However these wide prediction intervals are not yet taken into
account by some financial and banking models, where the long run assets are assumed to
be risk-free, thanks to total diversification over time. Typical examples are the banking
theory in Diamond and Dybvig (1983), and the accounting practice where the long run
interest rates are considered nonstochastic and constant over time.

The paper is organized as follows. The long run component models existing in the
literature are discussed in Section 2. The difficulty to identify some long run parameters,
1.e. the so-called impossibility theorem, is explained in Section 3. Section 4 analyzes the
long run prediction problem and the importance of taking into account the estimation
risk . Section 5 contributes to the debate on the (lack of) interest in testing the unit root
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hypothesis and on the trade-off between the statistical and strategic inferences. Section 6
concludes. The history of competing terminologies for the long run dynamic modelling
is presented in Appendix A. This appendix distinguishes between the generic use and
precise meaning. Appendix B discusses the limits of frequency analysis by projections.
The acronyms used in the literature are gathered in Appendix C.

2. THE MODELLING OF LONG RUN DYNAMICS

For expository purpose, we consider a univariate series (y,), which can be decomposed
into two components as :

QD v =yt + yis

where vy, is the short run component, usually a stationary ARMA or ARMA-GARCH
process, and y;, is a long run component, assumed independent of the short run com-
ponent. The series (y;) is observed at dates t = 1,.... T. but the short and long run
components are unobserved, leading to an unobserved component model. The assump-
tion of independent components is the structural characteristic of this dynamic model. In
this respect the analysis differs from the reduced form approaches based on frequency
correlations (see Appendix B for the drawbacks of this latter approach).

In the simplest framework the long run component is assumed to follow an autoregres-
sive process with a unit root, or has a close to unit root dynamics. These unobserved com-
ponent models differ with respect to the type of trajectories they are intended to reproduce
or approximate. They can feature nonstationarities with explosive patterns in their level
or their variability, or display the occurrence of extreme values. The existence of such
features largely depends on the variables of interest and their economic or financial inter-
pretations. Whereas variables such as Gross Domestic Product (GDP), Consumer Price
Index (CPI) feature trends, other variables have more stationary evolutions. These are the
interest rates, unemployment rates, S&P realized volatility, productivity, some commod-
ity prices. Other series become stationary after preliminary transformations, such as the
GDP growth, inflation rate, deviation from the Interest Rate Parity (IRP), the Purchasing
Power Parity (PPP), the spot-forward spreads, or the expenditure per capita that adjusts
for demographical effects.

Due to technical issues, the theoretical literature has been generally focused on the uni-
variate framework. and often without introducing the short run component. In practice,
however, several series are considered jointly, some with stationary and others with non-
stationary features, as in the cointegration models. Moreover the decomposition into the
short and long run components is not necessarily additive, and the short and long run
dynamics can be nonlinear.

Several dynamic models are discussed below including the close to unit root models.
They have been introduced for two different, but related purposes. From a theoretical per-
spective the first objective is to define the local alternatives for the unit root hypothesis
testing (see e.g. Elliott, Rothenberg, and Stock (1996) and the discussion in Section 5).
From an applied perspective, the second objective is to understand why series with (al-
most) stationary features have empirical autocorrelation function (ACF) that decay slowly
with the lag, at levels that do not correspond to the theoretical autocorrelation values.
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2.1. Random Walk (RW) plus Noise

The basic model introduced in the literature assumes a strong white noise y., and a pure
random walk dynamics of y;; :

t

(2.2) = Z:‘z.r-

TF=

where (z,,) is another strong white noise independent of (y,,) (see e.g. Harvey (1990)
p45. and the references in Appendix A]. This model introduces a nonstationary long run
component with trajectories featuring explosive behaviour over long random episodes.
These behaviours are often incompatible with the economic interpretation of the variable
of interest and may lead to unreasonable long run prediction intervals. “A random walk
process hits any upper or lower bound with probability one and this is clearly an undesir-
able implication of this model” (Primiceri (2005), p825).

2.2. Near-Integrated Models

To partly circumvent this difficulty, stationary approximations of the random walk have
been introduced. They usually consider an autoregressive parameter that depends on the
number of observations, with a triangular array 1, r,, doubly indexed by t and T, instead
of the standard time series y;; for the long run component. A near integrated model is :

(2.3) YTt = PTYiT -1 F ELts
(2.4)  where pr >~ exp(—c¢/T), for T large.

These models, called near-nonstationary or near integrated (see Appendix A). have been
widely used in the literature to analyze the asymptotic properties of historical autocorre-
lations and to perform tests of either the unit root, or of the martingale hypothesis (see
Section 5). However, for 7" large, the near-integrated processes become close to a random
walk (or a nonstationary martingale) and have the same drawback as the pure random
walk for long run predictions.

2.3. Local Level (LL) Model

This model introduces an approximation of the long run dynamics that entails small
changes in the long run component over the short run and significant changes in the long
run. A LL model is :

Therefore, at any date t. y; 7 — yi70-1 = 214/T =~ 0, for large T. This justifies the idea
of local-in-time changes. But, at any fixed T, the triangular array provides a random walk
with the same drawback as a near-integrated process.
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2.4. Local-to-Unity (LTU)

In the definition ' proposed recently in Miiller and Watson (2020), the LTU models
combine a close to one autoregressive coefficient and a small innovation variance. An
example is :

1
(2.6) e =exp(—¢/T)yiri-1 + ‘ffl.h ¢ >0,

(see Miiller and Watson (2020), Section 2.2.). However, for large 7, it is close to a non-
stationary limit, although for 7" fixed it is stationary .

2.5. Ultra Long Run (ULR) Model

The idea is to introduce an instrumental long run component measured over a time
scale with a time unit different from the short run component (Gourieroux and Jasiak,
2021, 2022). More precisely, let us consider a continuous time Ornstein-Uhlenbeck (OU)
process x satisfying the diffusion equation :

27)  dr. = —ca.dr — V2 dIV,,

where (117) is a Brownian motion and ¢ > 0. This is a stationary process with a stationary
distribution N (0. 1), independent of ¢. Then the long run component is defined as :

(2.8) Yi.Te = NxyT, N> 0.

Since the time discretized OU process is a Gaussian AR(1) process, it is easy to see that:

(29)  yire=pryTi-1+ /1 — pF e,

where pr = exp(—¢/T) and the £/ ;s are IIN (0. 7?).

This specification differs from the LTU specification since :

/1= p% = /1—cxp(—2¢/T) is of order 1/T"/?, instead of 1/T as in the LTU spec-
ification.

Moreover, for T large, the long run component tends to a “stationary” process such
that y;» = y; 0 is time independent, and takes a random value (stochastic level), because
Yo ~ N(0, 1). This limiting process is a singular stationary process considered in Wold's
representation theorem and also called “deterministic”, or “purely predictable” in the lit-
erature.

3. STATISTICAL INFERENCE

Letus consider the parametric dynamic models of the short and long run dynamics. Vec-
tor o contains the parameters characterizing the short run dynamics and c. > = V(z,)
are the parameters characterizing the long run dynamics. These parameters are indepen-
dent of the number of observations 7'. It is important to focus on such intrinsic parameters
instead of the parameters, which depend on T such as pr for instance, especially when

! According to initial definition the local-to-unity process is equivalent to the near integrated process
(see Appendix A).
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we are interested in performing long run predictions” (see the discussion in Section 5.2).
As for the frequency of observations, the autoregressive coetficient at horizon 1 is ei-
ther pr = exp(—c/T), or 1, depending on the model. The variance of the innovation at
horizon 1 is 1)* (for the near integrated model), 5?/T? for the local level model and the
local-to-unity model, 12 /T for the ULR model.

Statistical inference requires high level mathematics, but the underlying principle is
simple and is discussed below.

3.1. The identification of short run parameters

For all models where y; 1y ~ v).7,—1 for T large, the long run component is approxi-
mately constant in time over each episode of length [, with Hr — oc. Hy /T tending to
zero for large T'. Therefore, except for the theoretical mean, all other short run parameters
will be estimated consistently over such large, but “short run™ episodes. The rate of con-
vergence of the estimators of the short run parameters is expected to be of order 1/ VT,
Since the theoretical mean of y,, is not identifiable, later on, it is fixed to Ey., = 0. for
ease of exposition.

3.2. The “identification” of the long run component

Let us consider a historical average over Hy successive dates, Hr — oc. Hy/T — 0,
evaluated at distant dates A7, such as’ :

| KTHr | T | KT
I, Z yr =1 Z Yst + i Z yire, 0 <k <1
t=kT+1 t=kT+1 t=hT+1

By the Law of Large Numbers (LLN) applied to the short run component, the first
historical average tends to zero (since Ey., = 0). Therefore these averages eliminate
the short run effects allowing us to focus on the long run component. Depending on the
specification such as the near-integrated model (see Phillips (1987), Th. 3.1, b), local-
level, local-to-unity (Miiller and Watson, 2016), and ULR models (Gourieroux and Jasiak,
2021, 2022), such averages computed from a well-chosen Hr and possibly standardized
by a power of T', converge either to a continuous time OU process (. ), up to scale 7, or
to integral transforms of such a process. *

In brief, by appropriate averaging, one can/a;goximate the trajectory of an underlying
O.U. process on [0, 1]. This approximation (1) converges to the true process at a rate
slower than 1/v/T, in general.

These local averaging do not imply a loss of information in the unobserved component
model, but allow for filtering out the long run component. Indeed, to a dynamic model
with short and long run time scales, the “likelihood principle” of Fisher known since
the twenties (see Berger and Wolpert (1988)) does not apply. > Moreover, the likelihood

Even if an estimator ¢ of ¢ is not consistent, jp = exp(—cr/T") will tend to 1, if ¢ is of order 1.

*These averages are weighted to capture the variability at different frequencies in Miiller and Watson
(2016). eq. (2).

*In particular to frequency weighted averages in Miiller and Watson (2016).

The likelihood principle states that the “random” likelihood function is a sufficient statistic for the
parameter.
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principle should be modified to account for all unknown quantities. that are relevant to
the statistical analysis. They include the parameters, and also the unobserved components
that need to be filtered and predicted.

3.3. The impossibility theorem

From the discussion in Section 3.2, it follows that asymptotically, the approximation is
as good as if the underlying continuous time process (1z,) was observed (with errors)
on 7 € [0.1]. Unfortunately we come accross the impossibility theorem (Banon, 1978:
Jiang and Knight, 1997) that applies to a continuous time diffusion process observed over
a finite interval.

Impossibility Theorem :

From continuous time observations on (7, ), we can estimate consistently the infinites-
imal volatility 0 = 2cn”. Tt is not possible to estimate consistently parameters ¢ and 7°.

In practice this means , that we have approximate observations n/z’k? o Tk, 5, With
possibly J = Jr large, that can be used to make inference on the long run parameters.
Moreover this inference necessarily entails significant errors in 7). ¢ parameters even for
very large T'. Due to this impossibility theorem, we have to “mix” asymptotic inference
for ov. 02, with different rates of convergence, and “finite sample” inference ¢ on parameter
c.

The results above can be reinterpreted in the framework of stationary linear systems
with independent shocks. When the number of inputs (sources) is strictly larger than
the number of outputs (observations), the system is called undetermined since it is not
possible to recover exactly the values of the inputs. Then the literature focuses on con-
ditions that help identify the distribution of the sources, especially by applying dynamic
independent component analysis. This practice has to be modified in a triangular model
with parameters varying with the number of observations. We see that the sources can be

asymptotically recovered, whereas the distribution of the long run component can never
be identified.

3.4. Finite sample/asymptotic inference

Under a parametric specification, the parameters «, o are consistently estimated and can
be replaced by their estimates. Let us focus on the remaining parameter c. Two approaches
can be followed.

i) Frequentist approach

Let us consider a given estimator ¢ of ¢ based on observations y;., . . .. yr. The unob-
served component model is often easy to simulate for any given value of ¢ (¢;. say) and
ar. o7 of other parameters. Therefore, it is easy to construct Monte-Carlo exact finite
sample test procedures for testing H,, = {¢ = c¢;}. Then exact finite sample confi-
dence intervals for ¢ based on ¢7 can be deduced by inverting the set of tests (see e.g.

®An alternative is to use panel data to solve this identifiability issue (see e.g. Moon and Phillips (2000),
Gouriéroux, Phillips, and Yu (2010)). However such panel data are usually not available, especially for
macro applications. It has also been proposed to modify the models by introducing the so-called block
local-to-unity model (see Phillips, Moon, and Xiao (2001)). Such ad hoc adjustment of the models is to
recover the consistency of the localizing parameter c. It is not in line with a prudential view of long run
estimation risk.

80

This content downloaded from
195.221.82.2 on Wed, 20 Apr 2022 09:48:57 UTC
All use subject to https://about.jstor.org/terms



Christian Gourieroux and Joann Jasiak

Stock (1991), Chambers (2016). Gourieroux and Jasiak (2022) for examples of confi-
dence belts). These belts and the theoretical analysis of the distribution of the estimator
of the serial correlation close to unit root show that the finite sample distribution of this
estimator is highly skewed. In particular this implies significant biases in the standard
forecasts (Phillips. 1979; Boudoukh. Israel, and Richardson. 2021)

ii) Bayesian approach

Bayesian approaches are often used in structural unobserved component models (see
e.g. Harrison and West (1991), West and Harrison (1997)), and have also been used in
the local level. or local-to-unity framework (see Primiceri (2005), Schortheide, Song, and
Yaron (2018), Miller and Watson (2016, 2020)). Due to the identification issue concern-
ing parameter ¢, the posterior of this parameter strongly depends on the selected prior and
is likely not robust to a change of the prior.

4. LONG RUN PREDICTION INTERVAL

Similarly to the inference on parameter ¢, the predictions can be computed either in
a Bayesian framework (Miiller and Watson, 2016, 2020), or in a frequentist framework
(Gourieroux and Jasiak, 2021, 2022). We consider prediction intervals, not just the plug-
in pointwise predictions that are less informative, biased. and neglect the underlying risks.
Let us first discuss the frequentist approach by clearly distinguishing between the theoret-
ical and empirical predictions. Then we highlight a drawback of the Bayesian approach
for long run prediction.

4.1. Theoretical Predictions

Under a frequentist approach the theoretical predictions are based on the distribution of
Yrep given yy.. ... yr and parameters § = (a. 0. ¢), or equivalently on the distribution
of:

YeT+H T Y 7.T+H- EIVEN Y1 + YT 1-- .- Yo + Yo,

As shown in Section 3, asymptotically the long run component can be filtered with an er-
ror close to zero. Then, it is equivalent to consider the information generated by vy, . . ., yr.
or the information generated by both y,....,y.7 and yy71.. ... yi.1.7- Equivalently the
underlying values y, ;. y;.7, of the latent variables are known asymptotically.

Since the short and long run components are independent, the predictions of the short
run and long run components can be performed separately. Moreover, if the prediction
horizon H is large (H — oc, with T), the conditional distribution of y, -, 5 at date T’
tends to a point mass at its mean equal to zero.

We conclude that, to make long run predictions, one can disregard the short run com-
ponent and focus on the long run component only. Let us denote the pointwise theoretical
prediction of y; r 7.y, at date T by:

4. #(H.T.yr7:0.¢),
which depends on y; 7 and the long run parameters only.

4.2. Empirical Pointwise Predictions

The theoretical pointwise predictions given above depend on the unknown values y; 7.7. 0. c.
In the plug-in approach they are usually replaced by their approximations to get the com-
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putable :
4.2) 7T(H i YT O, 57)

where ;7.7 is the consistent approximation of yi..7 based on an appropriate average of
Ye. and or. cr are the estimators of o, c. respectively. Due to the consistency properties,
we get asymptotically :

(43) W(H T: ?)l.T.T; OA'T~ fT) = W(H T YT O 6]‘)

where ¢r cannot be replaced by ¢ due to the Impossibility Theorem.

4.3. Prediction Errors

The prediction error follows from equation (4.3) and is :

yrr+uw — (H, T4, 1.7; 67, ¢1)
~ Yor+u + rrin — 7(H, T:yr1;0, )]
+m(H. T yiprio.¢) — a(H, T; yur.ri 0. 67)].

It involves two components linked to the long run factor, which are 1) the theoretical
prediction error and 2) the effect of the estimation error on the point prediction.

Note that in all models of Section 2 the process y, 7, is (asymptotically) a Gaussian
AR(1) process. Therefore, for a given Y111, the future value y; 7 7,y and the past values
Y11, - - Yrr.r-1 are independent. It follows that the components 1 and 2 in the decom-
position of the empirical prediction error are also independent given vy, 7 1. Therefore the
conditional distribution of the empirical prediction error is the convoluate of the condi-
tional distribution of the theoretical prediction error and of the distribution of the second
component, measuring the effect of the estimation risk in ¢. Usually, this second com-
ponent is disregarded. Yet, it becomes significant and even dominant in a long run
framework.
© To illustrate this decomposition let us consider the ULR model. The empirical predic-
tion error is decomposed as :

Ysrim + rren — exp(—cH/T)yir1) + [exp(—cH/T) — exp(=érH/T)lyirr

= YsT(l+a) T {yl.T.T(1+a) - eXP(—(lC)l/i.T,T] + [GXP(‘QC) - eXP(—aéT)JlJz,TI,

over along run horizon [/ = Hp = aT. Let us now discuss the magnitude of each random
component. The short term component has a standard error equal to o, that is of order
1. The second term has a standard error of order 7\/1 — exp(—2ac). It is also of order
1, like the last term since 7 is inconsistent. These three elements in the decomposition
are of similar order. However the “magnitude” of the second term depends on the non
identifiable parameter, and also has to be estimated. Therefore there are asymptotically
two related estimation risks to be taken into account, that are the one concerning the
theoretical magnitude of the mean square prediction error (second component) and the
estimation error on the theoretical point prediction (third component).

A similar analysis can be done for a local-to-unity model. Since the variance of the long
run innovation is of order 1/7 instead of order 1/T for the ULR model. the second term
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becomes asymptotically negligible like the estimation risk on that term. Thus we expect
smaller long run prediction intervals for the LTU model than for the ULR model, just as
a consequence of the model assumptions.

4.4. Bavesian prediction

In a Bayesian framework with parameter 6 (including the short and long run parameters)
and prior p(#), say, the prediction interval at level 1 —« is constructed from the conditional
distribution of yp, y given yy. .. .. yr

(44) Z((UT+H‘yl ..... l/[) = /l(.l/T-Q—HI.Ul ..... yTH)p(H‘I/l ..... l/f[*)(l().

where p(0|yy, . . ., yr) denotes the posterior distribution of ¢. Then a prediction interval
(L7, Ur) is such that Plyr.y € (Ly,Ur)|y1. .- ., yr] = 1 — «, for any y. ..., yr (see
Miiller and Watson (2020). Section 4.6, Miiller, Stock, and Watson (2020)). It differs from
a “classical” prediction intervals that has to satisfy :

Plyriu € (L.Up)|y, .. .. yr;0) > 1 — a, for any yy,. .., yr, and 0. In fact the
coverage condition introduced in the Bayesian approach is on average instead of being
uniform in 6. It is less prudential and strongly dependent on the prior especially under the
lack of identification issue, i.e. the impossibility theorem. The same ditficulty arises while
comparing confidence and credible sets for parameters (see Miiller and Norets (2016),
Miiller and Watson (2020), Sections 6,7).

5. THE UNIT ROOT HYPOTHESIS

A large body of the long run econometric literature focuses on the test of the “unit root”
hypothesis. The aim of this section is to clarify the following points :

1) What is the unit root hypothesis ? Does it admit a structural interpretation?

11) What is the interest of testing for unit roots before performing long run predictions?

iii) What are the respective roles of the statistical and strategic inferences?

5.1. The unit root hypothesis
5.1.1. The efficient market hypothesis (EMH )

It follows from the debate between Sims (1988, 1991), and Phillips (1991), that the
only structural interpretation of a unit root in Economics/Finance is through the notion
of efficient market. Among the various definitions of efficiency that have been introduced
such as the weak efficiency, strong efficiency. semi-strong efficiency (see e.g. Fama (1965,
1970)), only one is really relevant. Let us consider a stock market, denote by y; the price
of the stock, assume no dividend, and denote by y;, the stock price discounted by the
risk-free rate. The market is efficient if and only if :

S Ei(Ys1) =y

where E) is the expectation conditional on the information available up to date ¢. This

condition is interpreted as the impossibility of a perfect dynamic arbitrage between the
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stock and the risk-free asset, as a consequence of Doob theorem (LeRoy, 1989).7 The
condition (5.1) is a martingale condition on the discounted stock price.

5.1.2. The null hypothesis

For a long time, economists have considered that this condition was equivalent either to
t

the condition of random walk (RW) : y, = Z -, where the (z;) are i.i.d. (see e.g. Sims

i=1
(1988)), or to the condition of an integrated linear process where (=;) is a weak white
noise. Both types of processes RW and I(1) are nonstationary.

However, there also exist stationary martingales. They include in particular :

1) noncausal autoregressive processes introduced to capture speculative bubbles, that are
transitory explosions followed by crashes (Gouriéroux and Zakoian, 2017):

i) volatility induced mean-reverting processes, with a strong mean reversion effect
when y, takes extreme values (Conley, Hansen, Luttmer, and Scheinkman, 1997 Gouriéroux,
Jasiak, and Monfort, 2020).

iii) pure predictable processes yr = Yp. V1, with y, stochastic, that serves as the basis of
modelling ULR processes (Gourieroux and Jasiak, 2022).

In this respect, the major part of the literature, except for the recent paper Gourier-
oux and Jasiak (2019), is not about testing the martingale hypothesis, but instead a null
hypothesis of either RW, or I(1). In general, the testing procedures consist in testing a
nonstationarity hypothesis against an alternative stationary process. This explains why
the literature focuses on stationary local alternatives tending to nonstationary limits (see
Section 2 and Appendix B).

5.2. Pretesting

The debate about the unit root hypothesis started from the early 90's, with different
conclusions obtained under Bayesian and classical approaches. The major arguments are
the following ones :

i) A Bayesian perspective :

e There is no structural interpretation of the unit root hypothesis (see Section 5.1).

o Thus there is no reason to privilegiate this hypothesis, which is done by practitioners by
applying the unit root (or cointegration) tests and using the unit root models when
the unit root (resp. cointegration) hypothesis is not rejected. “There is no reason for
distinguishing models (with unit roots) from their neighbors with roots close to the
unit circle” (Sims (1988), p469).

e Classical statisticians have developed sophisticated test procedures for testing for unit
root. In general, they do not evaluate the effect of accepting/rejecting the unit root
hypothesis on the properties of estimators and predictors.

[ ]

A specification with parameters depending on 7 has no real meaning. In Bayesian terms
the prior of a given individual does not depend on the number of observations.

ii) A classical perspective.

In the long run framework, the Bayesian results strongly depend on the selected prior.

"Doob theorem says that a martingale is also such that £y (y,4.,.) = y,. for any stopping time v. This
means that there is no dynamic arbitrage opportunity for any strategic choice of the random time of reselling
the risky stock.
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e In particular, the choice of a uniform prior (or flat prior) on parameter p like in Sims
and Uhlig (1991).Schorfheide, Song, and Yaron (2018), Miiller and Watson (2018),
p759, is questionable. since it underweights the nonstationary feature.

e The prior. that depends on the parametrization, may indirectly depend on the number
of observations.

These arguments disregard the main purposes of long run modelling, which are the long
run predictions and measures of long run impact of specific shocks. Even. if the estimation
approach, tests, priors, and confidence or credible intervals can be used as intermediate
tools for determining the long run prediction sets, their choices have to be based on a
prediction criterion, rather than on an estimation criterion, or the power of a test. This
renders all the (bayesian or classical) theoretical developments and debates about the unit
root hypothesis less interesting.

Let us now discuss the argument against using the prior independent of 7', that seems
in contradiction with the triangular arrays introduced in the models of Section 2. In fact,
the ULR model shows another structural interpretation of such dynamics, in which the
observed series corresponds to an equilibrium with different agents acting on different
time scales. Let us now discuss the effect of time scale in a simple, related case of high
frequency data (HFD). Assume that observations on an O.U. process over one day are
recorded at different scales every hour, 10mn, mn, second.... There are T observations,
at every 1/T dates. A Bayesian statistician has to fix a common prior, independent of
the choice of the observational frequency, that is a prior on the coefficients c. 7 of the
underlying O.U. process. This will imply 7" dependent priors on the coefficients pr, or
of the associated time discretized process. In other words, fixing a uniform prior on
pr, independent of 7, is meaningless, since it does not concern the right intrinsic
structural parameter.

5.3. Statistical or strategic inference®

As shown in Section 3, there is an identification issue in the long run analysis. This leads
to wide prediction intervals for a given dynamic parametric model, and also to a lack of
robustness with respect to the selection of the parametric dynamic model (including the
choice of the prior in Bayesian analysis).

Thus, statistical inference based on a limited sampling period is not very informative
about the long run. How to compensate this natural limitation of statistical analysis? It
could be done by introducing additional strategic restrictions on the dynamics in order to
influence the agent’s behaviours. For instance, by considering a limited set of dynamic
scenarios one can compute the long run required capital, fix by consensus an ultra long
run interest rate for pricing the long run assets in the balance sheets and combine the
priors of different agents interested in long run predictions(see Robinson (1977)). These
subjective choices have to be clearly announced along with their justifications (as the
retained balance between prudential and innovation friendly approaches, or the list of
formal or informal identifying assumptions to yield substantive conclusions), and then
regularly updated with the increasing number of observations.

Sor decision making in Cox terminology (Cox. 1958)Cox (1958).
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6. CONCLUDING REMARKS

Miiller and Watson (2018) write that : “Proper long run inference depends critically
on the exact form of persistence and there is limited sample information available to
determine this form”. As the analysis described in this paper shows, it is important to
account for the asymptotic non identifiability of some long run parameters. This avoids
underestimating the long run risk by neglecting the significant long run estimation risk
and reveals the potential need for strategic inference and supervision. This is specially
important when evaluating the required capital for the long run risk (see Gourieroux,
Monfort, and Renne (2021)) and is a major step towards solving the so-called long run
risk puzzle (Fama and French, 1988, 1989).

This paper considered a simple framework. It can be easily extended to the multivariate
structural VAR framework (Miiller and Watson, 2018; Gourieroux and Jasiak, 2022) pre-
dictive regressions when the regressors include both SR and LR component, to nonlinear
dynamic models (Gourieroux et al. 2022), and to other types of parameters than a mean,
for instance a scale parameter (see Shephard (1994) for local scale models), or a conta-
gion parameter in epidemiological models (Gourieroux and Jasiak, 2021). The analysis of
long run predictions is also the first step before deriving confidence intervals for impulse
response functions at Jong run horizons (Pesavento and Rossi, 2006).

APPENDIX A: THE TERMINOLOGIES

In the context of modelling the dynamics of long run components, different terminologies have been
introduced in the literature, with interpretations varying with time and authors. The aim of this appendix
is to discuss the histories of some terms such as random walk plus noise model, local level (LL) model,
near nonstationary model, near integrated model, local-to-unity (LTU) model, or ultra long run (ULR)
component.

i) Random Walk plus Noise

This dynamic model is the most precisely defined in the literature (see e.g. Harvey (1990). p45). The
model is :

(a.1) Yt = Yst + Yits

where (y,+) is a strong white noise, that is a sequence of i.i.d. variables with zero mean and common
variance o2, (y;;) is a random walk such that :

(a.2) Yo = Yii—1+ it

where (z;+) is another strong white noise with zero-mean, variance o7, and is independent of (y. ;).
It is important to discuss the role of the initial value y; o.
t
(*) If y0 = 0, we have y;;, = Z 21.-- The process (1) has zero mean, and a variance equal to
V(y) = o2 + fa?. This process is staTti:olnary in mean and nonstationary in variance.
¢
C*) I yp0 # 0, wehave yy s = Y10+ Z z1.-. The process (y;) has (conditional on y; o) a nonzero mean

T=1

equal to y; o, and an explosive variance.

There is often a confusion in the applied literature about the notions of random walk, martingale, or in-
tegrated process of order 1, denoted I(1). In the I(1) framework, the errors (=, ;) are assumed zero-mean,
with a constant variance and uncorrelated. In the martingale case, the (z;) is a martingale difference se-
quence (MDS), satistying : E(z;¢|e—1) = 0.Vt,V(214]e14-1) = o7, if it is conditionally homoscedastic
(otherwise, the volatility is unconstrained) (see Section 5.1 for the Efficient Market Hypothesis).

ii) Local level (LL) model
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Initially this terminology has been introduced in Harvey (1990). as an alternative for a random walk plus
noise process with no drift (1, o = 0). Then the meaning has been modified in Harvey. Shephard (1990). to
“a local level model, that has a deterministic level when the signal-to-noise ratio ¢ is zero”.

The Gaussian local level model. where the z; ; are Gaussian. with o, fixed has been largely popularized by
West and Harrison (1997), Commandeur and Koopman (2007), chapters 1-7, Durbin and Koopman (2012),
chapter 2.

A modified version of the LL model where :

oy

1t
1
(a.3) YTt = T ; L

with a variance of y; 7, — y;. 74— tending to zero with the number of observations and z,; a MDS is
considered in Miiller and Watson (2020) eq. (4)-(5). Then. for each value of T, the long run component
is a nonstationary process. This more recent definition is in line with Harvey (1990), since in a model
Y1 = Yut + Yi11, the signal-to-noise ratio is g7 = /V{(yi.1.0)/V (ys.r) = 01/t /To, ~ 0. for T large and
t < T. This is more compatible with the initial idea of local level. y; 7+ ~ yr. 7.+ 1. for T large (see e.g.
Dahlhaus (2012)).

iv) Nearly Nonstationary Process

This terminology appears first in Ahtola and Tiao (1984) (see also Chan and Wei (1987)) for a long run
component satisfying :

(a.4) YLTH = PTYLT.t—1 + Sl

where pr = exp(c¢/T) and the (2, ;) a Gaussian white noise.

This long run component tends to a Gaussian random walk, when 7" tends to infinity. This convergence
is through stationary AR(1) processes (resp. explosive AR(1) processes), if ¢ < 0 (resp. ¢ > 0).

v) Nearly-Integrated Process

This terminology has been introduced in Phillips (1987) for a model of the type (a.4) with a weaken
assumption on the (=), allowing for a martingale, or an I(1) process for the cumulated long run noise.
This explains the name “integrated” (for I(1)). As, for the nearly nonstationary process, the associated long
run component tends to a nonstationary process when 7 tends to infinity.

vi) Local-to-Unity (LTU) Process

This terminology has been used initially in Cavanagh (1986) (see also Stock (1991), p437. Miiller and
Watson (2016), p1729, Dou and Miiller (2021), eq.1,) for ARMA models with a largest autoregressive root
close to unity. i.e. such that pr ~ 14¢/T. and fixed variance of innovation. In this sense, it covers processes
similar to near-integrated processes. As these processes. it converges to a nonstationary ARIMA process,
when 7 tends to infinity.

This explains why some authors come back on the alternative terminology of nearly-integrated (see e.g.
Cavanagh. Elliott, and Stock (1995)).

However, it is important to note that the definition of LTU process has been modified in the recent survey
by Miiller and Watson (2020). pl1, eq.2. where pr ~ 1 + ¢/T ~ exp(c¢/T), and the variance of the
innovation is not fixed, but tends to zero at speed 1/77. This ensures smooth changes in the trajectory of
the process, but automatically eliminates the uncertainty for large 7.

vii) Ultra Long Run (ULR) Process

The ULR processes are Gaussian autoregressive processes defined over an ultra large time scale (see
Gourieroux and Jasiak (2022) and Section 2.5 of the text). They differ from the LTU model by the speed
of convergence to zero of the innovation variance. The appropriate choice of the rates of convergence of
pr to 1 and o7 to 0 allows for a limiting stationary unit root process, that is an example of the singular
component in the Wold decomposition of a stationary series. The rates of pr— 1 and o7 are of order 1 /T and
L/ VT, respectively. Similar rates have been considered in the “dampered unit root” model of Gospodinov
(2009), Gospodinov, Maynard, and Pesavento (2021). but without interpretation in terms of time scale.

APPENDIX B: THE LIMITS OF FREQUENCY ANALYSIS BY PROJECTION

In linear analysis of time series. the knowledge of the autocovariance function is equivalent to the knowl-
edge of its spectral density, i.e. of its Fourier transform. Then the linear analysis can be performed either in
the time domain (from the autocovariances), or in the frequency domain (from its spectral density). In the
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frequency domain, it is common to assimilate the fong run to the frequency close to zero. and to find an ap-
proximation of the long run component by projecting the series on low frequencies (see e.g. Engle (1974),
Miiller and Watson (2016, 2020) for a description of this approach, Miiller and Watson (2018), Lunsford
and West (2019), Section 11, for the use of low frequency correlation, or Andersen and Varneskov (2021),
Section 3, for a local spectrum approach of predictive regressions). This practice has several drawbacks.

i) It is well-known that a Gaussian white noise, say. has a constant spectral density. Therefore its pro-
jection on low frequency is not zero. Then, with this approach a long run effect arises spuriously as the
Gaussian white noise is the typical example of a pure short run component.

i1) The approach relying on unobserved components with different time scales is more advantageous, as
it allows us to separate the components and to shock them separately, that is evaluate the impulse responses
to shocks specific to the long run component (the so-called long run systemic shocks). This is not possible
when impulses are applied directly to the aggregate time series, even frequency by frequency.

iii) The Fourier transformation is a linear approach, that cannot be easily extended to nonlinear dynamics
(see Velasco and Lobato (2018): Velasco (2020) for recent attempts to analyze higher order dynamics in the
frequency domain).

APPENDIX C: ACRONYMS

ACF : Auto-Correlation Function
CPI : Consumer Price Index

EMH : Efficient Market Hypothesis
HFD : High Frequency Data

I(1) : Integrated at order 1

IRP : Interest Rate Parity

LL : Local Level

LLN : Law of Large Numbers

LTU : Local-to-Unity

MDS : Martingale Difference Sequence
PPP : Purchasing Power Parity

RW : Random Walk

ULR : Ultra Long Run
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