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Abstract

This paper examines the dynamics of Tether, the stablecoin with the largest
market capitalization. We show that the distributional and dynamic proper-
ties of Tether/USD rates have been evolving from 2017 to 2021. We use local
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trends, time-varying volatility and persistence. To accommodate these pat-
terns, we consider a time varying parameter Double Autoregressive tvDAR(1)
model under the assumption of local stationarity of Tether/USD rates. We es-
timate the tvDAR model non-parametrically and test hypotheses on the func-
tional parameters. In the application to Tether, the model provides a good fit
and reliable out-of-sample forecasts at short horizons, while being robust to
time-varying persistence and volatility. In addition, the model yields a simple
plug-in measure of stability for Tether and other stablecoins for assessing and
comparing their stability.
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1 Introduction

The total market capitalization of cryptocurrencies is currently over 1 trillion U.S. dollar,

with the top three cryptocurrencies in terms of market capitalization being Bitcoin (BTC),

Ethereum (ETH), and Tether (USDT). While Bitcoin and Euthereum are characterized

by high price volatility, Tether is a stablecoin, i.e. a cryptocurrency designed to maintain

a stable price compared to other cryptocurrencies such as Bitcoin and Ethereum. It is the

first and by far the largest stablecoin in the market with the highest daily volume of over

$100 billion. In order to achieve price stability, the value of Tether is pegged 1-to-1 with

the U.S. dollar. There also exist other stablecoins with values to other currency or gold

and managed by either a single authority (usually the service provider) or a network of

participants (the whole protocol).

Allen, Gu, and Jagtiani (2022) recently discussed how stable cryptocurrencies provide

alternative financial instruments for market participants and how appropriately regulated

crypto markets could allow increased public confidence and lead to growth and innova-

tion. The November 2021 report by the US President’s Working Group on Financial

Markets (PWG), the Federal Deposit Insurance Corporation (FDIC), and the Office of

the Comptroller of the Currency (OCC) highlight various risks that need to be addressed.

These include user protection and run risk, payment system risk, systemic risk and con-

centration of economic power. They provided various recommendations, including the

requirement for stablecoin issuers to be insured depository institutions. See President’s

Working Group (2021) for more details. Furthermore, Li and Mayer (2021) show that

collateralized stablecoins like Tether could create systemic risk if the issuer does not have

enough reserve to maintain its stability. More recently, Chen, Qin, and Zhang (2022, page

5) pointed out the important role of Tether in the trading volume of Bitcoin compared

to US dollars since 2017 and noted the limited reserve of Tether according to anecdotal

evidence.

Despite the increased interest in stablecoins and the recommendations of more scrutiny

by regulators, these crypto assets’ stability is still ineffective. For example, TerraUSD,

an algorithmic stablecoin, collapsed in May 2022. This situation posits the need for

predictability of stablecoin prices and easy tools for proactive assessment of stability.

To address those issues, this paper made the following contributions. First, we analyze
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the local Tether price from historical data and pin down important features in its dynamic.

These features include the local pattern of the mean and the conditional pattern of Tether

price as well as the role of specific events in this dynamic. Second, we develop a time-

varying model for Tether price that incorporates these specificities. Third, we propose,

based on the model, measures that can be used to assess the stability of stablecoins and

mitigate risks.

More specifically, we examine the dynamics of Tether/USD rates and documents the

time varying distributional properties of this series. We apply local analysis methods to

reveal the time varying mean, volatility and persistence. In particular, we observe periods

when Tether rates deviate from the peg, which are often combined with increased volatility.

During those episodes, local persistence measures increase, suggesting unit root dynamics

of Tether.

Based on these findings, we consider an extension of the Double-Autoregressive (DAR)

model, called the dynamic time-varying parameter Double-Autoregressive (tvDAR). The

DAR model [Ling (2004)] accommodates the conditional heteroscedasticity and nests the

ARCH and the autoregressive of order one AR(1) models, including the unit root model

with the autoregressive coefficient equal to 1. More specifically, the DAR is a nonlinear

Markov 1 process, which becomes a stationary martingale when the autoregressive coef-

ficient is equal to 1 [Gourieroux, Jasiak (2019)]. The DAR model, unlike the traditional

autoregressive AR(1)-ARCH process, provides valid inference and consistent parameter

estimators for the autoregressive coefficient values including 1. The proposed extension to

a deterministic time-varying parameters model relies on the assumption of local strict sta-

tionarity of the process, following the approach of Dahlhaus (2000) and Dahlhaus, Richter,

Wu (2019). Then, during the episodes of unit root dynamics, the process satisfies locally

the stationary martingale condition. The time varying tvDAR model provides a good fit

to the Tether/USD rates and gives reliable one step ahead out-of-sample predictions. To

obtain the empirical results, we employed a rectangular kernel and an Epanechnikov ker-

nel. The first is an asymmetric kernel, which permits the incorporation of past information

in a pre-specified window and could be used for out-of-sample prediction. The second is a

symmetric kernel that uses information around any time period and is more suitable for

inference on the parameters in the model.

Moreover, the tvDAR model provides a simple plug-in measure of stability for sta-



THIS VERSION: January 1, 2023 3

blecoins, based on the Lyapunov exponent. This measure is commonly used to assess

the stability of deterministic dynamical systems and to test for chaos [see, e.g., Sprott

(2014)]. The Lyapunov exponent for the AR(1)-ARCH model has been determined by

Borkovec and Kluppenberg (2001), and shown to be the condition of strict stationarity

of that process [see also Borkovec (2000)]. It has been also considered by Nelson (1990)

in the context of the IGARCH model and by Cline and Pu (2004) in a non-parametric

framework. The Lyapunov exponent was also used as a stability measure in application

to the Vector Autoregressive VAR model by Dechert and Gencay (1992). Those authors

have introduced an alternative stability measure based on the noise-to-signal ratio for

linear dynamic models [see also LeBaron (1994) for introduction to chaos].

In this paper, the sample Lyapunov exponent is computed from the model parameter

estimates and proposed as a measure of stability for stablecoins. A more conservative

measure, based on the condition of second-order stationarity is also introduced. Both

measures can be computed locally and used to assess the stability of a stablecoin over

time, or to compare the stability of different stablecoins.

The time-varying coefficient approach based on the assumption of local stationarity dis-

tinguishes our approach from the literature that relies on the assumption of global strong

stationarity of the series. For instance, Baumöhl and Vyrost (2022) use high frequency

data to compute a spectral density-based quantile dependence measure under a strict

stationarity condition, which does not seem to be satisfied by Tether. Bianchi, Rossini,

and Iacopini (2022) estimate a Bayesian VAR with stochastic volatility and Student-t dis-

tributed shocks (BVAR-SV-t). However, the conditional volatility equation is constrained

to unit root dynamics, which is inconsistent with the empirical evidence provided in this

paper.

The paper is organized as follows. Section 2 describes the stablecoins. Section 3 dis-

cusses the local dynamic analysis of the price of Tether. Section 4 discusses the modelling

approach, estimation procedures and stability measures. Section 5 presents the empiri-

cal results based on the estimation and inference on the DAR(1) and tvDAR(1) models,

including the sample stability measures. Section 6 concludes. Appendix A contains the

technical results. Simulation and additional empirical results on stability measures are

relegated to Appendices B and C, respectively.
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2 Stablecoins

This section defines stablecoins and discusses their classification, issuance, and redemption

mechanisms. In addition, we discuss how the market prices of stablecoins are determined.

2.1 Definition and Classification of Stablecoins

Stablecoins are a type of cryptocurrency designed to maintain a stable price and reduced

volatility, compared to other cryptocurrencies such as Bitcoin and Ethereum. Conven-

tionally, stablecoin companies peg the value of their coins to that of a physical asset such

as a fiat currency or gold with the assumption that the market price of their coins will

eventually stabilize, establishing equivalency with the reference asset. The strategies used

to achieve price stability of stablecoins are discussed below.

There is currently no standard in place that private enterprises should comply with

to qualify as a legitimate stablecoin company. This leaves stablecoin enterprises with un-

limited design options to choose from to differentiate their business models. Currently,

business models of stablecoin companies differ in their economic design, the quality of

backing they maintain, stability assumptions they rely on, and legal protection they pro-

vide for coin holders (Catalini and de Gortari, 2021).

While the underlining business models may be diverse and complex, there is interest

in the elements of such models to understand their economic implications. For example,

one element of interest is the mechanism stabelcoins rely on to stabilize price and another

is how the responsibilities are distributed over stablecoin protocols.

There exist two alternative mechanisms used by stablecoin companies to achieve price

stability. They either hold collaterals in their reserves to back the value of their coins

or they adjust the supply of coins through software codes to restore the peg with the

reference asset. When the market value of a cryptocurrency is backed by collaterals, the

cryptocurrency is referred to as a collateralized stablecoin. Conventionally, collateralized

stablecoins are split into two sub-categories including off-chain collateralized stablecoins

and on-chain collateralized stablecoins. Off-chain collateralized stablecoins are backed by

a set of collaterals that have an economic value outside of the blockchain. The reserves of

this type of stablecoins usually consist of a fiat currency such as the US dollar for Tether

(USDT) or a commodity such as gold for PAX Gold (PAXG). Stablecoins are labelled as
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on-chain collateralized if the underlying collaterals are composed of crypto assets that are

created in a digital form and recorded on a distributed ledger. For instance, Dai (DAI),

the largest on-chain stablecoin project, supports 18 collateral assets including not only

cryptocurriencies such as Ethereum (ETH) and Chainlink (LINK) but also stablecoins

such as Tether (USDT), USD Coin (USDC), TrueUSD (TUSD) and PAX dollar (USDP).

Some projects opt for developing software codes to minimize price fluctuations instead

of collateralizing their coins. This type of cryptocurrencies is called an algorithmic stable-

coin as they try to stabilize their price around the peg by contracting or expanding the

coin supply with the help of computer algorithms embedded in their design. TerraUSD

(UST) was until May 2022 the only example of an algortihmic stablecoin that has a market

capitalization over a billion US dollar.

In terms of distribution of responsibilities, stablecoins can be categorized as centralized

or decentralized. Centralized stablecoins rely on a single legal entity to maintain the price

stability, to manage and protect the collaterals, and to fulfill its obligations to users. For

instance, Tether Limited is the legal entity that has the authority as well as the respon-

sibility over every Tether in the circulation. Unlike centralized stablecoins, decentralized

stablecoins distribute these responsibilities within their network through smart contracts.

This allows network participants to take an active role in determining the rules of the

stablecoin protocol such as the set of eligible collaterals and the minimum collateral re-

quirements. The decentralized stablecoin DAI grants users who hold its governance token

Maker (MKR) the right to vote on the changes to its protocol.

Li and Mayer (2021) noted that the introduction of stablecoins is comparable to “the

unregulated creation of safe assets to meet agents’ transactional demands” known as

shadow banking. Unlike stablecoin issuers, shadow banks must play the role of credit

guarantees in the case of insolvency. However, as we will see later, the observed prices of

stablecoins tend to deviate from the peg. In addition, these crypto assets face multiple

risks including the risk of liquidation.

For stablecoins designed to be on par with a fiat currency, the use of reserve allows

the stablecoins issuers to sell or buy the currency to achieve its price stability. This

mechanism helps stablecoin companies to underpin the market value of their coins and

protect against the highly volatile nature of the cryptocurrency markets. It resembles fixed

exchange rate regimes currently implemented in Panama, Qatar, and Saudi Arabia. In the
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fixed exchange rate regime, the central bank also uses its foreign reserves to buy or sell its

domestic currency to maintain the fixed parity with the currency peg. When the reserve

system fails, the domestic currency can be devaluated. Lyons and Viswanath-Natraj

(2020) documented that contrary to central banks with some macroeconomic mandate,

including keeping inflation around its target, stablecoin issuers do not have any policy

functions. In addition, stablecoin companies cannot use the interest rate or devaluation

policy to control the exchange rate. For our analysis, we focus on Tether, which is by

far the primarily traded stablecoin in terms of market capitalization. As we will show

later, Tether price tends to be noticeably affected by events in the crypto world, leading

to deviations from the peg despite using reserves.

Given the aforementioned significant risks for stablecoin holders, there is a need to

develop appropriate tools to assess their predictability and stability. This paper develops

a model based on the properties of Tether price and uses it to propose tests for its sta-

bility. Before discussing the specificity of the cryptocurrency of interest and the modeling

strategy, we provide further explanation on the issuance and redemption of stablecoins.

2.2 Issuance and Redemption

Issuance and redemption are the two fundamental market activities that determine the

equilibrium quantity of a stablecoin in the market. The equilibrium quantity goes up

when new coins are issued, and it goes down when existing coins are redeemed. While the

equilibrium quantity changes with issuance and redemption, the price of a stablecoin is

held constant during these transactions by the service provider. This constant price policy

is the result of the pegging strategy explained in the previous section.

Issuance and redemption of stablecoins are presumably initiated by users.1 How these

transactions are executed depends on whether stablecoin has a centralized or decentralized

structure. Issuance takes place following the transfer of funds by user to the stablecoin

enterprise. Depending on whether stablecoin is centralized or decentralized, these funds

are deposited either into banking accounts of a custodian or into a cryptographical vault.

For example, an individual or a business who wants to buy Tether should transfer the

funds, specifically the US dollar, to Tether Limited’s accounts at Cathay Bank and Hwatai

1See Griffin and Shams (2020) for further discussion on whether Tether issuances are supply-driven or
demand-driven.
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Bank in Taiwan. The collection of these funds constitutes the reserves of the stablecoin

enterprise, and they are meant to be kept as a collateral to back the value of every coin in

the circulation. Once the funds are successfully deposited, stablecoins are issued through

smart contracts and credited into the user’s wallet. For centralized stablecoins, it is the

issuer or the agent that authorizes the issuance of the coins whereas it is done automatically

by the blockchain technology for decentralized stablecoins.

Redemption of stablecoins is also initiated by user but the difference is that the trans-

actions take place in the reserve order. To redeem stablecoins, users place an order on the

blockchain to exchange their stablecoins for the collateral. Upon the order, the stablecoin

enterprise becomes obliged to withdraw the stablecoins from circulation and give the user

the corresponding amount of collateral in return. The stablecoins that the user redeems

are destroyed subsequently from the protocol. Stablecoin projects pledge in their whitepa-

pers that their coins are 100% redeemable and redemptions can be performed any time

users want at the predetermined price. Hence, one can argue that redeemability becomes

the liability of stablecoin enterprises and plays a key role in the sustainability of their

projects. It is the issuer that is liable to users for redemptions in centralized stablecoins.

Decentralized stablecoins, on the other hand, have no single legal entity that shoulders the

responsibility. It is the whole network that is responsible for undertaking redemptions.

2.3 Market Price of Stablecoins

Stablecoin prices are usually fluctuating around the target value. While their value in

terms of the reference asset is fixed during issuance and redemptions, they are often

traded at a premium or a discount on the exchange platforms.2 This splits the market

for stablecoins between the primary market and the secondary market, which can be

considered analogous to the market for traditional securities. The primary market for

stablecoins is where stablecoins are created (issuance) or destroyed (redemption) at the

fixed exchange rate predetermined by the stablecoin initiative. The secondary market

is where the users trade stablecoins within and across cryptocurrency exchanges such

as Binance, Coinbase Exchange, Kraken and Bitfinex. The price of stablecoins in the

secondary market is determined as a result of the market activities. According to Griffin

2See Lyons and Viswanath-Natraj (2020) for the detailed analysis of premium and discount on stablecoin
prices.
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and Shams (2020), the secondary market activities account for most of the aggregate

Tether flow from 2014 to 2018. Hence, the price of Tether and other stablecoins in the

secondary market can be considered as the effective rate at which individuals or businesses

can buy and sell stablecoins on a day-to-day basis.

At first glance, the design elements stands out as the primary mechanism through which

stablecoin projects try to achieve the price stability. However, the price stabilization in

the stablecoin market could be multifaceted. For instance, Lyons and Viswanath-Natraj

(2020) argue that the price gap between the primary market and the secondary market,

which corresponds to the deviation from the peg, can be mitigated also by arbitrage

activities. As long as investors have access to the primary market, the price deviations in

the secondary market creates an opportunity for them to make profit. When the price of

a stablecoin in the secondary market is above the peg, the arbitrager can buy the coin at

the target exchange rate from the primary market and sell it in the secondary market to

make profit. This increases the supply of the stablecoin in the secondary market, so it puts

downward pressure on its price. Similarly, when the price of a stablecoin in the secondary

market is below the parity, an arbitrager can buy the coin from the secondary market

and redeem it at the peg ratio in the primary market. In this case, the demand from the

arbitrager puts upward pressure on the secondary market price. Hence, one could expect

that the price of stablecoins across cryptocurrency exchanges would stabilize around the

peg through arbitrage activities. For example, introduction of Tether to the Ethereum

blockchain in April 2019, which is associated with increased direct access of investors to

the primary market, is found to have a stabilizing effect on the price of Tether in the

secondary market (Lyons and Viswanath-Natraj, 2020).

Bullman et al. (2019) provides the list of alternative tools that each type of stablecoins

can adopt to maintain the peg. The list consists of fees, redemption limits, and penalty

fees to name a few. Fees and redemption limits could be used by collateralized stablecoins

to limit the users’ transactions and prevent sudden liquidations while penalty fees can help

maintain the minimum level of collateralization. For example, Tether Limited imposes the

minimum amount of 100,000 USD required for a fiat withdrawal or deposit and charges

the greater of $1,000 or 0.1% fee per fiat withdrawal and per fiat deposit.3

The stabilization strategies of Tether have not always been fully successful. The next

3https://tether.to/fees/
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section presents empirical evidence based on the dynamic analysis of the data.

3 Tether Dynamics

This section examines the patterns in Tether dynamics in the sample of T = 1361 daily

closing prices recorded between November 9, 2017, and July 31, 2021.

Figure 1 displays the evolution of daily closing rates of the Tether against US Dollar.

We observe the episodes of explosive dynamics mixed with more stable periods as well as

the convergence of the process at the end of the trajectory to a smooth process taking

values close to 1. The convergence of Tether towards the peg and its reduced range after

2021 are associated with increased volume displayed in Figure 2.
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Figure 1: Tether/USD daily closing rates

During the sampling period, the lowest and highest price were 0.9666 and 1.0779,

respectively. Although 0.0334 and 0.0779 deviations from the one US dollar parity may

look small, they can provide important arbitrage opportunities if the investor is holding

a large position in the crypto asset. While the mean over this period is 1.022 and close

to one, as expected, the volatility around the mean is 0.066. The evolution of the price

shows an alternate of relatively large and small deviation in the stablecoin price due to

changes in its demand and lags in intervention by Tether to maintain price stability.
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The fluctuation of the Tether price around the one-dollar peg can be connected with

the European snake in the tunnel currency system created in April 1972 by an agreement.

To increase the convergence among the different currencies in the European Economic

Community (EEC), the agreement objective was to create a single currency band within

which all the EEC currencies could fluctuate and not deviate too much from a peg. The

peg was defined using first gold and, later on, the US dollar. More details on the system

can be found in Day (1976). To achieve stability around the peg, central banks had to use

their reserve to intervene by buying or selling local currencies. The system was difficult

to sustain as several currencies left the agreement. Although stablecoin issuers do not

have a macroeconomic policy function as central banks, the difficulties in maintaining the

snake currency system also speak to the challenge of maintaining stablecoin prices around

its peg using the reserve system discussed above. To understand the price movements of

Tether, we first discuss factors that affect its demand during the sampling period.

Figure 2: Time varying volume of Tether

The daily volume series in Figure 2 exhibits larger fluctuations during the year 2021

of the sampling period. Although the overall trend was positive, the daily volume varied
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roughly between $15.4 billion and $279 billion. The highest daily volume of $279 billion

was achieved on May 19, 2021, when the Chinese government cracked down on its domestic

market for cryptocurrencies. Later, the daily volume plunged to as low as $33.7 billion in

July 2021.

The high levels of daily volume in 2020 and 2021 could be explained by an increasing

interest from investors as the market for cryptocurrencies grew substantially during the

initial stages of the Covid-19 pandemic. Tether’s daily volume increased drastically from

less than $10 billion in 2018 to as high as $279 billion in 2021. While the daily volume

is observed to be increasing almost steadily in 2018 and 2019, it exhibits rather a volatile

pattern in 2020 and 2021. For instance, in early 2021, the daily volume of Tether more

than doubled in a matter of a few months and reached a peak of 99.3 billion USD on the

March 13th, a day after the infamous “Crypto Black Thursday”. However, the pattern

in Figure 2 indicates that the daily volume of Tether decreased between May and July of

2021 and returned to its pre-pandemic level.

The convergence to reduced range and small variation around the constant value of 1

occurs first in Tether in May 2018 and is interrupted by the end of September 2018. In

the environnement of Tether, the convergence is observed simultaneously for other mostly

traded traded stablecoins such as USD Coin, Binance USD, True USD, and Pax Dollar

starting from July 2020 and in Dai starting from December 2020. During this period,

these stablecoins displayed a period of improved stability towards the end of the sampling

period. Also, the Bitcoin and Etheureum prices in US Dollars have increased. This period

of stability overlaps with the period of bullish run in the cryptocurrency market. The

cryptocurrency market indices such as the S&P Cryptocurrency Broad Digital Market

(BDM) Index recorded more than fivefold increase between September 2020 and May

2021.4 The strong demand for cryptocurrencies also benefited the stablecoin companies

as the total market capitalization of the top 10 stablecoins went up from approximately

$20 billion in September 2020 to slightly over $100 billion in July 2021.5

The stability is interrupted again for all stablecoins when the cryptocurrency market

shrunk by over $300 billion on April 17, 2021 in less than 24 hours.6 While the waves

4https://www.spglobal.com/spdji/en/indices/digital-assets/sp-cryptocurrency-broad-digital-market-
index/#overview

5https://www.statista.com/statistics/1255835/stablecoin-market-capitalization/
6https://www.forbes.com/sites/jonathanponciano/2021/04/18/crypto-flash-crash-wiped-out-300-
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of sell-off caused the price of Bitcoin to plummet by 10.5%, the price of all stablecoins

increased simultaneously. This can be evidence in favor of the previous studies which

suggest that stablecoins could provide hedging opportunities for cryptocurrency investors

against Bitcoin’s volatility, e.g., Wang and Wu (2020). However, one could also argue that

the risk mitigating properties of stablecoins, which are closely linked to the comovements

between the price of stablecoins and that of Bitcoin, could be changing locally. For exam-

ple, stablecoins showed resilience against even a much stronger market crash in mid-May

2021. On May 19, 2021, the Chinese government announced that the banks in China are

banned from providing cryptocurrency services to their clients.7 The market reacted to

this news almost immediately as Bitcoin shed 30% of its value over the course of the day.

During the crash, all stablecoins except for Terra USD managed to keep their price stable

around the one-dollar peg.

3.1 Local Analysis of Tether Price

This subsection analyzes the local dynamics of Tether price series. We examine its local

means, variances, and autocorrelations.

(a) Local mean and variance

This section studies the evolution of Tether/USD rates and identifies local patterns in this

series by considering time varying descriptive statistics computed by rolling over a window

of 50 days.

billion-in-less-than-24-hours-spurring-massive-bitcoin-liquidations/?sh=7d60735b2c89
7https://www.theguardian.com/technology/2021/may/19/bitcoin-falls-30-after-china-crackdown
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Figure 3: Local mean and variance for the price of Tether

The locally estimated marginal mean µt and variance σ2
t are displayed in panels a) and

b) of Figure 3.8

The figure’s top panel reports the local mean of the price series and shows its evolution

over the sampling period. We observe that: the local mean of Tether varies across sub-

periods, and it displays local trends. Especially, in the first half of the sampling period,

a strong local trend is observed, which is interrupted by a return of the series to values

close to 1. For example, in August 2019, the local mean increases, which is akin to the

pattern of financial bubbles observed in stock prices (rational stochastic bubbles as in

Blanchard and Watson (1982) or intrinsic bubbles as in Froot and Obstfeld (1991)). See

Kortian (1995) for more details. These patterns, however, disappear towards the end of

the sampling period and the local mean becomes more stable and close to the target value

of 1. Moreover, there are periods where the target value of 1 falls within the confidence

intervals of local means: April 19, 2018 to May 5, 2018, May 9, 2018 to June 16, 2018,

8The lower and upper bounds of the confidence interval at the 95% level are calculated under the iid

assumption as µ̂t ∓ 1.96
√

σ̂t
n

for each window of n days.
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October 10, 2018 to October 17, 2018, January 2, 2019 to January 3, 2019, and April

2, 2020 to May 1, 2020. The local variance of the price series is plotted in the bottom

panel of the figure. It varies over time, and its variation is much higher in the first half

of the sampling period. For example, in 2018, Tether had periods of high volatility from

January to March as well as periods of low volatility such as from April to November.

On the other hand, Tether is less volatile during the second half of the sampling period

as the local variance takes smaller values except for a short period of increased volatility

between mid-March and early May of 2020.

Although the rolling window approach helps detect local trends, it needs to be inter-

preted with caution. For a window size of n days, the first n-1 observations in the dataset

are eliminated due to rolling. In addition, using a longer rolling window (e.g., 100 days)

may over-smooth the changes in the mean and variance as compared to a shorter window

(e.g., 50 days). Therefore, we use the window of 50 days for further computations.9

The distributional changes in Tether also concern the range and quantiles of the series.

Overall, we observe that:

1. The local mean is changing over time and is close to 1 between April and June 2018,

and after January 2021.

2. The variance is time varying and diminishes over time.

In Section 3.2, we identify a series of events that are closely related to Tether, and

provide a detailed explanation of the reason why those events could be the driving force

behind the changes we observe in the local statistics of Tether.

3.2 Event Analysis

The dynamics of Tether are strongly influenced by events, which can be used to distinguish

the episodes of distinct patterns in the local mean and variance.

Figure 4 shows the evolution of the local mean and the local variance of Tether along

with the series of events that can be important for the dynamics of Tether, which can

9Also, note that n=50 is large enough to estimate parameters within each window consistently. Fur-
thermore, n=50 divided by the sample size of T=1361 is the bandwidth bT = n/T = 0.0367 in our local
analysis, which will be discussed later. In the literature, an optimal choice should satisfy Tb3T = o(1). In
our case, we have Tb3T = 0.0675, which is relatively small. See Dahlhaus, Richter, Wu (2019, page 1039)
for more details.
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help explain the trend reversals in its local statistics. Total of 11 such events are identified

including 7 events for the local mean and 4 events for the local variance.

In 2018, the local mean shows a downward trend for the most part of the year, except

for a brief period of recovery between early May and Late September. This should come as

no surprise because 2018 was a very tumultuous year for Tether Limited and its business

partners. Tether Limited was being scrutinized by the media and scholars for the quality of

its reserves and its close ties to the cryptocurrency exchange Bitfinex. More specifically,

Tether was publicly accused for not holding enough reserves to back all of its coins in

circulation and for manipulating the price of Bitcoin by pumping unbacked supply of

Tether into the market through Bitfinex to buy Bitcoins. Amid these controversies, the

local mean of Tether is found to be decreasing for the most part of the year, which could

be linked directly or indirectly to a shift in investor sentiment towards Tether.

In 2018, there is also a short period of a slight upward trend in the local mean roughly

between early May and late September. In early May, the owners of Tether Limited

made their first significant attempt to show their willingness to address the investors‘

concerns about the accountability of their business and that of Bitfinex. On May 7,

2018, the cryptocurrency exchange Bitfinex officially announced that Peter Warrack, who

worked previously at RBC Royal Bank for 20 years as an anti-money laundering specialist,

joins their team as the Chief Compliance Officer. Upon this news, the local mean of

Tether enjoys a period of recovery and hovers above the one-dollar peg. Nevertheless, the

local mean of Tether starts to decrease once again in September and reaches its lowest

level in November. The downfall of Tether during this period could be triggered by the

introduction of USD Coin (USDC) on September 26, 2018. USD Coin, which is also

designed to be on par with the US dollar, relies on the business principles similar to that

of Tether but it claims to offer its users an improved transparency in its business activities.
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Figure 4: Important events for the local mean and the local variance of Tether

Note: This note provides a description of the events.

Peter Warrack: Peter Warrack was hired by Bitfinex as the Chief Compliance Officer on May 7,

2018.

USDC launched: USD Coin was launched on September 26, 2018.

Partial Backing: Bloomberg suggested on December 12, 2018 that Tether could be fully backed.

Partial Backing 2: On March 14, 2019, Tether made changes to its backing policy on its official

website.

Tether wins appellate: Bitfinex won a motion in the New York Supreme Court to delay sub-

mission of its business documents.

WHO Covid: WHO made an announcement on Twitter on December 31, 2019 to acknowledge

the cases of pneumonia in Wuhan, China.

Coinbase Outage: Bitcoin shed over 10% of its value in a matter of minutes on May 9, 2020,

which was followed by an outage in the cryptocurrency exchange Coinbase.

Wire Deposits: Bitfinex “temporarily paused” EUR, USD, JPY, and GBP wire deposits on

October 11, 2018.

TRON: Tether went live on the Tron network on April 17, 2019.

Black Thursday: Black Thursday: Bitcoin’s price reduced by around 50% in less than a day on

March 12, 2020.

Chain Swap: On June 22, 2020, Tether announced on Twitter that they would implement a

chain swap for a sizable amount of USDT from Tron TRC20 to ERC20 protocol on June 29th.
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Tether makes up for the loses quickly as the local mean increases remarkably from

its lowest level in November 2018 to its highest level in January 2019 just under two

months. The surge in the mean price of Tether could be a sign of positive reaction from

the investors as the bank statements obtained by Bloomberg showed that on the contrary

to the allegations, Tether Limited could be holding enough reserves to back its coins in the

circulation.10 However, this positive attitude towards Tether does not seem to last long as

the local mean diminishes once again starting in January 2019. The downward pressure

on the local mean was so strong during this period that it persisted up until August

2019 despite Tether’s effort to be more transparent about the composition of its reserves.

According to coindesk.com,11 Tether changed the terms on its website in Mid-February

implying that while every Tether is always 100% backed by their reserves, the reserves are

not necessarily composed of only fiat currency as they claimed before but also includes

cash equivalents, other assets, and receivables from loans. This update, however, did not

stop the New York State Attorney General (NYSAG) sue Bitfinex and Tether Limited on

April 24, 2019 on the basis of an ongoing fraud.12

As the downward trend in the local mean dies out in August 2019, another episode

of increasing local trend is observed subsequently. The trend becomes more noticeable

around September 24, 2019 when iFinex Inc, the parent company of Bitfinex and Tether

Limited, won a motion in the court against NYSAG meaning that the company does not

have to hand over the documents related to its business activities until further notice.13

Following this small victory in the court, the local mean of Tether diverges from the peg

and keeps increasing until the end of the year.

On December 31, 2019, the World Health Organization (WHO) announced via its

official Twitter account that they were informed of cases of pneumonia of unknown cause

in Wuhan City, China.14 With this announcement, WHO acknowledged the problem of

an epidemic in China, which would soon turn into a global health and economic crisis of

10https://www.bloomberg.com/news/articles/2018-12-18/crypto-mystery-clues-suggest-tether-has-the-
billions-it-promised

11https://www.coindesk.com/markets/2019/03/14/tether-says-its-usdt-stablecoin-may-not-be-backed-
by-fiat-alone/

12https://ag.ny.gov/press-release/2019/attorney-general-james-announces-court-order-against-crypto-
currency-company

13https://www.forbes.com/sites/michaeldelcastillo/2019/09/24/bitfinex-and-tether-win-appeal-from-
new-york-supreme-court-in-900-million-case/?sh=7c8bf41132bc

14see https://twitter.com/who/status/1213795226072109058?lang=en for the original tweet from WHO
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Figure 5: Autocorrelation functions of Tether over different periods

COVID-19 pandemic. Subsequently, the local mean of Tether starts to decline cancelling

out the gains from the last quarter of 2019.

3.3 Persistence in Tether Series

Let us now examine the serial correlation in Tether. The autocorrelation function (ACF)

of Tether is computed from the entire sampling period 2017-2021 as well as from each

calendar year separately. Figure 5 presents the computed ACF functions: the ACF over

the entire period (panel (a)), and in years 2017-2021 in panels (b) to (e), consecutively.

The ACF calculated from the entire sample exhibits a long range persistence. However,

the subperiod analysis reveals that the persistence in the ACF of Tether is strong up to

and including 2019,15 whereas the series has a short memory in 2020 and 2021.

When combined with the results from the local statistics, it can be inferred that the

period of long-range persistence in Tether coincides with the period of level shifts and high

volatility as documented in Figure 1. Likewise, when the variation is small and the local

mean stabilizes around the one-dollar peg as in 2020 and 2021, Tether displays a short

memory.

15In 2017, there are only 53 observations, which could be the reason for the weak evidence for the
persistence.
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In brief, the empirical results show that the analysis of Tether based on global statistics

would provide unreliable results, especially concerning the serial correlation of the series.

For example, different values and range of serial correlation are obtained in year 2021, as

compared to years 2018-2019.

Let us now focus on the autocorrelation values. More specifically, the autocorrela-

tion at lag one of the series can be estimated from the autoregressive coefficient of an

autoregressive of order 1 (AR(1)) model. We first consider the autoregressive coefficient

estimated from the AR(1) model fitted to the whole sample of demeaned Tether prices

xt = yt − µ

xt = ρxt−1 + σeet, (3.1)

where et is assumed to be a white noise with mean 0 and variance 1. The AR(1) process

is stationary when |ρ| < 1 and nonstationary and explosive when ρ = 1. Model (3.1) is

estimated globally by the OLS, or equivalently by maximizing the Gaussian Maximum

Likelihood as follows:

θ̂T = Argmaxθ

T∑
t=1

l(xt|xt−1; θ) = Argmaxθ

T∑
t=2

−1

2

(
log
(
2πσ2

e

)
+

(xt − ρxt−1)2

σ2
e

)

where θ = (ρ, σ2
e).

The estimated parameter values are ρ̂T = 0.674 and σ̂2
e,T = 0.545. Next, model (3.1) is

fitted locally and estimated by rolling with a window of length 50 and displayed in Figure

6.

The top panel of Figure 6 shows the autoregressive coefficient/correlation at lag 1

estimates. We observe that the autoregressive coefficient is close to 1 during the explosive

episodes in 2018 and 2019, which violates the stationary condition of the AR(1) process.

The unit root dynamics of Tether resembles the stock prices and exchange rates. It

suggests that Tether is then locally efficient in financial terms. The autocorrelation at

lag 1 is close to 0.5 at the end of the sampling period. In comparison with the results

presented in Section 3.1, estimating the autocorrelation at lag one based on the AR(1)

model gives us greater flexibility to assess the change in the persistence of Tether as we

are able to examine its evolution at a daily frequency rather than on a yearly basis. For
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Figure 6: AR(1) parameter estimates and conditional volatility for xt

example, the estimated values of the AR(1) coefficient ρ suggest that the autocorrelation

at lag one ranges between -0.20 and 1.02 in 2018 whereas in Section 3.1, the ACF at lag

1 was estimated to be slightly over 0.76 for the entire year.

The bottom panel shows the conditional volatility σ̂e(t) =
√

1
50

∑t
τ=t−49(xτ − ρ̂(τ)xτ−1)2

of the price of Tether under the AR(1) assumption. The figure shows that this price ex-

hibits periods of low volatility and high volatility. Especially from October 2020 onwards,

the conditional volatility decreases remarkably and becomes very close to 0. This result is

consistent with the period of stability we observed in the price series of Tether during the

cryptocurrency bull market explained in Section 3. If the volatility was computed over

the full sample we would have a constant estimate which does not capture the changes in

volatility over time. To accommodate this feature, we consider the time-varying volatil-

ity model which also allows us to have valid inference when the estimated correlation

parameter is close to one unlike the AR(1) model.
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3.4 Properties of rolling estimators

Let us now examine the properties of the rolling estimators of time varying parameters

written as deterministic functions of time. First, we estimated by rolling the time varying

marginal mean and variance functions, hoping to approximate m(t) and σ2(t) in a simple

model

yt = m(t) + σ(t)ut,

under the simplifying assumption of Normally distributed i.i.d. process ut with mean 0

and variance 1. Then, in finite sample

m̂(t) =
1

50

t∑
τ=t−49

yτ ∼ N
(
m(t) + · · ·+m(t− 49)

50
,
σ2(t) + · · ·+ σ2(t− 49)

250

)
We see that m̂(t) is biased of m(t) towards an integrated mean. By the same argument it

can be shown that σ̂2(t) is biased of both σ2(t) and the integrated variance.

Let us now consider the time varying parameters θ(t) = (ρ(t), σ2
e(t)) of a time varying

parameter AR(1) model:

xt = ρ(t)xt−1 + σe(t)et,

where xt = yt−m(t). Then, the normality-based MLE estimator θ̂∗(t) obtained by rolling

can be written as the following kernel MLE estimator (see Fan et al. (1998) for the method

of local kernel-weighted likelihood estimation using local polynomial fitting).

θ̂∗T (t) = Argmaxθ
1

50

t∑
τ=t−49

l(xτ |xτ−1; θ)

= Argmaxθ
1

50

T∑
τ=1

1t−49≤τ≤t l(xτ |xτ−1; θ)

= Argmaxθ

T∑
τ=1

[
1

50
1−49≤τ−t≤0 l(xτ |xτ−1; θ)

]

= Argmaxθ

T∑
τ=1

1

50
1−49/50≤(τ−t)/50≤0 l(xτ |xτ−1; θ)

= Argmaxθ

T∑
τ=1

1

50
K

(
τ − t

50

)
l(xτ |xτ−1; θ), t = 1, ..., T
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with the kernel K(u) = 1[−1,0](u).

It is easy to see that the dimension of the parameter of interest [θ(1), ..., θ(T )] depends on

the number of observations T. To circumvent this difficulty, we can replace the functional

parameter [θ∗(1), ..., θ∗(T )] with t ∈ N by an alternative functional parameter θ(c), c ∈

(0, 1) on [0,1], such that θ∗(t) = θ(t/T ). The rolling MLE is such that

θ̂∗T (t) = θ̂T (t/T ) = Argmaxθ

T∑
τ=1

T

50
K

(
τ/T − t/T

50/T

)
l(xτ |xτ−1; θ), t = 1, ..., T.

This formula can be extended to any value of argument c ∈ [0, 1]:

θ̂T (c) = Argmaxθ

T∑
τ=1

T

50
K

(
τ/T − c

50/T

)
l(xτ |xτ−1; θ), c ∈ [0, 1].

Dahlhaus (2000) and Dahlhaus, Richter, Wu (2019) show that under regularity conditions

the functional parameters θ(c) of a locally stationary process can be consistently estimated.

Instead of considering the time varying parameters in calendar time, we have now defined

the functional parameters in a deformed time t→ t/T that depends on T. The functional

parameter is now independent of the observations, while the effect of T is introduced by

considering a triangular array approach. This leads to a sequence of models indexed by

T:

xt,T = ρ(t/T )xt−1,T + σe(t/T )et,T ,

where xt,T = yt,T −m(t/T ).

This approach motivates our modelling approach presented in the next section.

4 DAR(1) Model for Tether Price

To account for time-varying conditional mean and volatility, we introduce the Double

Autoregressive (tvDAR) process of order 1 with time varying parameters. The first part

of this section recalls the constant parameter DAR model. Next, the estimation of both

type of models is discussed. The last part of this section presents the stability measures

and their estimators.
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4.1 Model with Constant Parameters

We consider the DAR process of order 1 for the demeaned Tether price series:

xt = φxt−1 + ηt

√
ω + αx2

t−1, (4.2)

where ω > 0, α > 0, and ηt, t = 1, ..., T is an independent and identically distributed (i.i.d.)

sequence with mean 0 and variance 1. The parameter φ captures the conditional mean

dependence. Parameter α represents the past dependence in the conditional variance. The

model is semi-parametric and conditionally heteroskedastic.16 Borkovec and Kluppenberg

(2001), Ling (2004) show that there exists a unique strictly stationary and ergodic solution

to model (4.2) when the following assumptions hold:

Assumption A.1: ηt has a symmetric and continuous density with mean 0 and variance

1.

Assumption A.2: The parameter space is Θ = {θ = (φ, ω, α) : E(ln|φ+ηt
√
α|) < 0 with

|φ| ≤ φ̃, ω ≤ ω ≤ ω̃, α ≤ α ≤ α̃ where φ̃, ω, ω̃, α, α̃ are positive constants.

Assumption A.1 is not a stringent assumption. It is satisfied in particular if ηt, t =

1, ..., T are normally distributed. Assumption A.2 is the existence and negativity of

the Lyapunov exponent ensuring the existence and uniqueness of a stationary solution

[Borkovec and Kluppenberg (2001)]. The region of φ, α that satisfy the negativity condi-

tion is displayed in Figure 1, p. 64 Ling (2004) and Figure 1, p. 191 Chen et al. (2014).

It includes cases when φ ≥ 1 as well as E(x2
t ) = ∞. The processes xt that satisfy As-

sumption 2 are strictly stationary. Some of these processes are also weakly (second-order)

stationary and satisfy additionally the condition φ2 + α < 1 ensuring that E(x2
t ) < ∞.

Thus, the marginal variance of those processes is finite.

When φ = 1, and E(ln |1 + ηt
√
α|) < 0, the process xt is a strictly stationary martin-

gale process with volatility induced “mean-reversion” [Gourieroux, Jasiak (2019)]. Model

(4.2) is non-stationary when the Lyapunov exponent is non-negative. In particular, it is

nonstationary at the boundary points (φ, α) = (±1, 0) and nests the standard unit root

models at these two points. When φ = 0, the process is an ARCH(1) model. Moreover,

process (xt) is strictly stationary when x0 is drawn from a stationary distribution.

16More on the models with conditional heteroscedasticity and their applications in finance can be found
in Gourieroux (1997). Zakoian (1994) also proposed maximum likelihood and least squares estimators for
conditionally heteroscedastic model with threshold.
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Under assumptions A.1 and A.2, the parameter space Θ is compact and there exists

a unique strictly stationary solution of the model for any θ ∈ Θ. In addition, we assume

that:

Assumption A.3: The model is well-specified, i.e. the process satisfies equation (4.2)

for the true value of parameter θ0 = (φ0, w0, α0) and the true density ψ0 of η. The true

parameter value θ0 is an interior point in Θ.

Assumption A.4: The observed process is the unique, strictly stationary solution asso-

ciated with (θ0, ψ0).

These two conditions are introduced for the identification of the model and parameter

estimation.

4.2 Model with Time-Varying Parameters

The DAR(1) model can be extended to a time-varying parameter model by using the

triangular array approach for locally stationary processes [Dahlhaus (2000), Dahlhaus,

Richter, Wu (2019)]. The time varying tvDAR(1) model is written for locally demeaned

observations xt,T , t = 1, ..., T indexed by t and T (triangular array) and defined by:

xt,T = φ(t/T )xt−1,T + ηt,T

√
ω(t/T ) + α(t/T )x2

t−1,T , (4.3)

where for each time T , (ηt,T ) is a strong (i.i.d) white noise with mean zero, unit variance

and a symmetric distribution invariant in T . φ(c), ω(c) > 0, α(c) > 0, c ∈ [0, 1] are

deterministic functions. We assume that these functions are smooth.

Assumption a.1: The functions φ(.), ω(.), α(.), are positive, deterministic and twice

differentiable on [0, 1].

Moreover, the trajectories of the process have to be little responsive to small changes of

the parameters, which is ensured by a Lipschitz condition. More precisely, let us consider

process xt(c) defined by:

xt(c) = φ(c)xt−1(c) + ηt(c)
√
ω(c) + α(c)xt−1(c)2, (4.4)

We assume that the following condition holds:

Assumption a.2:
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Let the Lq norm for q > 0 be denoted by ||.||q. Then,

i) For each c ∈ (0, 1), process {xt(c)} is stationary and ergodic.

ii) c→ xt(c) is continuous for any t and ||supcxt(c)||q <∞.

iii) There exists α, 1 ≥ α > 0 and CB > 0, such that

||xt(c)− xt(c′)||q < CB|c− c′|α uniformly in t and c, c′ ∈ (0, 1).

Under Assumptions a.1 and a.2, if T is large and t/T in a small interval (c− ε, c), then

the parameters are almost constant over that interval and locally model (4.4) is close to

model (4.3) with φ = φ(c), ω = ω(c), α = α(c). This explains the local stationarity.

When all the observations xt,T , t = 1, ..., T are considered, the variation of the pa-

rameters prevents the DAR process from being globally stationary. However, it is locally

stationary, if Assumption A.2 is locally satisfied, i.e. E[ln|φ(c) + ηt(c)α(c)|] < 0 for any c.

This is the condition on the negativity of the local Lyapunov exponent.

4.3 Estimation

4.3.1 Estimation of the Model with Constant Parameters

The parameter estimates of model (4.2) are obtained by maximizing the quasi-maximum

likelihood (QML) objective function, i.e. the log-likelihood function for normally dis-

tributed ηt.

LT (θ) = −1

2

T∑
t=2

ln
(
ω + αx2

t−1

)
− 1

2

T∑
t=2

(xt − φxt−1)2(
ω + αx2

t−1

) , (4.5)

where θ = [φ, ω, α]′. The QML estimators of Model (4.2):

θ̂T = Argmaxθ∈ΘLT (θ)

are consistent under Assumptions A.1 to A.4, and the vector of QMLE estimators θ̂T =

[φ̂T ω̂T α̂T ]′ → θ0 in probability, where θ0 = [φ0 ω0 α0]′ [Ling (2004,2007)]. Moreover, if

the following assumption:

Assumption A.5: E(η4
t ) <∞

is satisfied, Li and Ling (2008) and Chen, Li and Ling (2014) show that the Quasi Maxi-

mum Likelihood estimators (QMLE) of θ are also asymptotically normal when |φ| ≥ 1 17

as well as E(x2
t ) =∞.

17The ML/OLS estimators of φ from a linear autoregressive AR(1) model with constant parameters are
not asymptotically normal when φ = 1.
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√
T (θ̂T − θ0)→ N(0, diag(Σ−1, κΩ−1))

where this convergence is in distribution, Σ = E0[x2
t−1/(ω0 + α0x

2
t−1)]

Ω = E0

(
1

(ω0 + α0x2
t−1)2

[
1 x2

t−1

x2
t−1 x4

t−1

])
,

diag(Σ−1, κΩ−1) denotes the block-diagonal matrix with Σ−1 as the upper left block and

κΩ−1 as the bottom right block and κ is the kurtosis less 1 of the distribution of η. In

particular, κ = 2 when ηt is normal. These asymptotic results are valid for any true

distribution of η, not necessarily a Gaussian distribution. The consistent estimators of Σ

and Ω are

Σ̂T =
1

T − 1

T∑
t=2

[x2
t−1/(ω̂T + α̂Tx

2
t−1)],

Ω̂T =
1

T − 1

T∑
t=2

1

(ω̂T + α̂Tx2
t−1)2

[
1 x2

t−1

x2
t−1 x4

t−1

]
.

The model residuals are defined as:

η̂t,T = (xt − φ̂Txt−1)/
√
ω̂T + α̂Tx2

t−1.

The model residuals η̂t,T , t = 1, ..., T allow us to estimate non-parametrically the error

density to verify ex-post the symmetry assumption. The parameter κ is estimated by

κ̂T = 1
T−1

∑T
t=2 η̂

2
t,T − 1 = 1

T−1

∑T
t=2

(xt−φ̂xt−1)
4

(ω̂+α̂x2t−1)
2 − 1 allowing us to accommodate the

heavy tailed distribution of the stablecoin prices.

4.3.2 Estimation of the Model with Time-Varying Parameters

Let us consider the locally stationary tvDAR model. The dynamic model (4.3) of

triangular arrays xt,T , t = 1, ..., T is non-parametric and depends on the functional param-

eters φ(c), ω(c) > 0, α(c) > 0, c ∈ [0, 1] and on the density function of the noise ηt,T . The

estimation of φ(.), ω(.), α(.) can be done by the local-in-time QML estimators. We con-

sider a kernel K defined on [−1/2, 1/2] and bandwith bT , bT > 0 (following the notation
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used in Dahlhaus, Richter, Wu (2019), p. 1035). The local negative log-conditional quasi

likelihood is

LT,b(c, φ, ω, α) =
1

TbT

T∑
t=2

K

(
t/T − c
bT

)−1

2
ln
(
ω + αx2

t−1,T

)
− 1

2

(xt,T − φxt−1,T )2(
ω + αx2

t−1,T

)
 ,
(4.6)

Then, the local negative QML estimator of θ(c) = [φ(c), ω(c), α(c)] is:

θ̂T,b(c) = ArgmaxθLT,b(c, φ, ω, α). (4.7)

Under suitable regularity conditions given in [Dahlhaus, Richter, Wu (2019)], this

functional QML estimator θ̂T,bT (c), c ∈ [0, 1] is consistent of θ(c), c ∈ [0, 1] and its limiting

distribution is normal:

√
TbT (θ̂b(c)− θ0(c))→ N(0,

∫
K(y)2dy J(c)−1I(c)J(c)−1),

where → denotes the weak convergence of processes indexed by c, J(c) is the Hessian

matrix and I(c) is the outer product of scores, both evaluated at c. Under the symmetry

assumption on ηt and for a strictly stationary and ergodic xt, the information matrix I(c)

simplifies to a block diagonal matrix [Ling (2004), Remark 1].

The regularity conditions concern the functional parameter, the distribution of noise

ηt, the kernel K and the bandwidth bT . They can be found in Dahlhaus, Richter, Wu

(2019), since the DAR model is a nonlinear autoregressive model discussed in Dahlhaus,

Richter, Wu (2019), Example 5.5, p. 1039. In particular, the bandwidth has to satisfy the

conditions bT → 0, T bT →∞, T b3T → 0 when T tends to infinity.

4.4 Stability measures

The Lyapunov exponent measures the average logarithmic rate of separation or conver-

gence of initially close trajectories in chaotic systems, and the sensitivity to initial con-

ditions, in general. A negative value of the Lyapunov exponent indicates the stability

of the dynamical system, while a positive value indicates chaos. The more negative the

Lyapunov exponent, the more stable the system. Therefore, it is used for testing for chaos
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[Sprott (2003)]. In this section, the Lyapunov exponent is proposed as a measure of stabil-

ity of Tether and other stable coins. In the framework of the DAR model, the Lyapunov

exponent is:

λ = E(ln |φ+ η
√
α|).

The more negative the Lyapunov exponent, the less explosive the process18 and more likely

its marginal variance is finite.

The behavior of E(ln |φ+ηt
√
α|) as a function of φ, α can be examined analytically for

selected densities of η, and/or simulated and illustrated graphically [see, Liu et al. (2018)

for graphical illustration]. Appendix A.1 shows the analytical formula of λ for a uniformly

distributed sequence {ηt}. More precisely:

Proposition 1: If η ∼ U[−1,1], the Lyapunov exponent is given by:

λ(φ, α) =
1

2
√
α

[
(|φ|+

√
α) ln(|φ|+

√
α)− (|φ|+

√
α)− ||φ| −

√
α| ln ||φ| −

√
α|+ ||φ| −

√
α|
]

Proof: See Appendix A.1.

This example clarifies that the Lyapunov exponent is a continuous function of φ, α,

although with points of non-differentiability. Moreover, it is easy to show that that

E(ln |φ + ηt
√
α|) is always an even function of φ, i.e. it takes the same value for φ and

−φ. To see that, consider a symmetric density function ψ(η). Then,

E(ln | − φ+ ηt
√
α|) =

∫
(ln | − φ+ ηt

√
α|)ψ(η)dη.

Because ψ(η) is symmetric, we can change the variable η → −η:

E(ln|−φ+ηt
√
α|) =

∫
(ln |−φ−ηt

√
α|)ψ(−η)dη =

∫
(ln |φ+ηt

√
α|)ψ(η)dη = E(ln |φ+ηt

√
α|).

This proves that the Lyapunov exponent is even in φ. The Lyapunov exponent can be

computed by plug-in from the parameter estimates. Let us first consider the constant

parameter DAR model. The following estimators can be considered:

a) Suppose that the true density function ψ = ψ0 is known. Then, the estimator λ̂1,T

of the Lyapunov exponent is:

λ̂1,T =

∫
ln |φ̂T + η

√
α̂T |ψ0(η) dη.

18A strictly stationary process can have infinite moments.
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Proposition 2:

When the density ψ(η) = ψ0(η) is known, then under assumptions A.1 to A.4 and the

following condition:

(A.6) ∃δ > 0, such that
∫
sup

φ0 − δ < φ < φ0 + δ
α0 − δ < α < α0 + δ

| ln |φ+ η
√
α||ψ0(η)dη <∞

the estimator λ̂1,T converges in probability to the true value λ0 =
∫

ln |φ0 +η
√
α0|ψ0(η)dη

of the Lyapunov exponent when T →∞.

Proof: See Appendix A.2

b) When the density ψ(η) is unknown, the model is semi-parametric. The Lyapunov

exponent can be estimated by the estimator λ̂2,T such that:

λ̂2,T =
1

T

T∑
t=1

ln |φ̂T + η̂t,T
√
α̂T |.

Therefore this estimator is equal to :

λ̂2,T =
1

T

T∑
t=1

ln

∣∣∣∣∣∣φ̂T +
xt − φ̂Txt−1√
ω̂T + α̂Tx2

t−1

√
α̂T

∣∣∣∣∣∣ =
1

T

T∑
t=1

g(xt, xt−1; θ̂T )

where g(xt, xt−1; θ) = ln

∣∣∣∣φ+ xt−φxt−1√
ω+αx2t−1

√
α

∣∣∣∣. We also introduce the notation GT (θ) =

1
T

∑T
t=1 g(xt, xt−1; θ).

Proposition 3:

Let us introduce the additional conditions:

(A.7) Eθ0g(xt, xt−1; θ) <∞, ∀θ ∈ Θ.

(A.8) Sufficient Lipschitz condition for stochastic equicontinuity: There exists a stochas-

tic sequence BT with BT = Op(1) and an increasing function h from [0,∞) to [0,∞),

continuous at 0 with h(0) = 0, such that for all θ̃, θ ∈ Θ, |GT (θ̃)−GT (θ)| ≤ BTh(d(θ̃, θ)).

Then, under assumptions A.1-A.4 and conditions A.7, A.8 the estimator λ̂2,T = GT (θ̂T )→

G(θ0) = λ0 in probability.

Proof: See Appendix A.3.

The asymptotic distributions of estimators λ̂1,T , λ̂2,T cannot be obtained asymptot-

ically from the Taylor series expansion because function φ, α →
∫

ln |φ + η
√
α|ψ(η)dη
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does not satisfy the necessary differentiability assumption, as pointed out in Proposition

1. However, the distribution of λ̂1,T , λ̂2,T can be determined by simulations and used for

hypothesis testing.

c) An alternative stability measure is ξ = φ2 +α, which depicts the region of parameter

space ξ < 1 where the marginal variance of xt remains finite, so that the process is both

strictly and weakly stationary. In that sense ξ is a more conservative measure of stability

than the Lyapunov exponent because there is a region of parameter values φ, α where

the condition ξ < 1 no longer holds, while the condition λ < 0 remains satisfied. The

estimator ξ̂T of ξ is:

ξ̂T = φ̂2
T + α̂T .

Proposition 4:

Under Assumptions A.1-A.5, the estimator ξ̂T converges in probability to ξ0 when

T →∞ and it is asymptotically Normally distributed:

√
T (ξ̂T − ξ0)

A∼ N(0, Vξ),

where the formula of the asymptotic variance Vξ is given in Appendix A.4.

The asymptotic variance provides the asymptotically valid standard errors that can be

used to test the null hypothesis ξ < ξ0 using a Wald test statistic. The interpretation of

measure ξ is similar to that of λ: the smaller ξ, the more stable xt.

4.4.1 Model with time varying parameters

The Lyapunov exponent λ2(c) can be estimated locally by computing λ̂2,T (c) from the

plugged in parameter estimates and residual values of the tvDAR model. For example,

the Lyapunov exponent can be estimated from a kernel-weighted formula

λ̂2,T (c) =
1

TbT

T∑
t=1

K

(
t/T − c
bT

)
(ln|φ̂(t/T ) + η̂t,T

√
α̂(t/T )|),

with the Epanechnikov kernel K(c) = 3
2(1− (2c)2) for c ∈ [−1/2, 1/2] and K(c) = 0 other-

wise, which satisfies the regularity condition for localizing kernel [see Dahlhaus, Richter,

Wu (2019, Assumption 2.6)].
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A similar approach can be used to estimate locally the measure ξ(c) = φ2(c) + α(c).

The local plug-in estimator λ̂2,T (c) is illustrated in the next section.

5 Empirical Results

This section presents the parameter estimates for the constant parameter DAR model and

the time varying parametr tvDAR model. The time varying parameters DAR model is

estimated first by rolling, which is equivalent to the use of an asymmetric rectangular

kernel, as shown in the previous section. Next, the model is estimated by using a kernel

which assigns higher weights to the observations close to the estimation date, providing

consistent and asymptotically normally distributed estimates, which are used for testing

hypotheses on the constancy of parameters. The estimators of stability measures are also

computed and illustrated graphically.

The estimation of the DAR(1) process with constant parameters is straightforward.

First, we demean the price series of Tether by subtracting the total mean of 1.0022 and

then fit the model 4.2 to the entire series of the demeaned prices, which gives the following

result

Table 1: Estimation of the DAR(1) model using the entire
sample

DAR(1) parameters
φ ω α

Estimates 0.699 9.102e−06 0.484

Standard deviation (0.034) (2.174e−06) (0.205)

where the standard deviations of the parameters are obtained using the asymptotic dis-

tribution described in Section 5.3.1.

In the following sections, the model 4.3 is estimated by using two types of kernels. The

first one is the asymmetric rectangular kernel, equivalent to the rolling estimation over the

window of 50. This window ensures good properties of the estimators, while preventing

the over-smoothing.
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The second approach relies on the Epanechnikov kernel and produces consistent and

asymptotically normally distributed parameter estimates used for hypotheses testing.

5.1 Rectangular kernel

The tvDAR(1) is estimated from the demeaned Tether price by rolling, which is a common

practice in applied literature, and a window of length 50 days. This is equivalent to using

an asymmetric rectangular kernel, K(u) = 1(−1,0)(u), bT = 50/T which is computationally

simple, but does not satisfy the smoothness conditions ensuring locally the validity of

asymptotic distribution of the QMLE. The rolling estimate and the confidence interval of

the parameter of interest φ(t/T ) is displayed in the first paned of Figure 7 below.
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Figure 7: tvDAR(1) parameter φ(t/T ), conditional volatility and Lyapunov exponent
λ2(t/T )
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The second panel shows the estimated conditional volatility
√
ω̂(t/T ) + α̂(t/T )x2

t for

Tether price. The third panel in Figure 7 presents the local estimates λ̂2,T (t/T ) of the

Lyapunov exponent computed by plugging in the local parameter estimators.

We observe that there are periods when the autoregressive coefficient is not signifi-

cantly different from 1. For instance, this is the case between October and December 2018

and between February and May 2019. These results from the tvDAR (1) model confirm

our initial observation in Section 3.1 that the price series of Tether shows strong persis-

tence in 2018 and 2019 whilst allowing us to pinpoint its exact timing. The estimated

conditional volatility based on the estimated parameters has a pattern consistent with the

local variance estimator in Figure 3. The results in the third panel suggests that Assump-

tion 2 holds and the Lyapunov exponent remains negative even for the highest recorded

persistence. The sample Lyapunov exponent varies across time becoming on average more

negative before the end of the sampling period. This indicates that Tether achieves higher

stability over that period.
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Figure 8: Tether prices compared to one-step ahead out-of-sample forecasts
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The tvDAR(1) model estimated with the asymmetric rectangular kernel can be used for

forecasting at short horizons, under the assumption that the parameter functions remain

constant and equal to the last estimated value. Figure 8 presents the observed Tether price

and the estimate ŷt+1 of the one-day-ahead conditional mean E(yt+1|yt, . . .) of the price of

Tether using a rolling window. To get ŷt+1, we add the local mean of Tether price to the

estimated φ̂ using data over 50 days up to date t times xt. The figure shows a close match

between Tether price and its best prediction based on the previous day price. In addition,

the computed mean square prediction error is 1.7428 × 10−5 which is very small. Under

the assumption of locally constant parameters, the 95 % asymptotically valid prediction

intervals in Figure 9 are given by

[
ŷt+1 − 1.96√

T

√
x2
t Σ̂
−1, ŷt+1 + 1.96√

T

√
x2
t Σ̂
−1

]
.
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Figure 9: One-step ahead out-of-sample predicted Tether prices and prediction intervals

Next, we conduct further investigations to analyze the goodness of fit of the tvDAR(1).

For this analysis, we keep the estimation window of 50 and perform the Ljung-Box test of
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white noise on η̂t and η̂2
t , while rolling the sample used for the test [see Li (1992), and Li

and Mak (1994)]. Because we consider all subsamples of 50 consecutive dates, it is likely

that at some dates the serial correlation is not fully captured by the tvDAR(1) model.

Our results show that for most periods, residuals η̂t and η̂2
t are serially uncorrelated. More

precisely, we reject the null of no serial correlation for η̂t only for 1.52% of the subsamples,

while we reject the null of no serial correlation for η̂2
t only for 8.08% of the subsamples.

The results suggest that the model captures most of the nonlinear serial correlation in

Tether prices.

5.2 Epanechnikov kernel

We now use a symmetric Epanechnikov kernel producing consistent and asymptotically

normally distributed estimates for hypothesis testing.

The first panel of Figure 10 plots the estimated time-varying autoregressive coefficient

and its confidence band, while the second panel presents the time-varying estimates for

of the Lyapunov exponent using the λ̂2,T (t/T ) estimator. For the bandwidth, we choose

bT = 50/T using the same window as before.

The results confirm that when the estimation is conducted locally over each period,

the Lyapunov exponent displayed in the second panel of Figure 10 is negative. Hence the

critical validity condition holds for all the dates. Moreover, the Lyapunov exponent is

on average more negative at the end of the sampling period, confirming that Tether has

achieved higher stability at the end of the sampling period.

Furthermore, the estimated dynamic of estimated parameter φ for Tether price in the

first panel of of Figure 10 remains similar to that of Figure 7. These findings confirm

that Tether price has causal dynamics, as the autoregressive parameter and its confidence

interval are mostly between −1 and 1. However, there are few dates when this estimate

is not statistically different from 1, which suggests strong persistence in Tether prices.
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Figure 10: Kernel-based parameter φ estimates and Lyapunov exponent λ(t/T )

To detect the periods of strong persistence, we test the null hypothesis H0 : φ = 1

using the series of φ̂(t/T ) and its 95% confidence intervals for each t = 1, ..., T . We

conduct the hypothesis test using the series of φ̂(t/T ) obtained from the estimation with

the Epanechnikov kernel and report the results in Table 2.

The results suggest that although Tether price is predictable most of the time, there

are intervals of time periods where this tends not to be the case. During these episodes

presented in Table 2, we find high persistence in Tether price. However, as explained

above, the proposed tvDAR approach remains valid and accommodates strong persistence

in the price series. In light of the results in Figure 4, we further inspect the identified

periods. We observed that the identified episodes in 2018 and 2019 overlap with the

periods of high volatility observed in Figure 4, which ended in February 2020, but started

around the introduction in September 2018 of USD Coin, another stablecoin designed to

maintain price equivalence to the U.S. dollar. Moreover, the episodes in 2020 match with

a small rise in Tether price volatility by the end of July 2020, while the episodes in 2021
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can be associated with the period of increased volatility at the end of our sample.

Table 2: Episodes of high persistence in Tether characterized by φ = 1.

Year From To

2018 September 24 October 29
December 3 October 5

2019 January 11 January 30
February 9 February 11
February 16 February 21

2020 July 25 August 8
August 16 August 19

2021 May 14 June 17

5.3 Test for Conditional Homoscedasticity

Let us now consider a simple test of model specification of the tvDAR(1) model with

time-varying parameters. It is based on testing for the constancy of the variance function

in model 4.3 which is given by the following expression

σ(t/T ) =
√
ω(t/T ) + α(t/T )x2

t−1,T , t = 1, ..., T. (5.8)

To test the null hypothesis H0 : σ(t/T ) = σ0 ∀t, we consider the below test statistics

proposed by Chandler and Polonik (2017) for time-varying autoregressive processes

CPT = sup
α∈[0,1]

√
T

(γ(1− γ)
|ĜT,γ(α)− αγ|, (5.9)

where

• ĜT,γ(α) = 1
T

∑[αT ]
t=1 1(ε̂2t ≥ q̂2

γ),
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• q̂2
γ = min

(
q2 ≥ 0 : 1

T

∑
t∈[aT,bT ] 1(ε̂2t > q2) ≤ γ

)
,

• ε̂t = xt − φ̂( tT )xt−1.

The process ĜT,γ(α) counts the number of squared residuals within the first (100×α)%

of the observations that are larger than the empirical quantile of the squared residuals

denoted by q̂2
γ . The series of squared residuals is constructed by computing ε̂t = xt −

φ̂( tT )xt−1 for each period t where φ̂( tT ) in our case is the corresponding DAR(1) estimate

obtained in the previous section.

Chandler and Polonik (2017) shows that the test statistics CPT in equation (5.9) under

the null hypothesis converges asymptotically to the supremum of a Brownian bridge. This

asymptotic result is found to be still valid when the time-varying functions of the model

parameters are estimated nonparametrically (see Chandler and Polonik (2012)).

When computing the test statistics CPT , we consider different alternatives for the em-

pirical upper γ-quantile for comparison, particularly γ = (0.7, 0.8, 0.9) following Chandler

and Polonik (2017). Given the choice of γ, we then calculate the expression
√

T
(γ(1−γ) |ĜT,γ(α)−

αγ| for different values of α and report the results in table 3.

Table 3: The calculated values of
√

T
(γ(1−γ) |ĜT,γ(α)− αγ| for the given pairs of γ

and α.

α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.7 0.922 1.302 2.466 3.328 4.251 5.957 6.759 6.837 3.539

γ 0.8 0.912 1.478 2.390 3.233 3.937 5.471 6.106 6.327 3.509

0.9 0.562 1.031 1.593 2.155 2.993 3.923 4.485 5.047 3.490

The table shows that regardless of the choice of γ, the largest value is achieved when

α = 0.8. By the definition of supremum, the test statistics CPT should satisfy CPT ≥√
T

(γ(1−γ) |ĜT,γ(α)−αγ| for all α ∈ [0, 1]. Hence, it is safe to say that we have CPT ≥ 5.047

in the worst case scenario, i.e when γ = 0.9 is chosen.19 Compared with the critical

19Alternatively, we could fix our choice of γ and find the exact value of α ∈ [0, 1] at which the expression√
T

(γ(1−γ) |ĜT,γ(α) − αγ| attains its maximum on this fixed interval. This could slightly improve the
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values from the asymptotic distribution of the test statistics,20 this result leads us to the

conclusion that we can reject the null hypothesis of constant variance function even at

the 99% confidence level. In other words, we have a statistically significant evidence in

favor of the alternative that the variance function is varying over time, which consequently

justifies our strategy to estimate the model with time-varying parameters.

6 Concluding Remarks

We show that the distributional and the dynamic properties of stablecoins have been

evolving over the sampling period. We implement local analysis to detect and describe

local explosive patterns, time-varying volatility and persistence. We model the dynamic of

the most important stablecoin which is Tether, and provide evidence that the tvDAR(1)

model with time varying coefficients provides locally a good fit and reliable short-term

predictions of Tether prices. Our modelling strategy enables us to have valid inference

even when the tvDAR(1) coefficient φt of Tether price is not locally different from 1.

The sample Lyapunov exponent computed from the parameter estimates of the model

provides a measure of stability. It confirms that at the end of the sampling period Tether

becomes relatively more stable and allows for comparing the stability of Tether with other

stablecoins.

Appendix A: Technical Results

This Appendix contains the proofs of Propositions 1, 2, 3 and 4.

A.1 Proposition 1

Because of the symmetry of the density of η, the Lyapunov exponent is an even function

of φ. Hence we can suppose that φ > 0 to find the expression of the Lyapunov exponent,

and then replace φ by |φ|.

For φ > 0 we have:

precision of the lower bound for the test statistics. For example, when γ = 0.9, the expression attains its
maximum value of 5.106 at α∗ = 0.8012.

20see https://homepages.ecs.vuw.ac.nz/ ray/Brownian/ for the distribution of the supremum of a Brow-
nian Bridge.
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λ(φ, α) = E ln |φ+ η
√
α| =

∫
ln |φ+ η

√
α|ψ(α)dα.

Let us assume that η ∼ U[−1,1]. Then, its density is ψ(η) = 1
21η∈[−1,1].

We have:

λ(φ, α) = 1
2

∫ 1
−1 ln |φ+ η

√
α|dα.

We observe that:

φ+ η
√
α > 0 ⇐⇒ η > −φ/

√
α,

φ+ η
√
α < 0 ⇐⇒ η < −φ/

√
α.

Hence,

λ(φ, α) =
1

2

∫ 1

−1
1η>−φ/

√
α ln(φ+ η

√
α)dη +

1

2

∫ 1

−1
1η<−φ/

√
α ln(−φ− η

√
α)dη

Let us now examine the two cases:

a) If φ/
√
α > 1 ⇐⇒ −φ/

√
α < −1, we get:

λ(φ, α) = 1
2

∫ 1
−1 ln(φ+ η

√
α)dη + 1

20 = 1
2

1√
α

∫ 1
−1 ln(φ+ η

√
α)d(
√
αη)

= 1
2
√
α

∫ φ+
√
α

φ−
√
α

ln(u)du with change of variable u = φ+ η
√
α

= 1
2
√
α
u ln(u)− u|φ+

√
α

φ−
√
α

= 1
2
√
α

[(φ+
√
α) ln(φ+

√
α)− (φ+

√
α)− (φ−

√
α) ln(φ−

√
α) + (φ−

√
α)]

b) If φ/
√
α < 1 ⇐⇒ −φ/

√
α > −1, we get:

λ(φ, α) = 1
2

∫ 1
−φ/
√
α ln(φ+ η

√
α)dη + 1

2

∫ −φ/√α
−1 ln(−φ− η

√
α)dη

= 1
2

1√
α

∫ φ+
√
α

0 ln(u)du+ 1
2

∫ 1
φ/
√
α ln(−φ+ η

√
α)dη with the change of variable u = φ+ η

√
α

= 1
2
√
α

∫ φ+
√
α

0 ln(u)du+ 1
2
√
α

∫ −φ+
√
α

0 ln(u)du

= 1
2
√
α

[(φ+
√
α) ln(φ+

√
α)− (φ+

√
α)− [(−φ+

√
α) ln(−φ+

√
α)] + (−φ+

√
α)]

By putting the two expressions in a) and b) together we get for φ > 0:

λ(φ, α) =
1

2
√
α

[
(φ+

√
α) ln(φ+

√
α)− (φ+

√
α)− |φ−

√
α| ln |φ−

√
α)|+ |φ−

√
α|
]

The general expression of the Lyapunov Exponent without the sign constraint on φ is:

λ(φ, α) =
1

2
√
α

[
(|φ|+

√
α) ln(|φ|+

√
α)− (|φ|+

√
α)− ||φ| −

√
α| ln ||φ| −

√
α)|+ ||φ| −

√
α|
]

We observe a non-differentiability in φ = ±
√
α. Moreover, for φ = 0, we get a zero value

of the Lyapunov exponent:
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λ(φ, α) =
1

2
√
α

[√
α ln
√
α−
√
α ln
√
α+
√
α
]

= 0

A.2 Proof of Proposition 2

We need to show that when T →∞, then
∫

ln[φ̂T+η
√
α̂T ]ψ0(η)dη →

∫
ln(φ0+η

√
α0)ψ0(η)dη

in probability if (φ̂T , α̂T )→ (φ0, α0) in probability, and if condition A.6 of Proposition 2:

∃δ > 0, such that

∫
sup

φ0 − δ < φ < φ0 + δ
α0 − δ < α < α0 + δ

| ln |φ+ η
√
α||ψ0(η)dη <∞ (a.1)

holds.

Proof of convergence:

If (φ̂T , α̂T ) → (φ0, α0) in probability, then they also converge in distribution. It follows

from the Skorokhod theorem that up to a change of probability space, we can assume that

the almost sure (a.s.) convergence also holds [Billingsley (1999)]. Therefore, if g is a con-

tinuous function of (φ, α), we have g(φ̂T , α̂T )→ g(φ0, α0) a.s. and in distribution in that

new space. Then, g(φ̂T , α̂T )
d→ g(φ0, α0) in the initial space and also in probability because

the limit is constant, we get the ”in probability” version of the continuous mapping theo-

rem. Therefore, we need only the condition ensuring that g(φ, α) =
∫

ln |φ+η
√
α|ψ0(η)dη

is continuous. Condition (A.6) ensures the continuity of integral function g, which follows

from the dominated convergence theorem.

A.3 Proof of Proposition 3

We first prove a general lemma, which is next applied to the DAR model and Lyapunov

estimator λ2,T .

Lemma

Let us consider a sequence GT (θ) of stochastic functions of θ, θ ∈ Θ, and a sequence

of estimators θ̂T . We assume that:

i) Θ is compact and θ0 is in the interior of Θ.

ii) θ̂T tends in probability to θ0.

iii) GT (θ) tends in probability to a limit G(θ), ∀θ ∈ Θ.

iv) Sufficient Lipschitz condition for stochastic equicontinuity:



THIS VERSION: January 1, 2023 42

There exists a stochastic sequence BT with BT = Op(1) and an increasing function

h : [0,∞) → [0,∞) continuous at zero, with h(0) = 0 and such that for all θ̃, θ ∈ Θ,

|GT (θ̃)−GT (θ)| ≤ BTh(d(θ̃, θ)).

Then, ĜT (θ̂T ) tends in probability to G(θ0).

Proof:

We have :
|GT (θ̂T )−G(θ0)| = |GT (θ̂T )−GT (θ0) +GT (θ0)−G(θ0)|

≤ |GT (θ̂T )−G(θ0)|+ |GT (θ0)−G(θ0)|
≤ BTh[d(θ̂T , θ0)] + |GT (θ0)−G(θ0)|.

We know that if XT
P→ 0, YT

P→ 0 => XT + YT
P→ 0, i.e. the sum of op(1) is op(1).

Under condition iii) |GT (θ0)−G(θ0)| = op(1). It remains to be shown that BTh[d(θ̂T , θ0)]

is op(1).

We have:

[BT < M and h[d(θ̂T , θ0)] < ε/M ] => [BTh[d(θ̂T , θ0)]] < ε]

⇐⇒
(

(BT < M) ∩ [h[d(θ̂T , θ0)] < ε/M ]
)
⊂ [BTh[d(θ̂T , θ0)] < ε]

Consider the complement: (A ∩B)c = Ac ∪Bc. We get:

((BT > M) ∪ (h[d(θ̂T , θ0)] > ε/M) ⊃ [BTh[d(θ̂T , θ0)] >
√
ε]

It follows that:

P [BTh[d(θ̂T , θ0)] > ε] ≤ P [(BT > M) ∪ (h[d(θ̂T , θ0)] > ε/M)]

≤ P [BT > M ] + P [h[d(θ̂T , θ0)] > h−1(ε/M)],
because P [A ∪B] ≤ P (A) + P (B).

Then, for any ε, we can choose a value of M and a number of observations T sufficiently

large to get P [BTh[d(θ̂T , θ0)] > ε] arbitrarily small. Therefore, BTh[d(θ̂T , θ0)] tends to

zero in probability. QED

Then, the lemma can be applied withGT (θ) = 1
T

∑T
t=2 g(xt, xt−1; θ) and g(xt, xt−1; θ) =

ln |φ+ xt−φxt−1√
ω+αx2t−1

√
α|. Under assumptions A.1, A.4, A.7, conditions i), ii), iii) are satisfied.

For example:

GT (θ)
P→ E0g(xt, xt−1; θ),

by the weak law of large numbers applied to the transformation g(xt, xt−1; θ) of the ergodic

stationary process (xt). Assumption A.8 corresponds to condition iv) of the lemma.
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A.4 Proof of Proposition 4

a) Proof of convergence

We need to show that φ̂2
T + α̂T → φ2

0 + α0 in probability if (φ̂, α̂) → (φ0, α0) in

probability when T →∞.

Thi is a consequence of the ”in probability” version of the continuous mapping theorem

given in Appendix A.2

b) Proof of Normality

The Taylor series expansion pre-multiplied by
√
T implies:

√
T
[
(φ̂2
T + α̂T )− (φ2

0 + α0)
]

=

(
2φ0

1

)′√
T

(
φ̂T − φ0

α̂T − α0

)
+ op(1)

= A′
√
T

(
φ̂T − φ0

α̂T − α0

)
+ op(1)

where A′ = [2φ0 1]. We get the asymptotic normal distribution of ξ̂T :

√
T (ξ̂T − ξ0) ∼ N(0, Vξ),

where Vξ = A′Ω∗A. The matrix Ω∗ is: Ω∗ = diag(Σ−1, V (α̂)) where Σ = E0(y2/(ω0+α0y
2)

given in Section 4.3.1. Matrix V (α̂) = (E0
1

(ω0+α0y2)2
)/Ṽ0(y2) and Ṽ0(y2) = Ẽ0(y4) −

(Ẽ0y
2)2. In this formula, Ẽ0 denotes the expectation of variables y4 1

(ω0+α0y2)2
/E0

1
(ω0+α0y2)2

and y2 1
(ω0+α0y2)2

/E0
1

(ω0+α0y2)2
[see, section 4.3.1 and Ling (2004) for the variance estima-

tor formula].

Appendix B: Simulation Results

The purpose of this section is to illustrate the derived results in Appendix A using simu-

lation experiments. We distinguish the case where the distribution of the innovation η is

known and the case it is not.

First, we use the result in Proposition 1 and plot the Lyapunov exponent λ = E(ln(|φ+
√
αη|)) for different values of the parameter φ and α. To do so, we assume η ∼ U [−1, 1].

Figure B1 shows that the Lyapunov exponent λ remains lower than zero as as φ varies in

{−1,−0.8,−0.6, . . . , 0.6, 0.8, 1} and α varies in {0, 0.1, 0.2, 0.3, . . . , 0.8, 0.9, 1}.

Second, we assume η ∼ N(0, 1), set the true parameters to φ0 = 0.7, α0 = 0.5,

ω0 = 0.01. Note that the parameters are chosen to be close to their estimated value from

the entire data in our application. The estimated densities are based on 4, 000 simulations
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and obtained via kernel density estimation. Figure B2 plots the estimated density for

the Lyapunov exponent λ̂2,T and the stability measure ξ̂T when the three parameters are

estimated from a sample of size T and plugged in. The results on panel (a) of the figure

show that the mostly frequent estimated value is below zero for T = 50 or T = 100,

implying valid inference. In addition, panel (b) of Figure B2 shows that the density of the

estimated alternative stability measure ξ̂T = φ̂2
T + α̂T has its mode around the true value

of ξ, which is ξ0 = φ2
0 + α0 = 0.99.

As a by-product, we present Figure B3, which shows the estimated density for φ̂T , α̂T

and ω̂T for T = 50 and T = 100. The three panels in the figure provide evidence that the

three parameters are fairly accurately estimated. More specifically, the estimated values

have modes close to their true unknown parameters. The accuracy improves as the sample

size increases from T = 50 to T = 100.

Figure B1: Lyapunov exponent λ = E(ln(|φ +
√
αη|)) in terms of φ and α when η ∼

U [−1, 1]
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(b) Density of the alternative stability measure ξ̂T

Figure B2: Densities for stability measures based on estimated parameters
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Figure B3: Densities of estimators for φ, α and ω
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Appendix C: More Empirical Results

Given that the proposed stability measure can be used as a mechanical tool to detect

periods of instability in stablecoins, we use the results of Proposition 4 in Appendix A to

construct an interval for ξ employing the same rolling window approach as before. Figure

C1 presents the results and contains, in its first panel, the estimated coefficient DAR model

using the rolling windows approach, in its second panel, the conditional heteroskedasticity,

and in the third panel, the Lyapunov exponent over time. In addition to the episodes of

high persistence mentioned above, we observed, around September 2020, an important

instability that is not due to high persistence in Tether price, but more frequent changes

in the conditional heteroskedasticity, which can be seen in the second panel. This period

can also be linked to higher local volatility in the observed data in Figure 4. There is no

specific event we can associate with this movement, as is sometimes the case in crypto

markets. However, the proposed model allows capturing those changes.

As explained above, the measure of stability ξ plotted in Figure C1 is more conservative

than the Lyapunov exponent λ. Because we can have ξ ≥ 1 while λ < 0 so that valid

inference is still possible, the rejection of ξ < 1 should be interpreted as the need for

investors, regulators or stablecoin issuers to be cautious when predicting Tether future

price around the tested periods.
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