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1 Introduction

The network effects are commonly represented by a non-negative matrix A of dimension

(n,m). There exists a large literature on network models. It can be divided into research

strands that differ with respect to the objective of analysis, which is either prediction-oriented

or structural, as well as with respect to the assumptions imposed on the non-negative matrix

A. These assumptions may concern the 0 and 1 entries of adjacency matrices, or the positive

elements of incidence matrices and their ”reduced rank”. In applications to either contagion,

transmission, social interaction, or spillover effects, the elements of each row of matrix A can

be constrained to sum up to one. Then, each row of matrix A is interpreted as a conditional

probability distribution and that matrix is called a transition, or migration matrix.

The prediction-oriented techniques are applied to image analysis, facial recognition and

machine learning. The dimensions n and m of matrix A are very large, and the primary goal

of the method is to reduce its complexity. Hence, adjacency matrices with a small number of

links, i.e. entries equal to 1 are used to obtain sparse matrices A. Also, incidence matrices

are chosen so that non-negative matrix factorization (NMF) with a rather small reduced rank

can be applied [Berman, Plemmons (1994)].

The methods applied to network analysis in econometrics are more structural and para-

metric [see Manski (1993) for the reflection problem, Blume et al. (2011), de Paula (2017)

for a survey and the references therein]. The models often represent an equilibrium, such as:

Yt = AYt +DXt + ut,

where Yt = (y1,t, ...., yn,t) are the individual observations at time t, and Xt are the explanatory

variables. At the equilibrium, a simultaneity arises because the variable Y appears on both

sides of the equation. The dimensions n,m of matrix A are much smaller than in the image

analysis. Moreover, in order to obtain a simple parametric model, matrix A is often defined

as a parametric nonnegative combination A =
L∑
l=1

αlAl, αl ≥ 0, l = 1, . . . , L, of known

network matrices, which is a crucial assumption in this literature [see e.g. Bramoulle et al.

(2009), Lee et al. (2010), De Giorgi et al. (2010), Cohen-Cole et al. (2014), Blume et al.

(2015)].

The aim of this paper is to fill the gap between the prediction-oriented and the structural

methods by introducing the identifying Maximum Likelihood method, a Maximum Likelihood

(ML) estimator of the set of admissible NMFs as well as an ML estimator of matrix A, in an

extended class of dynamic probabilistic models.
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We introduce the class of dynamic parametric models with interaction matrices of reduced

rank, and discuss various examples, such as the static models used in the machine learning

literature, the dynamic panel models for individual qualitative histories, and the multivariate

dynamic Poisson model with contagion used in epidemiology, as special cases of that extended

class of models. The NMF of matrix A in this extended class of models may involve not

only the directional factors, but also a latent heterogeneity distribution. In general, there

exist multiple admissible factorizations of a given true network matrix A0 with or without

zero entries. We describe analytically the identified set for nonnegative ranks K = 1, and

K = 2 of matrix A and show how it can be parametrized in the general case K ≥ 2. The

proposed statistical inference methods rely on the Identifying Maximum Likelihood approach

which is introduced to estimate the set of NMF’s and to derive the asymptotic distribution

of the estimated identified set. In this context, the estimation of a NMF with the most

concentrated latent heterogeneity is also considered. Moreover, we propose a maximum

likelihood estimator of the nonnegative matrix A, given its nonnegative rank, and we derive

the efficiency bound for the rank constrained matrix parameter.

Our approach differs from the methods used in the existing network literature with re-

spect to the following: 1) In our paper, the network is examined in a nonlinear dynamic

framework, allowing us to distinguish the short and long run effects. Our approach is ap-

plicable to static linear models considered in the existing literature, which arise as special

cases; 2) The matrix A is compatible with the existing empirical applications that mainly

concern the semi-aggregated level networks with matrices A without zero elements (intri-

cate network) and the diagonal (resp. off-diagonal) elements representing the within (resp.

between) segment connections; 3) In our paper, matrix A is assumed to satisfy a factor de-

composition into non-negative factorial directions. To solve the partial identification issue,

we derive analytically the identified set and show that it can be locally parametrized. In

particular, the identified set is not defined from inequality moment restrictions, as it is com-

monly assumed in micro-econometric partial identification literature [see Chernozhukov et

al. (2007). Andrews, Soares (2010), Canay, Shaikh (2017) for the statistical approach to

this partial identification]. Instead, the Identifying Maximum Likelihood (IML) method is

introduced in this paper, allowing for sharp estimation of the identified set and of the rank

constrained matrix A.

The paper is organized as follows. In Section 2, we introduce the class of dynamic para-

metric models with interaction matrices of reduced rank. Section 3 discusses the identification

of a NMF of matrix A. Statistical inference is developed in Section 4. Section 5 presents

the link with the nonparametric approaches to partial identification. Section 6 concludes.
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The list of additional regularity assumptions for asymptotic statistical inference is given in

on-line appendices.

2 Parametric Model with Interaction Matrix

2.1 The model

We consider a set of observations Yt, t = 1, . . . , T , that can be scalars, vectors, or matrices.

We assume that (Yt) is a stationary Markov process and introduce a parametric model for the

conditional distribution of Yt given its lagged values, with a conditional probability density

function (p.d.f.) :

l(yt|yt−1) = l(yt|yt−1;A), (2.1)

where A is an unknown non-negative matrix A ≥ 0 of dimension (n,m), which has non-

negative entries.

We make the following assumption :

Assumption A.1 :

i) The parametric model is well-specified, with a true value A0 of matrix parameter A.

ii) The process (Yt) is strictly stationary, geometrically ergodic.

It is well-known that a nonnegative matrix A can be factorized as :

A = BC ′, (2.2)

where B (resp.C) have dimensions (n,K) [resp. (m,K)] and are nonnegative : B ≥ 0, C ≥ 0.

Among the multiple non-negative factorizations available, some correspond to a minimal

order K, called the nonnegative rank of matrix A and denoted by Rk+(A). The nonnegative

rank of A is always larger or equal to the rank of A.

A nonnegative matrix factorization (NMF) can be written under different equivalent

forms. Let βk, k = 1, . . . , K (resp. γk, k = 1, . . . , K) denote the columns of B (resp. C). We

have :

B = (β1, . . . , βK), C = (γ1, . . . , γK), (2.3)
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and then :

A =
K∑
k=1

βkγ
′
k with βk ≥ 0, γk ≥ 0,∀k. (2.4)

This provides a decomposition of A as the sum of K non-negative matrices of rank 1.

In structural models, we can be interested not only in the true value A0, but also in a true

NMF : B0C
′
0 =

K0∑
k=1

β0,kγ
′
0,k, that generates A0. We introduce the additional assumptions :

Assumption A.2 :

i) The nonnegative rank K0 = Rk+(A0) is known.

ii) The true matrix A0 is asymptotically identifiable, i.e. the optimization problem

maxAE0 log l(Yt|Yt−1;A) where the optimization is with respect to the set of nonnegative

matrices, has the unique solution A = A0.

iii) The vectors β0,k, γ0,k, k = 1, . . . , K, have strictly positive entries.

Remark 1 : The analysis of this paper is easily extended to parametric conditional

models including also observed exogenous variables Xt, or additional parameters θ, that is

to models of the type :

l(yt|yt−1, xt) = l(yt|yt−1, xt;A0, θ0),

in particular to dynamic panel models with covariates.

2.2 Examples

In general the NMF is applied without assuming a probabilistic structure and our objective is

to extend to NMF, what has been done for principal component analysis by Tipping, Bishop

(1999). The examples below show models that could be introduced for different types of

applications as facial recognition, epidemiology, or credit risk. These models have to account

for the nonnegativity of the observations Yt, usually encountered in practice.

2.2.1 Static model

The static models assume that observations Yt, t = 1, .., T are independent and identically

distributed (i.i.d.). These models are commonly used for image analysis [see Lee, Seung

(1999) for the first application to learning the parts of objects] under a non-probabilistic

approach. In this application, the observations are matrices Yt = (Yi,j,t), where (i, j) denote
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the coordinates of a point in picture t and the value Yi,j,t provides the pixel intensities

associated to coordinates i, j and picture t. The pixel intensity can be measured on either a

discrete, or continuous scale. Then, the considered model:

l(yt|yt−1;A) = Πn
i=1Π

m
j=1f(yi,j,t; ai,j), (2.5)

is based on a family of probability density functions (p.d.f.) f(y; a) with nonnegative ar-

gument y and nonnegative scalar parameter a. For the Poisson and exponential p.d.f., the

specification in (2.5) simplifies and leads to a generalized linear model (GLIM) [see McCul-

lagh, Nelder (1989) for GLIM and Collins et al. (2002) for its use for factor analysis].

In other applications, network matrices can be observed and analyzed by static models.

For instance, we can consider a set of individuals i = 1, . . . , L and observe at time t the

number yi,j,t of messages sent by individual i to individual j. The i.i.d observations yt can

also be matrices containing the investments of bank i in industrial sector j at time t , the

gravity matrices summarizing the international trades between countries [Chen et al. (2021),

Section 6], or the matrices representing the numbers of stocks of firms head-quartered in city

j, j = 1, . . . ,m and selected by mutual fund manager i, i = 1, . . . , n at time t [Hong, Xu

(2014)].

2.2.2 Panel of individual qualitative histories.

Let us consider a panel of L individuals. Each individual is characterized by a qualitative

state i = 1, . . . , n, that can be observed at any time t. The qualitative individual histories

can be quantified and represented by n-dimensional vectors (Yl,t, t = 1, . . . , T ), l = 1, . . . , L,

where Yl,t has entries that sum up to 1.

The dynamic model can be defined by assuming that :

i) the individual histories are independent;

ii) each individual history corresponds to a Markov chain with transition matrix A.

The above assumptions imply that the population of interest is homogeneous. Under these

assumptions the individual histories can be aggregated without a loss of information and

replaced by the counts of individuals in each state :

Yt =
L∑
l=1

Yl,t. (2.6)

Then the sequence of multivariate counts Yt is also a Markov process with the conditional
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p.d.f. obtained by considering the convoluate of different multinomial distributions :

l(yt|yt−1;A) = Πn
i=1li(yi,t|yi,t−1; ai), (2.7)

where li denotes the p.d.f. of the multinomial distribution M(yi,t−1; ai) and ai denotes the

ith-row of the transition matrix A.

In this example, we have replaced the individuals by homogeneous segments. For example,

the corporates can be replaced by industrial sectors, households by age categories, or animals

by species [Donnet, Robin (2021) and the references therein]. Then, the diagonal elements

of matrix A depict the interactions within a segment and the off-diagonal elements of A

represent the interactions between the segments. In general, the diagonal elements aii are

not equal to zero.

2.2.3 Dynamic model for a non-negative random vector

Let us consider a parametric model for a non-negative random vector l(y; θ), where y and

the parameter vector θ have equal dimension n, and both vectors y and θ are nonnegative.

Then, a dynamic model for (yt) can be defined as :

l(yt|yt−1;A) = l(yt;Ayt−1), (2.8)

where the contagion matrix A is of dimension (n, n) and nonnegative.

When the parametric model represents the dynamics of n independent Poisson variables,

we get a multivariate Poisson autoregressive model with :

l(yt|yt−1;A) = Πn
i=1

[
1

yit!
exp(−aiyt−1)(aiyt−1)yit

]
= Πn

i=1

(
1

yit!
(aiyt−1)

yit

)
exp(−e′Ayt−1), (2.9)

where ai is the ith row of matrix A and e is the vector with unitary elements.

This specification differs from an exponential specification:

yit|yt−1 ∼ P [exp(aiyt−1)],

considered in Chen et al. (2021), Example 3, and Section 6. This alternative specification

does not require matrix A to be nonnegative. However, while the dynamic of model (2.9) is

compatible with the stationarity of the process (yt), the above alternative approach of Chen

et al. (2021) leads to explosive trajectories due to the exponential transform.
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When the parametric model represents the dynamic of n independent exponential vari-

ables, we get a multivariate exponential autoregressive model:

l(yt|yt−1;A) = Πn
i=1 [(aiyt−1) exp(−aiyt−1yit)] . (2.10)

This dynamic model can be used to study the joint evolutions of the gross domestic product

in a set of L countries. Then, matrix A is unobserved and needs be estimated under some

mild constraints to provide a proxy of an international trading network.

Remark 2 : The dynamic specification (2.8) can be extended to :

l(yt|yt−1;A) = l(yt;Azt−1),

where zt−1 is a nonnegative vector function of yt−1. Such a transformation appears in struc-

tural models used in epidemiology and in other applications such as the analysis of cyber-

attacks [Fahrenwaldt et al. (2018), Hillairet, Lopez (2020)], adoption of a new technologies

[Brock, Durlauf (2010), Blume et al. (2011)] and the Susceptible-Infected-Recovery (SIR)

model with multiple transmissions where the components of y are the counts of infected indi-

viduals [resp. of the new adoptions of the product] in different segments of the populations.

In the SIR model, z is a quadratic function of y [see e.g. Gourieroux, Jasiak (2022)].

Remark 3: Some time series of observed networks can be available. They consists of

nonnegative matrices Yt that could be transformed into a series of nonnegative vectors by

considering yt = vec(Yt), to which the dynamic model (2.8) could be applied. However,

such a dynamic model would likely encounter the curse of dimensionality and the low rank

assumption on A, that is the NMF representation, would lose its main structural interpreta-

tion. The analysis of network dynamic is an emerging field. The modelling requires a precise

description of the network structure.

2.2.4 Contagion of defaults

The structural models of corporate defaults assume that a default arises when the liability

of a firm falls below its asset value. When only the defaults are observed, the individual

assets and liabilities are latent nonnegative variables which can be represented by a dynamic

network model (2.8):

l̃(zt|zt−1;A) = l̃(zt;Azt−1), (2.11)
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where zt has dimension 2L and L is the number of firms. The elements of zt represent the

assets and liabilities of firms. For example, z1lt, z2lt are the characteristics of firm l at date t.

The observed variables are the defaults, represented by vector yt of dimension L and defined

by :

ylt = 1, if z1lt > z2lt,= 0, otherwise. (2.12)

Equations (2.11) and (2.12) can be interpreted as a state space model. From the state

equation (2.11) and the measurement equation (2.12) it follows that the transition of the

observed variables is l(yt|yt−1;A), involving the complete histories of default of all firms.

All dynamic models given above have nonlinear dynamics due to the nonnegativity con-

straints on the values of observed variables. They are also nonlinear with respect to parameter

A. These nonlinear features distinguish the class of models considered in this paper from the

major part of literature on networks in econometrics. 3.

The identification in this extended class of models eliminates the use of powers of matrix

A. Indeed, matrices A,A2, A3 no longer play a special role, as the conditional distribution of

yt given yt−h does not necessarily depend on A through Ah only [see e.g. de Paula (2017) p

272 for a discussion]. In fact all information on A is captured by the lag 1 of variables in the

likelihood function.

Moreover, the response of a nonlinear dynamic system to a shock at date t depends on the

current environment of yt. The size of the shock effect depends on the environment, so that

even a small shock can have a large impact. This has important consequences concerning

the treatment of small values of the elements aij of matrix A. More precisely, even if aij is

small, this element should not to be set equal to zero artificially, by applying, for example,

an automatic LASSO penalty [see e.g de Paula et al. (2020) p. 285-286]. Especially when

the dynamic system is close to a tipping point, a small connection can become the source of

a significant change in the system, as observed in the histories of corporate defaults, chains

of business failures, or inter-bank liquidity shortages.

3”Identification and measurement of network phenomena has drawn attention in fields as diverse as
macroeconomics, finance not discussed in the review” [De Paula (2017)]. These other fields with nonlin-
ear dynamic models are also left out of the recent survey on partial identification by Kline, Tamer (2022).
The nonlinear dynamic models in our paper are introduced for application to these other fields that also
include ecological economy, monetary economy and epidemiology.
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2.3 Latent Heterogeneity and Ranking

2.3.1 Alternative parametrization

The NMF (2.4) can be normalized and written alternatively as :

A = a
K∑
k=1

πkβ
∗
kγ
∗′
k , (2.13)

where a = e′Ae = ΣiΣjai,j > 0, πk ≥ 0, k = 1, . . . , K, with
K∑
k=1

πk = 1, β∗k ≥ 0, γ∗k ≥ 0, k =

1, . . . , K with : β∗
′

k e = γ∗
′

k e = 1, k = 1, . . . , K.

In this decomposition π = (π1, . . . , πK)′, β∗k , γ
∗
k, k = 1, . . . , K can be interpreted as discrete

probability distributions. More precisely, the normalised matrix A/a can be interpreted as a

joint probability distribution, and its decomposition
K∑
k=1

πkβ
∗
kγ
∗′
k as a mixture of independent

joint distributions. In this respect, our analysis is linked to the literature on partial identi-

fication of finite mixtures [see e.g. Hall, Zhou (2003), Kasahara, Shimotsu (2009), Henry et

al. (2014) and Section 5]. When K = 1, the NMF becomes : A = aβ∗1γ
∗′
1 .

The representation (2.13) solves the identification issue due to the identification of facto-

rial directions up to positive scalars. It also allows to bound the set of NMF’s written under

this form.

2.3.2 Rankings

To motivate the alternative parametrization (2.13), let us consider a dynamic model of count

variables for epidemiology. The dynamic contagion model (2.8) can be considered, where the

components of yt are the counts of infected individuals in L homogenous segments of the

population. In addition, let us assume that 4 :

Et−1yt = Ayt−1. (2.14)

If K = 1, we get : Et−1yt = aβ∗1γ
∗′
1 yt−1, or equivalently :

Et−1yi,t =
L∑
j=1

aijyj,t−1 = aβ∗1i

L∑
j=1

γ∗1jyj,t−1. (2.15)

4This constraint on the conditional mean implies yt = Ayt−1 + ut, where ut is a martingale difference
sequence with Et−1(ut) = 0. It does not imply a linear dynamic model : yt = Ayt−1 + ut, where ut is a
strong (i.i.d.) white noise. Hence, it is inadequate for the analysis of nonlinear shock effects, i.e. nonlinear
impulse response functions.
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The contagion parameters aij can be decomposed as: aij = aβ∗1iγ
∗
1j, where a is a global

contagion effect, β∗1i an index of vulnerability of segment i to the infection and γ∗1j a measure

of viral load of segment j. 5 Therefore the segments i = 1, . . . , L can be ranked with respect

to their vulnerability β∗1i and their infectiosity γ∗1i.

When K is larger or equal to 2, a latent heterogeneity of segments arises with hetero-

geneity distribution π. Then, the segments can be ranked with respect to different notions

of vulnerabilities, i.e. the β∗ki, k = 1, . . . , K, and infectiosity, i.e. the γ∗k,i, k = 1, . . . , K.

The potential interpretations of parameters β∗, γ∗, π depend on the application of interest

as shown below.

Example 1 : In the analysis of internet diffusion of messages (see Section 2.2.1), pa-

rameters β∗ (resp. γ∗) can be used for ranking of receivers and senders, or followers and

influencers, in trade networks for ranking the importers and exporters, in citation networks

for ranking the citees and citors.

3 Identification of the Nonnegative Factorization

The true NMF is not point-identified. This section discusses the identification issues and

derives the identified set for small nonnegative ranks.

3.1 The general framework

The parametric model depends on the nonnegative matrix factorization :

A = BC ′ = (β1, . . . , βK)(γ1, . . . , γK)′ =
K∑
k=1

βkγ
′
k,

where K denotes the nonnegative rank and βk, γ
′
ks are the factorial directions. In practice, the

structural parameters are K, βk, γk, k = 1, . . . , K, and there exists a large body of literature

on the lack of identification of these parameters for a given matrix A.

It is easy to see that the factorization is not unique because the same matrix A is ob-

tained from a permutation of index k and rescaling by a positive scalar, i.e. by replacing

5The decomposition of aij is multiplicative, while an additive decomposition: aij = α̃ + β̃i + γ̃j , is used
in the panel literature with two-ways fixed effects [see e.g. the running examples in Fernandez-Val, Weidner
(2016) for probit and Poisson models]. In our framework it is not possible to transform the multiplicative
form into an additive one by taking the logarithms of aij , β

∗
1i, γ

∗
1j , as there can exist individuals with zero

value of β∗1 , such as the vaccinated or naturally immunized individuals. From the identification perspective,
these zero values can be informative and should not be disregarded. Moreover, as noted in Chen et al. (2021),
such interactive effects can capture network features as homophily and clustering.
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βk, γk by σkβk, γk/σk for a positive scalar σk. This identification issue is easily solved by a

normalization [a free normalization in the terminology of Lewbel (2019), Section 6.3]. The

more complicated identification issues that arise when K ≥ 2 are discussed below under the

following assumption :

Assumption A.3 : The nonnegative rank of matrix A is equal to the rank of A.

This assumption is not very stringent, even though some examples of nonnegative ma-

trices with Rk+(A) > Rk(A) have been given in the literature. It is useful to describe and

parametrize the set of admissible NMF’s when Rk+(A) = Rk(A).

Assumption A.3 can be written under different equivalent forms :

Assumption A.3 is satisfied

⇐⇒ the vectors β1, . . . , βK are linearly independent and

the vectors γ1, . . . , γK are linearly independent

⇐⇒ B′B and C ′C are invertible. 6

Assumption A.3 implies that the matrices βkγ
′
l, k, l = 1, . . . , K are linearly independent as

shown in Lemma 1 below :

Lemma 1 : Under Assumption A.3, B∆C ′ = 0⇒ ∆ = 0.

Proof : Indeed B∆C ′ = 0 implies B′B∆C ′C = 0, and then ∆ = 0, since B′B and C ′C

are invertible.

QED

Under assumptions A.1-A.3, the nonnegative rank is known as well as the rank of A0.

Let us first consider another factorization of matrix A without taking into account the non-

negativity conditions on βk, γ
′
ks. Since the range of A (resp. A′) is the space spanned by

β1, . . . , βK (resp. by γ1, . . . , γK), an alternative factorization is :

A = B G H ′C ′ = B∗C∗
′
,

where B∗ = B G,C∗ = C H and G, H are invertible matrices 7. Moreover, we have :

6The NMF representation is different from the Singular Value Decomposition (SVD) of matrix A. In SVD
the identification issue is usually solved by introducing the orthonormality restriction B′B = C ′C = Id.
Orthogonality is not possible in our framework since β′kβl is always nonnegative. Then the orthogonality
condition would imply βikβil = 0,∀i and contradict assumption A.1.

7The columns of B and the columns of B∗ are two bases of the range of AA′ equal to the range of A.
Therefore they satisfy a one-to-one relationship represented by an invertible matrix G.
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B G H ′ C ′ = B C ′,

and by Lemma 1 we deduce that H ′ = G−1. Therefore we get :

B∗ = BG,C∗ = C(G′)−1.

In addition, because of the definition of factors up to the permutation and (signed) scale

effects, we can choose G of the type :

G = Q diag σ, (3.1)

where σ = (σk), σk > 0, and Q a (K,K) matrix with diagonal elements equal to 1. Then,

(G′)−1 = (Q′)−1 diag (1/σ).

Then, by taking into account the nonnegativity conditions, we get a constructive charac-

terization of the identified set :

Proposition 1 : For a specific factorization of matrix A0 : A0 = B0C
′
0, B0 ≥ 0, C0 ≥ 0

(referred to as a specific element of the identified set), all observationally equivalent nonneg-

ative factorizations are such that :

B∗ = B0Q diag σ, C∗ = C0(Q
′)−1 diag (1/σ), σk > 0, ∀k = 1, . . . , K,

where the matrix Q is invertible, with unitary diagonal elements and such that :

B0Q ≥ 0, C0(Q
′)−1 ≥ 0.

The nonnegative factorization is said to be essentially unique, or simply unique [see Lau-

rberg et al. (2008)], ifQ = Id is the only solution to the set of inequalities given in Proposition

1.

3.2 Special Cases

3.2.1 Case K = Rk+(A) = 1

When K = 1, A = β1γ
′
1, Q = (q11) = (1), the nonnegative factorization is essentially unique,

i.e. the NMF is (essentially) point identified. Moreover, we note that :

Aβ1 = β1(γ
′
1β1), A

′γ1 = γ1(β
′
1γ1).
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It follows that β1 (resp. γ1) is an eigenvector of A (resp. A′) associated with the eigenvalue

γ′1β1 = β′1γ1, which is strictly positive. By the Perron-Froebenius Theorem [see Meyer (2000)]

the nonnegative matrix A (resp. A′) has a unique eigenspace of dimension 1 generated by a

nonnegative eigenvector, here β1 (resp. γ1)
8.

3.2.2 Case K = Rk+(A) = 2

For K = 2, we get Q =

(
1 q12
q21 1

)
, and

(Q′)−1 =
1

1− q12q21

(
1 −q21
−q12 1

)
.

Without the subscript 0 for the ”specific factorization of true matrix”, the inequality restric-

tions in Proposition 1 become :



β1,j + q21β2,j ≥ 0, j = 1, . . . , n, q12β1,j + β2,j ≥ 0, j = 1, . . . , n,

1

1− q12q21
(γ1,j − q12γ2,j) ≥ 0, j = 1, . . . ,m,

1

1− q12q12
(−q21γ1,j + γ2,j) ≥ 0,

j = 1, . . . ,m.

It is easy to check that these inequalities imply 1 − q12q21 > 0. This inequality is in partic-

ular satisfied when we focus our attention on the local identification in a neighbourhood of

(β1, β2), (γ1, γ2), i.e. in a neighbourhood of q12 = q21 = 0. Then, the system of inequalities is

equivalent to :


β1,j + q21β2,j ≥ 0,∀j, with β2,j > 0, −q21γ1,j + γ2,j ≥ 0, ∀j, with γ1,j > 0,

q12β1,j + β2,j ≥ 0, ∀j, with β1,j > 0, γ1,j − q12γ2,j ≥ 0,∀j, with γ2,j > 0.

or 
q21 ≥ supj:β2,j>0(−β1,j/β2,j), q12 ≤ infj:γ1,j>0(γ2,j/γ1,j),

q12 ≥ supj:β1,j>0(−β2,j/β1,j), q21 ≤ infj:γ2,j>0(γ1,j/γ2,j).

We deduce the following result :

8It is easy to check that β1 (resp. γ1) is also an eigenvector of AA′(resp. A′A). Therefore they are
elements of a singular value decomposition (SVD) (see Remark 3 in Section 4.1). Such a model is largely
applied in the network literature with adjacency matrix, where the leading left and right eigenvectors of the
SVD are used to define the ”so-called” hub and authority centralities, respectively [see Cai et al. (2022) and
the references therein].
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Proposition 2 : For K = Rk+(A) = 2, the admissible matrices

Q =

(
1 q12
q21 1

)
are such that :

− infj:β2,j>0(β1,j/β2,j) ≤ q21 ≤ infj:γ1,j>0(γ2,j/γ1,j),

− infj:β1,j>0(β2,j/β1,j) ≤ q12 ≤ infj:γ2,j>0(γ1,j/γ2,j).

Therefore, among the 2(n + m) inequality restrictions in Proposition 1, only four are active

and the remaining ones are redundant.

We deduce the necessary and sufficient exclusion conditions for essential uniqueness [see

e.g. Brie (2015)].

Corollary 1 : Under Assumption A.3 and for K = Rk+(A) = 2, the nonnegative

factorization is essentially unique if and only if there exists at least one index j1 such that

β1,j1 = 0, β2,j1 > 0, one index j2 such that β1,j2 > 0, β2,j2 = 0, one index j3 such that

γ1,j3 = 0, γ2,j3 > 0 and one index j4 such that γ1,j4 > 0, γ2,j4 = 0.

Without the ”exclusion” restrictions of Corollary 1 and in particular under Assumption

A.2 iii), there exists a multiplicity of admissible nonnegative factorizations that are easily

deduced from one of them. This is the case we are interested in.

Let us now discuss the degree of underidentification. Since the identification issue due to

the product of factorial directions by nonnegative scalars is solved in representation (2.13),

we can focus on the identification of πk, β
∗
k , γ

∗
k, k = 1, 2. For K=2, the decomposition (2.13)

after transformation a is:

A = a[π̃1β̃
∗
1 γ̃
∗′
1 + π̃2β̃

∗
2 γ̃
∗′
2 ].

It is easy to check (see online Appendix 1) that :

β̃∗1 = p1β
∗
1 + (1− p1)β∗2 , with p1 = β′1e/(β

′
1e+ q21β

′
2e),

β̃∗2 = p2β
∗
1 + (1− p2)β∗2 , with p2 = q12β

′
1e/(q12β

′
1e+ β′2e),

γ̃∗1 = p3γ
∗
1 + (1− p3)γ∗2 , with p3 = γ′1e/(γ

′
1e− q12γ′2e),

γ̃∗2 = p4γ
∗
1 + (1− p4)γ∗2 , with p4 = −q21γ′1e/(q21γ′1e− γ′2e),

and

π̃1/π̃2 = (β′1e+ q21β
′
2e)(γ

′
1e− q12γ′2e)/(q12β′1e+ β′2e)(−q21γ′1e+ γ′2e).
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Corollary 2 : For Rk(A) = Rk+(A) = 2, the components πk, β
∗
k , γ

∗
k, k = 1, 2 are not

identifiable, with a degree of underidentification equal to 2.

The set of admissible decompositions (2.13) is described by means of q12, q21. The condi-

tions on q12, q21 derived in Proposition 2 remain valid when β, γ are replaced by β∗, γ∗.

3.2.3 General Case

For K = 2, the identified set is described by two parameters q12, q21 satisfying 2(m + n)

inequality restrictions. These restrictions are linear and Proposition 2 shows that only 4 of

them are active.

In the general case, the identified set is parametrized by K(K − 1) parameters that are

the off-diagonal elements of matrix Q. Therefore it defines a manifold of fixed dimension.

These parameters satisfy K(n + m) inequality restrictions by Proposition 1. The degree

of underidentification increases rather quickly with the nonnegative rank and the subset of

active restrictions cannot be derived analytically. To determine these restrictions providing a

simplified definition of the identified set, numerical algorithms are needed such as Active Set

Sequential Quadratic Programming algorithms, some of them being available from Artelys

Knitro.

A similar problem arises in sharp set identification for discrete choice models and treat-

ment effects analysis. The main difference is 9 that those inequality restrictions are linear as

for K = 2 in Section 3.2.2.10, while in our framework they are nonlinear when K ≥ 3. Indeed,

for K = 3, we get : Q =

 1 q12 q13
q21 1 q23
q31 q32 1

 and, up to the determinant, matrix (Q′)−1 has

cofactor elements, such as 1 − q23q32 for instance, that are quadratic in Q (more generally,

they are polynomials of degree less or equal to K − 1). Moreover, it is easy to see that the

identified set is not convex.

4 Statistical Inference

A major challenge for statistical inference is the lack of identification of the true NMF.

This identification issue can be addressed either by introducing identification restrictions

and applying the standard maximum likelihood approach, or by estimating the set of all

identifiable NMF directly. These two approaches are linked. For example, the set of all

9Another difference is the parametric assumption being used in our framework and nonparametric methods
being used in the existing literature (see Section 5).

10See, the linear moment functions defining the inequalities in Chernozhukov et al. (2007), Section 2.1.
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identifiable NMF’s can be deduced from one of them, as shown in Section 3.3.2 for Rk+(A) =

2. Therefore, we can first identify one NMF and next deduce all the remaining ones from the

identified one.

In this respect the identified set described in Proposition 1 has the general form 11 con-

sidered in Shi, Shum (2015) eq. (1.1)-(1.2). However, their results can only be used if this

specific NMF is well-defined and has a consistent and asymptotically normally distributed

estimator. These are the points considered in this section.

The proposed method proceeds as follows: 1) We show the convergence of the set of

maximum likelihood estimators of B,C to the identified set; 2) For a fixed number of obser-

vations, a multiplicity of ML estimators is obtained. Therefore, we introduce an alternating

ML algorithm to fix the selected ML estimator for any T . This sequence of alternating ML

estimators is well-defined, it converges to the identified set, but not pointwise to a given

element of this set; 3) Next, we fix a benchmark in the identified set, which is the solution of

an auxiliary optimization. That objective function is optimized with respect to an alterna-

tive parametrization in (a, π, β∗, γ∗). This step provides a consistent estimator of a specific

element of the identified set.

The proposed method, called the identifying maximum likelihood (IML) approach is used

to estimate the identified set. We derive its asymptotic distributional properties and show

how to estimate the identified set and analyze its key properties. In addition, we derive

the ML estimator of matrix A under a given nonegative rank constraint and the associated

efficiency bound.

The approach is feasible because of the properties of the maximum likelihood estimator

reviewed below.

4.1 The ML approach

4.1.1 Consistency

Let us assume that the network model is well-specified and the true transition is :

l(yt|yt−1;A0) = l(yt|yt−1;B0C
′
0), (4.1)

with a nonnegative rank K0 of matrix A0 assumed to be known. We consider a constrained

11up to the introduction of nuisance slackness parameters [Shi, Shum (2015), Remark p. 497].
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ML maximization, providing:

(B̂T , ĈT ) = arg max
B≥0,C≥0

T∑
t=1

log l(yt|yt−1;BC ′). (4.2)

Due to the identification issue, there exists a large multiplicity of solutions to the finite

sample optimization (4.2). Under additional standard regularity conditions given in online

Appendix 2, we can derive a consistency property of the above set of ML estimators.

Proposition 3 : Under Assumptions A.1-A.3 and a.1 in Appendix 2, the set of ML

estimators (B̂T , ĈT ) converges to the set A0 of NMF associated with A0 = B0C
′
0, when T

tends to infinity.

More precisely, let d(., .) denote the Euclidean distance on IRK(n+m), NMF0 = {(B,C), B ≥
0, C ≥ 0, with BC ′ = B0C

′
0}, and D[(B̂T , ĈT ), NMF0] = min(B,C)∈NMF0 d[(B̂T , ĈT ), (B,C)],

then D[(B̂T , ĈT ), NMF0] tends to zero, when T tends to infinity. Under the regularity con-

ditions, this convergence is uniform in (B̂T , ĈT ). It will also imply the convergence to this

set of the well-defined alternating ML estimator introduced in the next section.

Thus, the (B̂T , ĈT ) does not necessarily converge to the true factorization B0, C0 due to

the identification issue, but for a large T, (B̂T , ĈT ) is close to another admissible NMF that

can depend on T .

4.1.2 Alternating ML (AML) Algorithm

A ML estimator does not always have a closed-form. Hence, in practice it is computed nu-

merically from an algorithm, such as a Newton-Raphson type of algorithm. In our framework

of partial identification, a Newton-Raphson type of algorithm cannot be used jointly for B

and C. The reason is that each iteration requires the inversion of a Hessian matrix that is

not invertible due to the identification issue. The AML algorithm solves this issue.

In the presence of a multiplicity of NMFs, we apply an alternating AML algorithm

[Gourieroux, Monfort, Renault (1990), Kim, Park (2007)]. We observe that, even if the

factorization B,C is not identifiable, B (resp. C) is identifiable when C is known (resp. B is

known). This leads to the following alternating AML algorithm, where at step p, B̂p,T , ĈpT

is computed and then B̂p+1,T , Ĉp+1,T are obtained as follows:
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B̂p+1,T = arg max
B≥0

T∑
t=1

log l(yt|yt−1;BĈ ′p,T ), (4.3)

Ĉp+1,T = arg max
C≥0

T∑
t=1

log l(yt|yt−1; B̂p+1,TC
′). (4.4)

By construction, this algorithm produces at each iteration p a higher value of the log-

likelihood function than at iteration p− 1.

We have to distinguish the ML estimator from the alternating ML estimator obtained from

the algorithm (4.3)-(4.4). As mentioned earlier, when some parameters are not identifiable

there is a multiplicity of ML estimators. However, there is a unique sequence of alternating

AML estimators for the given starting values, even though the AML algorithm does not

necessarily numerically converge pointwise, due to the identification issue.

4.2 Nonnegative rank K0 = Rk+(A0) = 1

As pointed out in Section 3.2.1, the NMF is essentially unique for K0 = 1. This assumption

K0 = 1 greatly simplifies the estimation and explains its use in applied econometrics [see e.g.

Cai et al. (2022)]. Because the ML estimator is unique in this case, it can be computed from

a standard Newton-Raphson algorithm.

We introduce the identification restrictions: A = aβγ′, with a > 0, β ≥ 0, γ ≥ 0 and

β′e = γ′e = 1. Let us now consider the dynamic model described in Section 2.2.3. and based

on the latent parametric model l(y; θ), where θ is replaced by Ayt−1 [see, Section 2.2.3]. We

get :

l(yt|yt−1;A) = l(yt; aβγ
′yt−1). (4.5)

The partial derivatives of the log-likelihood with respect to a, β, γ are easily derived from the

partial derivatives of the latent log-likelihood with respect to θ. We have :

∂ log l

∂β
(yt|yt−1;A) = aγ′yt−1

∂ log l

∂θ
(yt; aβγ

′yt−1),

∂ log l

∂γ
(yt|yt−1;A) = ayt−1β

′∂ log l

∂θ
(yt; aβγ

′yt−1),

∂ log l

∂a
(yt|yt−1;A) = γ′yt−1β

′∂ log l

∂θ
(yt; aβγ

′yt−1).

(4.6)
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The asymptotic properties, especially the asymptotic distribution of the ML estimators of

a, β, γ, depend on the location of the true vectors β0, γ0. These properties are straightforward

under the assumption A.2 iii) below.

Positivity Assumption A.2 iii): The entries of β0 and γ0 are strictly positive.

Under this positivity assumption, the non-negativity-constrained ML estimators have

asymptotically strictly positive entries, and the unconstrained and non-negativity constrained

estimators are asymptotically equivalent. However, the ML estimator has to account for the

linear constraint of unit sum. This estimator without the non-negativity restrictions is defined

as :

(â, β̂, γ̂) = arg maxa,β,γ

T∑
t=1

log l(yt; aβγ
′yt−1),

s.t : β′e = γ′e = 1.

The first-order conditions for the Lagrange multipliers associated with the linear restrictions

and denoted by λ, µ , are :

T∑
t=1

[aγ′yt−1
∂ log l

∂θ
(yt; aβγ

′yt−1)]− λ = 0,

T∑
t=1

[ayt−1β
′∂ log l

∂θ
(yt; aβγ

′yt−1)]− µ = 0,

T∑
t=1

[γ′yt−1β
′∂ log l

∂θ
(yt; aβγ

′yt−1)] = 0,

β′e = γ′e = 1.

The FOC need to be solved in a, β, γ, λ, µ.

Asymptotically, when T tends to infinity, we get consistent and asymptotically normal

ML estimators of B and C. Their asymptotic variance-covariance matrix has a standard

form [see Gourieroux, Monfort (1995), Section 10.3] and its estimate can be computed by

standard software.

Remark 4: As pointed out in Section 3.2.1, β1 (resp. γ1) can be interpreted as an

eigenvector of A (resp. A′). It is easy to check that β1 (resp. γ1) is an eigenvector of AA′
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(resp. A′A). This implies that A = β1γ
′
1 is a singular value decomposition (SVD) of matrix

A, for which statistical inference is available mainly in a Gaussian framework [Anderson,

Rubin (1956), Anderson (1963), Tipping, Bishop (1999)].

However, for Rk(A0) = Rk+(A0) = 1, the SVD estimation method is not relevant, as its

standard asymptotic properties do not account for the non-negativity of the data and the

non-negativity of matrix A0. Moreover, the SVD interpretation of the NMF is no longer

valid for Rk+(A0) ≥ 2. Indeed, matrix AA′ (resp. A′A) is also non-negative, and, except the

Perron, Froebenius eigenvector β1 of AA′, all other eigenvectors β2, β3 must have at least one

negative, or non-real component.

4.3 Nonnegative rank K0 = Rk+(A0) ≥ 2.

As mentioned in Section 3.2.3, it is sufficient to estimate one of the admissible NMF’s to

deduce the sharp identified set. The problem with applying the AML method is that the

convergence of the AML estimator to the identifed set does not imply its convergence to a

given NMF.

This section shows how an IML algorithm can solve this issue, allowing us to derive the

asymptotic distribution of the set of admissible NMF’s. For expository purpose, we provide

in the text the assumptions specific to our problem. The additional assumptions needed for

asymptotic analysis are given in online Appendix 2.

4.3.1 Consistency of the alternating ML estimator

In this section we consider the consistency of the AML approximation to the identified set

when T tends to infinity and the number of iterations pT in the AML algorithm depends on

T in a suitable manner.

Let us consider the dynamic model :

l(yt|yt−1;A) = l(yt; a
K∑
k=1

πkβ
∗
kγ
∗′
k yt−1), (4.7)

with β∗
′

k e = γ∗
′

k e = 1, k = 1, . . . , K, π′e = 1 and the identified set:

A0 = {a, πk, β∗k , γ∗k, k = 1, . . . , K, such that a
K∑
k=1

πkβ
∗
kγ
∗′
k = Ao}.

where A0 is the true value of A.
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Section 2.2 shows that the underlying parametric families l(y; θ), θ ≥ 0, are often con-

structed from the products of Poisson, or exponential distributions. Therefore, they satisfy

the following assumption :

Assumption A.4 : The underlying log-likelihood log l(y; θ) is concave in θ, θ ≥ 0.

Under Assumption A.4 and for any value of the number of observations T , each step of

the AML algorithm outlined in Section 4.1.2 leads to a unique solution in (B,C), because

the objective function is log-concave in B (resp. C) for a given C (resp. B), and also under

the alternative parametrization (πk, β
∗
k , γ

∗
k, k = 1, . . . , K). Therefore, the AML estimator is

a function of the underlying (normalized) log-likelihood
1

T
LT (.) =

1

T

T∑
t=1

log l(yt; .), and of

the initial values used in the algorithm (and of the number of iterations p). Let the set of

parameters be denoted by α = (πk, β
∗
k , γ

∗
k, k = 1, . . . , K) and the selected initial value by αo.

The AML estimator at iteration p can be written as :

α̂T (αo, p) = m(
1

T
LT (.);αo, p), (4.8)

where m is a deterministic function. Then, for large T , the AML estimator will converge

asymptotically to the value :

α∞(αo, p) = m[E0 log l(Yt;A0);α
o, p], (4.9)

that belongs in the set A0 if p is large. Note, that this limiting value can depend on the

initial value α0 used in the algorithm.

More precisely, under Assumptions A.1-A.4 and the additional regularity conditions a.1 given

in online Appendix 2, we have the following proposition that is a direct consequence of the

numerical consistency of the AML approximation (for p→∞ and T fixed) and of the uniform

convergence in Proposition 3 :

Proposition 4: For large T , there exist a function c(.) and a number of iterations pT

such that, for any p ≥ pT :

D[αT (αo, p),Ao] < c(αo)/T,

where D measures the distance between αT (αo, p) and the set Ao.

In practice, we can apply the AML algorithm with a given starting value αo and a number of
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iterations p. The number p needs to be set sufficiently large for Proposition 4 to be satisfied.

Then, the asymptotic bias of the alternating ML estimator will be sufficiently small to be

negligible in the asymptotic distribution of the IML estimator derived later in the text.

Moreover, two optimizations are performed at each step of the algorithm, with respect to

B and C, respectively. A Newton-Raphson type of algorithm can be used in each of these

optimizations. Under the log-concavity assumption A.4, the Newton-Ralphson algorithm is

a special case of the steepest ascent algorithm, which increases the objective function at each

step. As the increase of the objective function at each step of the algorithm is ensured, the

IML with a fixed number of iterations for the intermediate optimization will also increase

the objective function, that is sufficient for the numerical consistency of the AML algorithm

under Assumption A.4.

It follows from Proposition 1 that all other elements of A0 are functions of α∞(αo; p) and the

elements of a matrix Q with unitary diagonal elements are such that :

B[α∞(αo, p)]Q ≥ 0, C[α∞(αo, p)][Q′]−1 ≥ 0.

This defines a set Q[α∞(αo, p)] of admissible values of transformation Q.

Equivalently, we have a parametric representation of the identified set A0 of NMF’s :

A0 = {α : α = ξ[α∞(αo, p), Q], Q ∈ Q[α∞(αo, p)]}, (4.10)

where ξ is a known function.

Then, the set A0 is consistently estimated as:

ÂT = {α : α = ξ[α̂T (αo, p), Q], Q ∈ Q[α̂T (αo, p)] ≡ Q̂T (αo, p)}. (4.11)

The estimation method presented above will allow us to approximate a possibly p-

dependent element of the identified set for a sufficiently large p .

Proposition 4 implies that the above AML estimator is a maximizer of the log-likelihood

function. This AML estimator can be used to derive a Monte Carlo confidence set for the

identified set based on a quasi-likelihood ratio with the quantiles computed by simulations

[see, Chen, Christensen, Tamer (2018), Remark 1, p. 1972]. In our framework, the chosen

quasi-prior distribution would need to ensure the existence of the log-likelihood function. For

example, it has to satisfy the non-negativity restrictions on matrix A in a Poisson autoregres-

sive model. Moreover, the generic form of the estimated confidence set, i.e. {A : LT (A) ≥ ξ},
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where LT denotes the log-likelihood and ξ is the estimated quantile, is hard to determine

unless the appropriate parametrization given in Proposition 1 is used.

Our objective is to find a consistent ML estimator of the identified set, derive the asymp-

totic distribution of the estimated identified set and an asymptotic confidence set for the

identified set. We will also find the rank-constrained ML estimator of A that maximizes

the log-likelihood function under the constraint A = BC ′, and the associated asymptotic

efficiency bound.

Because of the lack of identification, we do not have the numerical stability of α̂T (α0, p),

for large p. Therefore, we cannot expect to prove any asymptotic normality of this AML

estimator. In order to stabilize the algorithm, we include an additional optimization step.

4.3.2 How to introduce an identification restriction by Identifying Maximum
Likelihood

An identification issue is commonly solved either by introducing implicit identification restric-

tions, or by reparametrizing the model and dividing the parameters into the set of identifiable

and non identifiable parameters in an appropriate way (this is the ”global” reduced form

reparametrization considered in Shi, Shum (2015) and Chen et al. (2018), Section 5.1.1).

These approaches are not suitable for our framework, where the parametrization of the iden-

tified set depends on a selected element of A0. Hence, we introduce indirectly K(K − 1)

identification restrictions.

Let us consider an alternative parametrization method. When a specific element of the

identified set is known, the identifiable set is parametrized by vec∗Q = q, where vec∗Q denote

the stacked elements of Q except for the diagonal elements equal to 1. This parametrization

cannot be used, as long as that specific element is unknown. However, when a specific element

α̃ say, is given, it defines a new origin and then a new parametrization by q of the identifiable

set is obtained.

Let us now determine a benchmark α∗0. We define a benchmark element of the identified

set as the optimizer of an additional criterion with respect to the additional parameter q.

Two criteria g̃(q, α̃) = g(α), where α ∈ A0 arise naturally :

i) The concentration of a discrete probability distribution is usually measured by
K∑
k=1

(πk log πk).

This quantity is negative, it is minimized for πk = 1/K, ∀k, that is a uniform distribution,

and it increases to zero with the concentration of the distribution. Therefore, we can choose

as the benchmark specific element, the factorization providing the most concentrated latent
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heterogeneity defined by :

α∗0 = arg max
α∈A0

K∑
k=1

(πk log πk).

ii) An alternative criterion is :

g(α) = det(B̃′B̃), where B̃ = (β∗1 , . . . , β
∗
K),

or g(α) = det(C̃ ′C̃), where C̃ = (γ∗1 , . . . , γ
∗
K).

The above criterion measures the volume of the parallelepiped generated by the columns

of B̃ (resp. C̃) [see e.g. Barth (1999)]. The larger this volume, the less ”colinear” the columns

of B̃ (resp. C̃). 12 These criteria could be used jointly.

To proceed with the algorithm-based identification of the benchmark α∗0 by means of this

additional optimization, an additional step needs to be included in the AML algorithm.13

Let the recursive system in this algorithm be denoted by:

α(p+1) = H(α(p)),

where H depends on the observations.

Then, the identifying maximum likelihood (IML) algorithm is the following :

step 1: Select an initial value α(0).

step p : At step p, a value α(p) is available.

i) Apply the AML algorithm to get a value α̃(p+1) = H(α(p)).

This value is considered as an approximation of a point in the identifiable set.

It can be used to parametrize the set Â(p) by q.

ii) Perform the optimisation of the additional criterion to get :

q(p+1) = Optq∈Q(p+1) g̃(q; α̃(p+1)),

where Q(p+1) is the domain defined by the inequality restrictions applied with α̃(p+1). Then

the solution is a function of α̃(p+1), that is : q(p+1) = q(α̃(p+1)), say, where q(.) does not

depend on the observations.

12These criteria are the analogues of the identification restrictions introduced for SVD: B′B = C ′C = Id,
where all factorial directions are orthonormal.

13This additional step is the analogue of step 2 in the estimation approach introduced in Davezies et al.
(2022), Section 3.1., where it is applied to an approximate identified set instead of the identified set itself.
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iii) Find α(p+1) by transforming α̃(p+1) with a linear transformation Q(p+1) associated with

q(p+1), including this choice of decreasing ordering of index to get π
(p+1)
k . More precisely:

compute Q(p+1) such that q(p+ 1) = vec∗Q(p+1),

compute B̃(p+1), C̃(p+1) from α̃(p+1)

compute B(p+1) = B̃(p+1)Q(p+1), C(p+1) = C̃(p+1)[Q(p+1)′ ]−1

compute α(p+1) from B(p+1), C(p+1), etc.

The main difference between the AML and IML algorithms concerns the consistency. The

AML converges to the set A0, but the convergence is not pointwise. The IML converges to

the given α∗0 that allows us to perform a Taylor expansion of the first-order conditions in

order to derive the asymptotic normality as in Shi, Shum (2015).

The IML method requires the availability of algorithms for the optimization of nonlinear

functions under a large number of nonlinear inequality restrictions. The recent developments

in Active Set Sequential Quadratic Programming (SQP) have largely solved this problem

[see e.g. Gill et al. (2002), Nocedal, Wright (2006), and Liu (2005) for a proof of numerical

convergence].

Remark 5: The additional intermediate optimization in the IML algorithm does not

necessarily have to be introduced starting from the first iteration p = 1. It can be introduced

later, when p is sufficiently large to get a value close to the identified set, by Proposition 4.

In this respect, the IML is used to stabilize pointwise the values obtained from a standard

AML algorithm.

4.3.3 Asymptotic distributions

The benchmark α∗0 can be either in the interior of the identifiable set, or on its boundary.

The asymptotic normality cannot be expected in the latter case, but standard asymptotic

arguments can be used to derive the asymptotic normality of the IML estimator adjusted to

reach α∗0, if α∗0 is in the interior of A0 and the associated π∗0k are all distinct 14.

To clarify the role of the intermediate optimization in the IML algorithm, let us first

consider the standard information matrices. Two matrices appear naturally15 :

i) The unconstrained information based on A, is:

14This additional condition is analogous to the condition of distinct eigenvalues in the joint spectral de-
composition of AA′ and A′A in the standard SVD.

15For expository purpose, we keep the same notation l for the conditional likelihood as a function of A, or
a function of α.
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E0

[
−∂

2 log l(yt|yt−1;A)

∂ vec A ∂ vec A′

]
.

This matrix is invertible by the assumption of identifiable A, but can be of a high dimen-

sion in practice.

ii) The information matrix corresponding to parameter α is:

J0 = E0[−
∂2 log l(yt|yt−1;α)

∂α∂α′
] constrained by the unit mass restrictions on π, β∗k , γ

∗
k, k =

1, . . . , K.

This matrix has a smaller dimension, but is not of full rank due to the lack of identification.

The algorithm introduced above has extended the constrained maximum likelihood ap-

proach by adding asymptotically the identification restrictions corresponding to the first-order

conditions of the optimization of g̃(q, α) with respect to q, that are :

∂g̃(q, α)

∂q
= 0⇒ q = q(α), (4.12)

of a number equal to the degree of underidentification.

These limiting conditions have been replaced by
∂g̃

∂q
[q(α̂T ), α̂T ] = 0 in the IML algorithm

and can be expanded in a neighbourhood of [q(α∗0) = 0, α∗0]. We get :[
∂2g̃

∂q∂q′
[0, α∗0]

dq

dα
(α∗0) +

∂2g̃

∂q∂α′
(0, α∗0)

]√
T (α̂T − α∗0) ' 0,

that are the additional asymptotic linear restrictions D′2
√
T (α̂T −α∗0) = 0 on

√
T (α̂T −α∗0) to

be taken into account for the computation of the asymptotic variance of α̂T . More precisely,

Proposition 5 : If α∗0 is in the interior of A0, if the associated π∗0k are all distinct, if

assumptions A.1-A.4 and the additional regularity assumptions a.1-a.2 are satisfied, then ;

√
T (α̂T − α∗0)

d−→ N(0, J11
0 J J11

0 ),

where J11
0 is the North-West block in the block decomposition of the inverse of matrix(

J0 D
D′ 0

)
, D = (D1, D2), D1 defining the 2K + 1 unit mass restrictions on πk, β

∗
k , γ

∗
k, k =

1, . . . , K, and D2 the (asymptotic) linearized restrictions corresponding to the intermediate

optimizations in the IML algorithm.

In the expression of the asymptotic variance-covariance matrix, we observe the three main

components of the information related with the unconstrained ML of α, the unit mass restric-

tions D1 and the restrictions D2 due to additional intermediate optimization, respectively.
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Proof : i) The proof is standard and based on the asymptotic expansion of the first-

order conditions on the Lagrangean to account for the equality restrictions (note that the

inequality restrictions are not binding if α∗0 belongs in the interior of A0). These asymptotic

expansions are :

(
J0 D
D′ 0

)[ √
T (α̂T − α∗0)√
T (λ̂T − λ∗0)

]
'

 1√
T

T∑
t=1

∂ log l

∂α
(yt|yt−1;α∗0)

0

 , (4.13)

where λ̂T is the associated estimator of the Lagrange multipliers. Because α∗0 is a maximizer

of E0 log l(yt|yt−1, α), the normalized score in (4.13) is asymptotically normally distributed

with mean zero and variance J .

The result follows whenever the matrix

(
J0 D
D′ 0

)
is invertible. 16

ii) Let us now discuss this invertibility condition by finding the null space of this matrix,

i.e. the solutions θ, λ of the system :{
J0θ +Dλ = 0,
D′θ = 0.

We know that D′J0θ +D′Dλ = 0⇒ λ = −(D′D)−1D′J0θ. Then the system in θ only is :{
(Id− P )J0θ = 0,
D′θ = 0.

where P is the orthogonal projector on the space generated by D.

Since the columns of (Id−P )J0 are orthogonal to the columns of D, we see that θ = 0 is

the unique solution if and only if : Rk((Id−P )J0) = dimα−dim q−1−2K. This statement

is Assumption a.2 viii) in online Appendix 2.

QED

Remark 6: The sequence of optimizations cannot be replaced by a penalty term in the

objective function. By analogy with the l1-penalty introduced in LASSO [Tibshirani (1996)],

the machine learning literature suggests to use a penalty in the objective function to ensure

16We cannot use the usual block formula to compute J11
0 [see e.g. Gourieroux, Monfort, Section 10.3.b)

because J0 is not invertible due to the identification issue. However, it is easy to check that a closed form
expression of the asymptotic variance of the estimator is :

[(Id− P )J0(Id− P ) + P ]−1(Id− P )J0(Id− P )[(Id− P )J0(Id− P ) + P ]−1,

where P is the orthogonal projector on the space generated by D.
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the (numerical) convergence of the ML algorithm [see e.g. Kim, Park (2008), Schachtner et al.

(2011)], or to circumvent the curse of dimensionality [DePaula et al. (2020), eq. (10). See also

Uhlig (2005), Appendix B.2, Mountford, Uhlig (2009) for applications to macro-economics].

In our framework, this penalty function approach (PFA) would lead to an objective function

of the form log lT (y;α) + λTg(α), where the tuning parameter λT would be an appropriately

chosen function of T to ensure the numerical convergence. It is easy to see why this approach

would not provide an estimator converging to a benchmark element of the identified set.

Indeed, the asymptotic first-order conditions would involve
∂ log lT (y, α)

∂α
+ λT

∂g(α)

∂α
. They

are not aligned with the direction allowing to remain in the set, since
∂g(α)

∂α
=
dg̃[q(α), α]

dα

differs from
∂g̃(q, α)

∂q
[see also Ariaz et al. (2018), Section 5, for a critique of PFA in a SVAR

model with partial identification].

The asymptotic Gaussian uncertainty is driving all the uncertainties on the true set A0 of

NMF’s. More precisely, any other element of A0 can be written as a deterministic function

of α0: ξ(q, α
∗
0), with q ∈ Q(α∗0). Then, that element can be estimated by ξ(q, α̂T ), which is a

given function of αT . Therefore, it inherits the asymptotic properties of α̂T : it is consistent

of ξ(q, α∗0), asymptotically normal, and its asymptotic variance-covariance matrix is obtained

from the Slutsky formula, whenever q is not on the boundary ofQ(α∗0). If q is on the boundary,

its distribution will become truncated normal, and can be easily found by simulation.

Remark 7: The setA0 is of a large dimension and it is not possible to represent it in a 2 or

3-dimensional space. However it is possible to consider ”cuts” of that set obtained by varying

a given component of q and setting the other components equal to zero, to examine how the

NMF responds to changes in that component. This analysis will depend on the application.

Let us consider the static NMF applied to image analysis. The criterion det(B′B) is likely

a measure of contrast and the above approach could be used to find the component qj that

is preferred for changing the contrast of the photo BC ′ from low to high. Another direction

could by used to manage the brightness of the image and so on.

For illustration, let us consider the matrix : A =
1

10

 2 1 1
1 1 1
1 1 1

. Its elements sum

up to one and A defines a joint probability distribution. It is easy to check that Rk(A) =

Rk+(A) = 2. This matrix is a mixture of two joint distributions satisfying the independence

condition, which can be written in an infinite number of ways. For example, matrix A can

be written as :
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A =
1

4

 1
0
0

 (3/5, 1/5, 1/5) +
3

4

 1/5
2/5
2/5

 (1/3, 1/3, 1/3),

or as :

A =
1

10

 1
0
0

 (1, 0, 0) +
9

10

 1/3
1/3
1/3

 (1/3, 1/3, 1/3).

The volumes of the parallelepiped generated by the β∗ (resp. γ∗) are 8/25 for the first

decomposition and 2/9 for the second decomposition (resp. 8/225 and 2/9). The heterogene-

ity distribution is less concentrated in the first decomposition than in the second one, its β∗

vectors are less colinear and its γ∗ vectors are more colinear than in the second one. Note

that for K = 2, π1 is an homographic function of q12 for a given q21 (resp. of q21 for a given

q12) and hence it is monotonic.

Remark 8: The IML approach can be used to derive the lower and upper bounds for

partially identified scalar parameters, and to obtain the measures of uncertainty on these

bounds [see e.g. Imbens, Manski (2004), Stoye (2009)]. Typical examples are the minimum

and maximum values of functions
K∑
k=1

(πk log πk) det(B̃′B̃), det(C̃ ′C̃). This procedure is anal-

ogous to determining the confidence intervals for average marginal effects in a fixed effects

panel logit model [Liu et al. (2021), Davezies et al. (2022)]. Likely, there exists an interval

of admissible values of the above uncertainty measures. Such an interval is easy to obtain

for the measure of concentration when K = 2. However, the lower and upper bounds will

be reached on the boundaries of the identified set, for example on the bounds for q12, q21

when K = 2. Then, the joint asymptotic distribution of these bounds cannot be Gaussian

due to the effect of infimum in Proposition 2. Therefore Assumption A.1 i) of normality of

the upper and lower bounds in Imbens et al. (2004), Stoye (2009) is not satisfied in our

framework. Note that the joint asymptotic distribution of these two bounds is easily derived

by simulations and, by construction, we cannot have bound reversal in the estimation.

Remark 9:

The IML approach can also be used to derive a confidence set for A0 with the correct

asymptotic level following Shi and Shum (2015). However this asymptotic confidence set is

difficult to represent graphically due to the large dimension of A0.
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4.3.4 Asymptotic distribution of ÂT

The IML approach helps in finding the estimates and confidence intervals of identifiable

parameters, especially of the elements aij of matrix A. In practice, we usually encounter the

curse of dimensionality in the unconstrained estimation of A. Moreover, the estimator has

to be applied under the constraint of a given non-negative rank : Rk+(A) = K, and the

rank-constrained confidence intervals are likely narrower than the unconstrained ones. They

can be derived from α̂T by simulations, given that :

aij ' â
K∑
k=1

π̂kβ̂
∗
ikγ̂
∗
jk = âij.

Asymptotically, âij will converge to the true value aij,0 that does not depend on the choice

of α∗0 benchmark. Similarly, its asymptotic variance-covariance matrix is also independent of

this choice, i.e. of the selected function g̃. The additional constraints are only introduced to

solve the identification issue.

Proposition 6

The asymptotic distribution of the IML estimator of matrix A does not depend on the

benchmark α∗0 in the identified set, i.e. on the additional optimization criterion.

Proof:

The asymptotic first-order conditions involve J0
√
T (θ̂T−α∗0) +D1

√
T (λ̂T−λ∗10)+D2

√
T (λ̂2T−

λ∗20) and D′1
√
T (α̂T −α∗0) +D′2

√
T (α̂T −α∗0) in the left hand side of system (4.13). Asymptot-

ically, a change of the benchmark modifies the matrix D2 as well as the associated Lagrange

multipliers by linear transformations R,R−1, respectively. Then, the first-order condition

provide the same solution for
√
T (α̂T −α∗0) when D2 is replaced by D̃2 = D0R and λ̂2T −λ∗20

by ˆ̃λ2T−λ̃∗20 = R−1(λ̂2T−λ∗0), where R is invertible. This proves that the asymptotic variance

covariance matrix is independent of the choice of the additional optimization criterion.

Q.E.D.

We have introduced an IML estimator ofA0 under the non-negative rank restrictionRk+(A0) =

K0, derived its asymptotic Gaussian behavior 17 and the expression of the associated effi-

ciency bound. The asymptotic variance-covariance matrix of ÂT is obtained by applying

the Slutsky formula based on the first-order expansions of a
∑K

k=1 πkβ
∗
kγ
∗
k in a neighbour-

hood of α∗0 = (a∗0, π
∗
0k, β

∗
0k, γ

∗
0k, k = 1, ..., K). Then, the asymptotic confidence intervals that

are identifiable on identifiable parameter functions of A also have the asymptotic optimality

properties.

17This asymptotic Gaussian distribution is degenerate because of the reduced rank.
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5 Extension to Nonparametric Identification

5.1 The Identified Set

The proof of Proposition 1 is valid in a nonparametric framework. Let us consider a pair

of real variables (X, Y ) with a continuous joint distribution on a product of intervals and

assume a positive pdf f(x; y) on that interval. We can be interested in a decomposition :

f(x, y) =
K∑
k=1

πkβk(x)γk(y), (5.1)

where (πk) defines the latent heterogeneity distribution, βk(x), γk(y) some pdf’s for x and y,

respectively. This is a mixture model in which each joint distribution in the mixture satisfies

the independence condition [see Compiani, Kitamura (2016) for mixtures in Econometrics]
18.

The proof remains valid if functions β1, . . . , βK (resp. γ1, . . . , γK) are a.s. linearly inde-

pendent. Since the model is already normalized, Proposition 1 becomes :

Proposition 1’ : Let us consider a true factorization of the joint pdf :

f0(x, y) =
K∑
k=1

b0k(x)γ0k(y) = B0(x)C0(y),

where the terms b0k are positive densities (not necessarily with unit mass) and γ0k are prob-

ability densities. Then, the other observationally equivalent decompositions are B(x) =

B0(x)Q,C(y) = C0(y)(Q′)−1, where the matrix Q is invertible, with unitary diagonal ele-

ments and such that :

B0(x)Q ≥ 0, a.s., C0(y)(Q′)−1 ≥ 0 a.s.

The decomposition (5.1) of the joint pdf has alternative interpretations. For instance, the

conditional p.d.f. can be written as:

f(y|x) =
f(x, y)

f(x)
=

K∑
k=1

b0k(x)

f(x)
γ0k(y) ≡

K∑
k=1

b∗0k(x)γ0k(y).

18This condition can be written for more than two variables, so that the mixture becomes identifiable and
easier to analyse [Hall, Zhou (2003), Kasahara, Shimotsu (2009)]. A suitable notion of nonnegative rank has
not yet been introduced for 3- or 4-entry tables.
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Therefore, it is equivalent to impose a reduced rank condition on the joint distribution, or on

the conditional distribution. This problem is considered in Henry , Kitamura, Salanie (2014),

where the pair of variables is denoted by Y,W , the representation is written conditionally on

a third variable X, and the independence condition on the elements of the mixtures is called

the exclusion restriction [see also Compiani, Kitamura (2016)].

5.2 Nonparametric Identifying Maximum Likelhood

The estimation approach outlined in Section 4 can be extended to the functional parameter

framework, with functional parameters bk, k = 1, . . . , K, scalar parameters πk, k = 1, . . . , K,

and additional parameters in vec∗Q.

Let us assume i.i.d. observations on (Xi, Yi), i = 1, . . . , n. Then, a kernel based AML can

be applied with the objective function :

n∑
i=1

{K(
xi − x
hn

)K(
yi − y
hn

) log
K∑
k=1

[bk(x)γk(y)]},

where K(.) denotes a kernel, hn the bandwidth and
∫
γk(y)dy = 1, k = 1, ..., K. The

maximisation with respect to bk(x), γk(y), k = 1, . . . , K provides the functional estimators of

bk(.), γk(.), k = 1, . . . , K, and then functional estimators of πk, βk(.), γk(.).

Next, due to the identification issue, an additional optimisation has to be performed to

fix a mixture in the identified set. Criteria equivalent to the criteria introduced in Section

4.3.2 can be used, either the concentration criterion
K∑
k=1

(πk log πk), or the alternative criterion

det Γ, with

Γ =

∫
γ(y)γ′(y)dy.

The analysis of the asymptotic properties of this functional estimator approach are out

of the scope of this paper and left for future research 19.

6 Concluding Remarks

Although the nonnegative matrix factorization (NMF) is a well-known technique of dimension

reduction for nonnegative matrices, it is used in the absence of an associated probability model

19In this framework the benchmark is a functional parameter, a case that is not included in Shi, Shum
(2015).
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for the observed data. Our paper fills this gap by considering a structural dynamic network

model. We suggest new estimation methods for the set of NMF’s and derive the asymptotic

distribution of the estimated set and of specific elements of that set. Moreover, we provide

a ML estimator of the non-negative matrix A0 under a given non-negative rank constraint.

The proposed approach is related to the nonparametric identification in mixture models.

Our approach can be used in a variety of applications with a lack of local identifiability.

When an element of the identified set is characterized as a solution of an auxiliary optimiza-

tion, the identified set can be parametrized given this element considered as a new origin.

In practice, the dimension of the parametric identified set can be very large and cannot be

represented in a low-dimensional figure. However, it is possible to illustrate various elements

or cuts of that set, which have structural interpretations and are easier to represent and

discuss.

A typical partial identification of the same type is encountered in the analysis of the effects

of monetary policy shocks under sign restrictions on the impulse response functions [Uhlig

(2005), Baumeister, Hamilton (2015), Ariaz, Rubio-Ramirez, Waggoner (2018), Granzeria

et al. (2018)]. For example, in a VAR(1) model Yt = ΦYt−1 + ut, with ut ∼ N(0,Σ) and

Σ = AA′. The matrix A is not identifiable. The identified set can be reduced by imposing

a restriction so that a ”monetary policy impulse vector (a column of A) implies negative

responses on prices and nonborrowed reserves and positive responses on federal funds rate, at

all horizons” [Assumption A.1, Uhlig (2005)]. Then, there is a reduced identified set of these

impulse vectors that can be easily parametrized. The idea of determining first the specific

elements of the identified set by means of an additional optimization, before performing an

extreme bounds analysis in the spirit of Leamer (1983) appears in Uhlig (2005), page 388

and Appendix B.2.

The standard factor analysis of time series by SVD is commonly followed by an inter-

pretation of the dynamic factors. The factorial directions are projected on some observable

time series to provide economic or financial interpretations of the dynamic factors (the so-

called mimicking factors). A similar approach can be applied in our framework with partial

identification. This may lead to selecting the most interpretable βk’s or γ′ks.
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Online Appendix 1

Comparison of the Decompositions

1. The NMF

After the transformation the new NMF is :

A = β̃1γ̃
′
1 + β̃2γ̃

′
2,

with β̃1 = β1 + q21β2 = q12β1 + β2,

γ̃1 =
1

1− q12q21
(γ1 − q12γ2), γ̃2 =

1

1− q12q21
(−q21γ1 + γ2).

It is easily checked that A = β1γ
′
1 + β2γ

′
2.

2. The decomposition (2.13).

To get the new decomposition (2.13) :

A = a(π̃β̃∗1 γ̃
∗′
1 + (1− π̃)β̃∗2 γ̃

∗′
2 ],

the new factorial directions have to be normalized with components summing up to one. We

get :

β̃∗1 = (β1 + q21β2)/(β
′
1e+ q21β

′
2e),

β̃∗2 = (q12β1 + β2)/(q12β
′
1e+ β′2e),

γ̃∗1 = (γ1 − q12γ2)/(γ′1e− q12γ′2e),

γ̃∗2 = (−q21γ1 + γ2)/(−q21γ′1e+ γ′2e),

π̃/(1− π̃) = (β′1e+ q21β
′
2e)(γ

′
1e− q12γ′2e)/[(q12β′1e+ β′2e)[−q21γ′1e+ γ′2e)].
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Online Appendix 2

Additional Assumptions for Asymptotic Results

1. Consistency

We provide below a set of additional assumptions a.1 to get the consistency. They require

some uniform convergence of the objective function on the set A∗ of all possible α on which

the optimization is performed.

Assumption a.1 :

i) The set A∗ is compact.

ii) log l(yt|yt−1;α) is integrable for all α ∈ A∗.
iii) A0 ⊂ A∗.
iv) Uniform convergence of the objective function :

supα∈A∗ |
1

T

T∑
t=1

log l(yt|yt−1;α)− E0 log l(yt|yt−1;α)|

= 0P (1/
√
T ),

where E0 is the expectation with respect to the stationary distribution of (Yt−1, Yt).

v) limp→∞
1

T

T∑
t=1

log l(yt|yt−1; α̂T (α0, p)) = max
α∈A∗

1

T

T∑
t=1

log l(yt|yt−1;α).

The three first conditions are standard and used to prove the convergence of the set of

solutions of the finite sample optimisations to A0. They imply condition C1 on Chernozhukov

et al. (2007) for instance (See also this reference for a proof, in which, in our framework,

the objective function is the log-likelihood function instead of a moment criterion function).

This is the convergence result in Proposition 3. Proposition 4 follows since this convergence

of sets is uniform.

The last condition iv) is usually not introduced. It concerns the algorithm used to ap-

proximate solutions of the finite sample optimisation problems. This condition explains why

we have introduced stronger conditions as in Assumption A.4 on the concavity of the log-

likelihood function.

By construction the domain for π, β∗k , γ
∗
k, k = 1, . . . , K is compact and its bounds as

πk = 0, for some k, or βk = 0, for some k cannot be reached due to the rank condition, i.e.

Assumptions A.2 and A.3. Therefore assumption a.1 i) concerns mainly scalar parameter a.
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2. Asymptotic Normality

When T tends to infinity, the estimator (α̂T , q̂T = q(α̂T )) will tend to (α∗0, 0). Let us

assume :

Assumption a.2 :

i) The true set A0 has a non-empty interior and α∗0 is in the interior of the true set A0.

ii) 0 is in the interior of the set Q(α∗0) of admissible values of q constructed from α∗0.

iii) The log-likelihood function is twice continuously differentiable with respect to α.

iv) The additional objective function g̃ is continuously differentiable with respect to q and

continuously cross differentiable with respect to q and α.

v) The function q(.) exists and is continuously differentiable

vi) The score
∂ log l

∂α
(yt|yt−1;α) has second-order moments.

vii) The Hessian
∂2 log l

∂α∂α′
(yt|yt−1;α) has first-order moments.

viii) The matrix (Id− P )J0 has rank dimα− dim q − 1− 2K.

Let us discuss these additional assumptions. Condition a.2 i) eliminates the case K =

1, when the NMF is point identified and the standard asymptotic theory applies. This

is assumption (4∗) in Shi, Shum (2015), Theorem 2.1. Then, the rank condition in their

assumption (4) is automatically satisfied in our framework by assumptions A-2-A.3 and a.2

viii). Their condition (***) in Theorem 3.1 is automatically satisfied in our framework of

maximum likelihood estimation.
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