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1 Introduction

A network is commonly characterized by a non-negative matrix A of dimension (n,m).

There exists a large literature on network models and different assumptions are im-

posed on the non-negative matrix A. These assumptions concern either the 0 - 1

entries of adjacency matrices, or the positive elements and ”reduced rank” of inter-

action matrices. In applications to contagion, transmission, social interaction, and

spillover effects, the elements of each row of matrix A can be constrained to sum

up to one. Then, each row of matrix A is interpreted as a conditional probability

distribution and matrix A is called a transition, or migration matrix.

Depending on the objective of analysis, network models are either prediction-

oriented, or structural. The prediction-oriented models are used for image and facial

recognition, text analysis, environmetrics, and genomics. In these applications, the

dimensions n and m of matrix A are very large, and the primary objective of the

analysis is to reduce this high dimensionality. Then, adjacency matrices with small

numbers of links, i.e. entries equal to 1, are used to obtain sparse matrices A. Alter-

natively, interaction matrices are chosen so that the non-negative matrix factorization

(NMF) of matrix A is of a small reduced rank [Berman and Plemmons (1994)].

The network analysis in econometrics is more structural and parametric [see Man-

ski (1993) for the reflection problem, Blume et al. (2011), de Paula (2017) for a

survey and the references therein]. The panel models often represent an equilib-

rium, such as: Yt = AYt + DXt + ut, where Yt = (y1,t, ...., yn,t) is the vector of

individual observations at time t, and Xt are the explanatory variables. At equilib-

rium, a simultaneity arises because variable Y appears on both sides of the equation.

The dimension (n, n) of matrix A is much smaller than in image analysis, for exam-

ple. Moreover, matrix A is often defined as a parametric non-negative combination

A =
L∑
l=1

αlAl, αl ≥ 0, l = 1, . . . , L, of known network matrices Al’s in order to obtain

a simple parametric model, which is a crucial assumption in this literature [see e.g.

Bramoulle et al. (2009), Lee et al. (2010), Cohen-Cole et al. (2014), Blume et al.

(2015)].

The aim of this paper is to fill the gap between the prediction-oriented and struc-

tural analysis by introducing the Identifying Maximum Likelihood (IML) estimation
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method, that provides the Maximum Likelihood (ML) estimator of the set of admissi-

ble NMFs, as well as an ML estimator of matrix A, for an extended class of dynamic

probabilistic network models.

We consider a class of dynamic parametric models with non-negative interaction

matrices of reduced rank. The static models used in machine learning, dynamic panel

models for individual qualitative variables, and multivariate dynamic Poisson models

with contagion used in epidemiology, arise as special cases in that class of models

[Gourieroux and Lu (2019), (2023), Lu et al. (2023)]. The NMF of matrix A in

this class of models may involve not only the principal directions, but also a latent

heterogeneity distribution. In general, there exist multiple admissible factorizations of

a given true network matrix A0 with or without zero entries. We describe analytically

the identified set of admissible NMFs for non-negative ranks K = 1 and K = 2 of

matrix A, and show how the identified set can be parametrized in the general caseK ≥
2. Our contribution is the Identifying Maximum Likelihood (IML) approach which

is introduced to estimate the identified set of NMF’s and to derive the asymptotic

distribution of the estimated identified set. In this context, the estimation of a NMF

with the most concentrated latent heterogeneity and/or the least collinear principal

directions is considered. Moreover, we propose a maximum likelihood estimator of

the identified non-negative matrix A, given its non-negative rank, and derive the

efficiency bound for this rank-constrained parameter matrix estimator.

Our approach differs from the methods used in the existing network literature

with respect to the following: 1) Our network is examined in a nonlinear dynamic

framework, and distinguishes the short and long-run effects. Our approach is appli-

cable to static linear models existing in the literature, which arise as special cases of

the considered class of models; 2) Matrix A is compatible with the existing empirical

applications concerning mainly semi-aggregated level networks with matrices A with-

out zero elements (intricate network) and with diagonal (resp. off-diagonal) elements

representing the within (resp. between) segment connections; 3) In our paper, ma-

trix A is only assumed to satisfy a factor decomposition into non-negative factorial

directions3. To solve the partial identification issue in NMF, we derive analytically

the identified set and show that it can be locally parametrized. In particular, the

3i.e. without imposing a priori strong identifying assumptions.
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identified set is not defined from inequality moment restrictions, as it is commonly

done in the micro-econometric literature on partial identification [see Chernozhukov

et al. (2007), Andrews and Soares (2010), Canay and Shaikh (2017) for a statistical

approach to this partial identification]. Instead, the Identifying Maximum Likelihood

(IML) method is introduced in this paper, allowing for sharp estimation of the iden-

tified set and of the non-negative rank-constrained matrix A and derivation of the

asymptotic distribution of the maximum likelihood estimator of the identified set.

The paper is organized as follows. In Section 2, we describe the class of dynamic

parametric models with interaction matrices of reduced rank. Section 3 discusses the

identification of the NMF of matrix A. Statistical inference is developed in Section 4.

Section 5 describes the relationship between the proposed method and nonparametric

partial identification. An illustration is provided in Section 6. Section 7 concludes.

The list of additional regularity assumptions for asymptotic statistical inference and

additional estimation results are given in on-line appendices.

2 Parametric Model with Interaction Matrix

2.1 The model

We consider a set of observations Yt, t = 1, . . . , T , that can be scalars, vectors, or ma-

trices. We assume that (Yt) is a stationary Markov process and introduce a parametric

model of the conditional distribution of Yt given its lagged values, with a conditional

probability density function (p.d.f.) :

l(yt|yt−1) = l(yt|yt−1;A), (2.1)

where A is an unknown non-negative matrix A ≥ 0 of dimension (n,m), which has

non-negative entries. We make the following assumption :

Assumption A.1 : i) The parametric model is well-specified, with a true value A0 of

matrix parameter A; ii) The process (Yt) is strictly stationary, geometrically ergodic.

We know that a non-negative matrix A can be factorized and written as :

A = BC ′, (2.2)
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whereB (resp. C) is of dimension (n,K) [resp. (m,K)] andB and C are nonnegative :

B ≥ 0, C ≥ 0. Among the multiple non-negative factorizations available, some

correspond to the minimal order K, called the non-negative rank of matrix A and

denoted by Rk+(A). The non-negative rank of A is always larger or equal to the rank

of A.

Specifically, a non-negative matrix factorization (NMF) can be written as follows.

Let βk, k = 1, . . . , K (resp. γk, k = 1, . . . , K) denote the columns of B (resp. C).

These columns define the factorial directions. We have :

B = (β1, . . . , βK), C = (γ1, . . . , γK), (2.3)

and then :

A =
K∑
k=1

βkγ
′
k with βk ≥ 0, γk ≥ 0,∀k. (2.4)

This is a decomposition of A into a sum of K non-negative matrices of rank 1.

In structural models, we may not only be interested to find the true value A0,

but also a true NMF : B0C
′
0 =

K0∑
k=1

β0,kγ
′
0,k, that generates A0. We introduce the

additional assumptions :

Assumption A.2 : i) The nonnegative rank K0 = Rk+(A0) is known; ii) The true

matrixA0 is asymptotically identifiable, i.e. the maximization maxAE0 log l(Yt|Yt−1;A)

with respect to the set of non-negative matrices, has a unique solution A = A0; iii)

The vectors β0,k, γ0,k, k = 1, . . . , K, have strictly positive entries.

Remark 1 : This analysis can be easily extended to a) parametric conditional

models including observed exogenous variables Xt, or b) additional parameters θ in

models of the type: l(yt|yt−1, xt) = l(yt|yt−1, xt;A0, θ0), and c) dynamic panel models

with covariates.

2.2 Examples

In general, the NMF is applied without assuming a probabilistic structure. Our objec-

tive is to extend the NMF to applications, to which the principal component analysis

(PCA) by Tipping, Bishop (1999) is not applicable because it does not ensure the
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positivity condition. As examples, we show below the models for facial recognition,

epidemiology, volatility, credit risk and cyber risk analysis. These models have to

account for the non-negativity of observations Yt in practice.

2.2.1 Static Model

The static models assume that observations Yt, t = 1, .., T , are independent and iden-

tically distributed (i.i.d.). These models are commonly used for image analysis [see

Paatero, Tapper (1994) for the introduction of NMF to the applied literature]. NMF

started to be extensively studied following Lee and Seung (1999) and their application

to learning the parts of objects under a non-probabilistic approach. In image anal-

ysis, the observations are matrices Yt = (Yi,j,t), where (i, j) denote the coordinates

of a point in picture t and the value Yi,j,t provides the pixel intensities associated

with coordinates i, j and picture t. The pixel intensity can be measured on either a

discrete, or continuous scale. Then, the model:

l(yt|yt−1;A) = Πn
i=1Π

m
j=1f(yi,j,t; ai,j), (2.5)

is based on a family of probability density functions (p.d.f.) f(y; a) with a non-

negative y and a non-negative scalar parameter a. For the Poisson and exponential

p.d.f., the model in (2.5) simplifies, leading to a generalized linear model (GLIM).

Static models with network matrices can be also applied to data on a set of

individuals i = 1, . . . , L where at time t the number yi,j,t of messages sent by individual

i to individual j are observed. Alternatively, the i.i.d. observations yt can be matrices

containing the investments of bank i in industrial sector j at time t, gravity matrices

summarizing international trades of countries [Chen et al. (2021), Section 6], or

matrices of numbers of stocks of firms head-quartered in city j, j = 1, . . . ,m held by

mutual fund manager i, i = 1, . . . , n at time t.

2.2.2 Panel of individual qualitative histories.

Let us consider a panel of L individuals, l = 1, . . . , L. Each individual is character-

ized by a qualitative state i = 1, . . . , n, that can be observed at any time t. The

qualitative individual histories can be quantified and represented by n-dimensional

vectors (Yl,t, t = 1, . . . , T ), l = 1, . . . , L, where Yl,t has {0, 1} entries that sum up to

1.
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The dynamic model can be defined by assuming that :

i) the individual histories are independent from one another; ii) each individual

history corresponds to a Markov chain with transition matrix A.

The above assumptions imply that the population of interest is homogeneous. Un-

der these assumptions, the individual histories can be aggregated without a loss of

information and replaced by the counts of individuals in each state :

Yt =
L∑
l=1

Yl,t. (2.6)

Then, the sequence of multivariate counts Yt is also a Markov process with the con-

ditional p.d.f. obtained from the convoluate of different multinomial distributions :

l(yt|yt−1;A) = Πn
i=1li(yi,t|yi,t−1; ai), (2.7)

where li denotes the p.d.f. of the multinomial distribution M(yi,t−1; ai) and ai denotes

the ith-row of the transition matrix A.

In this example, individuals are replaced by homogeneous segments that dimin-

ishes the dimensionality of the network. For example, the corporates can be replaced

by industrial sectors, households by age categories, or animals by species [Donnet and

Robin (2021) and the references therein]. Then, the diagonal elements of matrix A

depict the interactions within a segment and the off-diagonal elements of A represent

the interactions between the segments. In general, the diagonal elements aii are not

equal to zero.

2.2.3 Dynamic model for a non-negative random vector

Let us consider a parametric model for a non-negative random vector l(y; θ), where

y and the parameter vector θ have the same dimension n, and both vectors y and θ

are non-negative. Then, a dynamic model for (yt) can be defined as :

l(yt|yt−1;A) = l(yt;Ayt−1), (2.8)

where the contagion matrix A is non-negative and of dimension (n, n). This model

can be easily extended to include an intercept µ, i.e. l(yt|yt−1;A) = l(yt, Ayt−1 + µ).

i) When this parametric model represents the dynamics of n independent Poisson

variables, we obtain a multivariate Autoregressive Conditional Poisson (ACP) model
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with :

l(yt|yt−1;A) = Πn
i=1

[
1

yit!
exp(−aiyt−1)(aiyt−1)yit

]
= Πn

i=1

(
1

yit!
(aiyt−1)

yit

)
exp(−e′Ayt−1), (2.9)

where ai is the ith row of matrix A and e is a vector with unitary elements [Cameron

and Trivedi (2008), Section 7.5, eq. 7.42, Fokianos (2022)] .

This specification differs from an exponential specification: yit|yt−1 ∼ P [exp(aiyt−1)],

considered in Chen et al. (2021), Example 3, which does not require matrix A to be

non-negative. However, while the dynamic of model (2.9), possibly with an intercept,

is compatible with the stationarity of process (yt), the above approach of Chen et al.

(2021) leads to explosive trajectories, due to the exponential transform of a.

ii) When the parametric model represents the dynamics of n independent expo-

nential variables, we get a multivariate exponential autoregressive model:

l(yt|yt−1;A) = Πn
i=1 [(aiyt−1) exp(−aiyt−1yit)] . (2.10)

This dynamic model can be used to study joint evolutions of the gross domestic

product in a set of L countries. Then, matrix A is unobserved and needs be estimated

under some mild constraints to provide a proxy of the international trading network.

It can also be used for joint analysis of observed (implied or realized) daily volatilities,

with the individual index i assigned either to the stocks, or hours of a trading day,

in the spirit of multiplicative volatility models [Engle and Rangel (2008), Hafner and

Linton (2010)].

Remark 2 : The dynamic model (2.8) can be extended to l(yt|yt−1;A) = l(yt;Azt−1),

where zt−1 is a nonnegative vector function of yt−1. Such a transformation appears

in structural models used in epidemiology and other applications such as the analysis

of cyberattacks [Fahrenwaldt et al. (2018), Lu et al. (2023)], adoption of a new

technologies [Brock and Durlauf (2010), Blume et al. (2011)] and the Susceptible-

Infected-Recovery (SIR) model with multiple transmissions, where the components

of y are the counts of infected individuals [resp. of the new adoptions of the product]

in different segments of the populations. In the SIR model, z is a quadratic function

of y [see e.g. Gourieroux and Lu (2023)].
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2.2.4 Contagion of defaults

The structural models of corporate defaults represent defaults arising when the li-

ability of a firm falls below its asset value. When only defaults are observed, the

individual assets and liabilities become latent non-negative variables which can be

represented by a dynamic network model (2.8):

l̃(zt|zt−1;A) = l̃(zt;Azt−1), (2.11)

where zt has dimension 2L and L is the number of firms. The elements of zt represent

the assets and liabilities of firms. For example, z1lt, z2lt are the characteristics of firm l

at date t. The observed variables are defaults, represented by a vector yt of dimension

L and defined by :

ylt = 1, if z1lt > z2lt,= 0, otherwise. (2.12)

Equations (2.11) and (2.12) can be interpreted as a nonlinear state space model.

From the state equation (2.11) and measurement equation (2.12), it follows that

the transition density of observed variables is l(yt|yt−1;A), involving the complete

histories of defaults of all firms.

All dynamic models given above have nonlinear dynamics due to the non-negativity

constraints on the values of observed variables. They are also nonlinear with respect

to parameter A. These nonlinear features distinguish the class of models considered

in this paper from the major part of literature on networks in econometrics. ”Iden-

tification and measurement of network phenomena has drawn attention in fields as

diverse as macroeconomics, finance not discussed in the review” [De Paula (2017)].

Other fields with nonlinear dynamic models are also left out of the recent survey

on partial identification by Kline and Tamer (2023). The nonlinear dynamic models

considered in our paper are suitable for applications to those other fields, including

ecological economy, monetary economy, cyber risk and epidemiology, in addition to

finance.

The identification in this extended class of models eliminates the use of powers

of matrix A. Indeed, matrices A,A2, A3 no longer play a role, as the conditional

distribution of yt given yt−h does not necessarily depend on parameter A through Ah

only [see de Paula (2017), p. 272 for a discussion]. In fact, under the Markov of

order 1 assumption, all information on A is contained in the first lag of variables in
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the likelihood function. Moreover, the response of a nonlinear dynamic system to a

shock at date t depends on the current environment of yt. The size of a shock effect

depends on the environment, so that even a small shock can have a large impact. This

has important consequences on how the small-valued elements aij of matrix A should

be treated. More precisely, even if aij is small, it should not be set equal to zero

arbitrarily, by applying an automatic LASSO penalty. Especially, when the dynamic

system is close to a tipping point, a small connection can trigger a significant change

in the system, as evidenced by the histories of corporate defaults, chains of business

failures, or inter-bank liquidity shortages.

2.3 Latent Heterogeneity and Ranking

Taking into account the non-negativity condition can be beneficial for the interpreta-

tion and visualization of networks. Let us now introduce a normalized NMF, which

is suitable for structural interpretations.

2.3.1 Alternative parametrization

The NMF (2.4) can be normalized and written alternatively as :

A = a
K∑
k=1

πkβ
∗
kγ
∗′
k , (2.13)

where a = e′Ae = ΣiΣjai,j > 0, πk ≥ 0, k = 1, . . . , K, with
K∑
k=1

πk = 1, β∗k ≥ 0, γ∗k ≥

0, k = 1, . . . , K, with : β∗
′

k e = γ∗
′

k e = 1, k = 1, . . . , K.

In this decomposition π = (π1, . . . , πK)′, β∗k , γ
∗
k, k = 1, . . . , K can be interpreted as

discrete probability distributions. More precisely, the normalised matrix A/a can be

interpreted as a joint probability distribution, and its decomposition
K∑
k=1

πkβ
∗
kγ
∗′
k as

a mixture of independent joint distributions. In this respect, our analysis is related

to the literature on partial identification of finite mixtures [see Hall and Zhou (2003),

Kasahara and Shimotsu (2009), Henry et al. (2014), and Section 5]. When K = 1,

the NMF becomes : A = aβ∗1γ
∗′
1 .
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The representation (2.13) solves some identification issues due to the identification

of factorial directions βk, γk up to positive scalars. It also allows us to bound the set

of NMF’s written under this form.

2.3.2 Rankings

To motivate the alternative parametrization (2.13), let us consider a dynamic model

of count variables in epidemiology, such as the dynamic contagion model (2.8), where

the components of yt are counts of infected individuals in L homogenous segments of

the population. In addition, let us assume that4 :

Et−1yt = Ayt−1. (2.14)

If K = 1, we get : Et−1yt = aβ∗1γ
∗′
1 yt−1, or equivalently :

Et−1yi,t =
L∑
j=1

aijyj,t−1 = aβ∗1i

L∑
j=1

γ∗1jyj,t−1. (2.15)

The contagion parameters aij can be decomposed as: aij = aβ∗1iγ
∗
1j, where a is a

global contagion effect, β∗1i an index of vulnerability of segment i to the infection and

γ∗1j a measure of viral load of segment j 5. Therefore the segments i = 1, . . . , L can

be ranked with respect to their vulnerability β∗1i and their infectiosity γ∗1i.

When K is larger than or equal to 2, a latent heterogeneity of segments arises with

heterogeneity distribution π. Then, the segments can be ranked with respect to their

vulnerability ratings β∗ki, k = 1, . . . , K, and infectiosity ratings γ∗k,i, k = 1, . . . , K. The

potential interpretations of parameters β∗, γ∗, π depend on the application of inter-

est. In the analysis of internet diffusion of messages (see Section 2.2.1), parameters

4This constraint on the conditional mean implies yt = Ayt−1 + ut, where ut is a martingale
difference sequence with Et−1(ut) = 0. It does not imply a linear dynamic model : yt = Ayt−1 + ut,
where ut is a strong (i.i.d.) white noise. Hence, this linear model is not suitable for the analysis of
nonlinear shock effects, i.e. nonlinear impulse response functions.

5The decomposition of aij is multiplicative, while an additive decomposition: aij = α̃+ β̃i + γ̃j , is
used in the panel literature with two-ways fixed effects [see e.g. the running examples in Fernandez-
Val and Weidner (2016) for probit and Poisson models]. In our framework it is not possible to
transform the multiplicative form into an additive one by taking the logarithms of aij , β

∗
1i, γ

∗
1j , as

there can exist individuals with zero value of β∗1 , such as the vaccinated or naturally immunized
individuals. From the identification perspective, these zero values can be informative and should
not be disregarded. Moreover, as noted in Chen et al. (2021), such interactive effects can capture
network features, such as homophily and clustering.
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β∗ (resp. γ∗) can be used for ranking the receivers and senders, or followers and

influencers, in trade networks for ranking the importers and exporters, in citation

networks for ranking the citees and citors, in cyber risk networks for ranking of firms

by vulnerability and hackers by their impact.

3 Identification of the Nonnegative Factorization

In general, the true NMF is not point-identified. This section discusses the identifi-

cation issues and derives the identified set of NMFs for a given non-negative rank.

3.1 The general framework

The parametric model depends on the non-negative matrix factorization :

A = BC ′ = (β1, . . . , βK)(γ1, . . . , γK)′ =
K∑
k=1

βkγ
′
k,

where K denotes the non-negative rank and βk, γ
′
ks are the factorial directions. In

practice, the structural parameters are K, βk, γk, k = 1, . . . , K,. There exists a large

body of literature on the lack of identification of these parameters for a given matrix

A. It is easy to see that the factorization is not unique because the same matrix

A is obtained from a permutation of index k and rescaling by a positive scalar,

i.e. by replacing βk, γk by σkβk, and γk/σk, respectively, for a positive scalar σk.

This identification issue is easily solved by a normalization. The more complicated

identification issues arise when K ≥ 2 and are discussed below under the following

assumption :

Assumption A.3 : The non-negative rank of matrix A is equal to the rank of A.

This assumption is not very stringent, even though some examples of nonnega-

tive matrices with Rk+(A) > Rk(A) have been given in the literature. It is useful

to describe and parametrize the set of admissible NMF’s when Rk+(A) = Rk(A).

Assumption A.3 can be written under the following equivalent forms :

Assumption A.3 is satisfied ⇔ the vectors β1, . . . , βK are linearly independent and

the vectors γ1, . . . , γK are linearly independent ⇔ B′B and C ′C are invertible6.

6The NMF representation is different from the Singular Value Decomposition (SVD) of matrix
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Assumption A.3 implies that the matrices βkγ
′
l, k, l = 1, . . . , K are linearly indepen-

dent as shown in Lemma 1 below :

Lemma 1 : Under Assumption A.3, B∆C ′ = 0⇒ ∆ = 0.

Proof : Indeed B∆C ′ = 0 implies B′B∆C ′C = 0, and then ∆ = 0, since B′B

and C ′C are invertible. QED

Under assumptions A.1-A.3, the non-negative rank and the rank of A0 are known.

Let us consider another factorization of matrix A without taking into account the

non-negativity conditions on βk, γ
′
k s. Since the range of A (resp. A′) is the space

spanned by β1, . . . , βK (resp. by γ1, . . . , γK), an alternative factorization is : A =

B G H ′C ′ = B̃C̃ ′, where B̃ = B G, C̃ = C H and G, H are invertible matrices 7.

Moreover, we have : B G H ′ C ′ = B C ′, and by Lemma 1 we deduce that H ′ = G−1.

Therefore we get : B̃ = BG, C̃ = C(G′)−1.

In addition, because of the definition of factors up to the permutation and (signed)

scale effects, we can choose G of the type :

G = Q diag σ, (3.1)

where σ = (σk), σk > 0, and Q a (K,K) invertible matrix with diagonal elements

equal to 1. Then, (G′)−1 = (Q′)−1 diag (1/σ). By taking into account the non-

negativity conditions, we get a constructive characterization of the identified set :

Proposition 1 : For a specific factorization of matrix A0 : A0 = B0C
′
0, B0 ≥

0, C0 ≥ 0 (referred to as the origin, henceforth) of the identified set), all observation-

ally equivalent non-negative factorizations are such that :

B̃ = B0Q diag σ, C̃ = C0(Q
′)−1 diag (1/σ), σk > 0,∀k = 1, . . . , K,

where the matrix Q is invertible, with unitary diagonal elements, and such that :

B0Q ≥ 0, C0(Q
′)−1 ≥ 0.

A. In SVD the identification issue is solved by introducing the orthonormality restriction B′B =
C ′C = Id. Orthogonality is not possible in our framework since β′kβl is always non-negative. The
orthogonality condition would imply βikβil = 0,∀i, and contradict assumption A.1 [see the discussion
in Online Appendix 4].

7The columns of B and the columns of B̃ are two bases of the range of AA′ equal to the range
of A. Therefore they are in a one-to-one relationship represented by an invertible matrix G.
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The non-negative factorization is said to be essentially unique, or simply unique

[see Laurberg et al. (2008)], if Q = Id is the only solution to the set of inequalities

given in Proposition 1.

Proposition 1 shows that the identified set is fully parametrized once an origin is

chosen. The parametrization in Q is not linear. Then, in general, the identified set

is neither convex, nor even star-convex.

3.2 Special Cases

3.2.1 Case K = Rk+(A) = 1

When K = 1, A = β1γ
′
1, Q = (q11) = (1), the non-negative factorization is essentially

unique, i.e. the NMF is (essentially) point identified. Moreover, we note that :

Aβ1 = β1(γ
′
1β1), A

′γ1 = γ1(β
′
1γ1).

It follows that β1 (resp. γ1) is an eigenvector of A (resp. A′) associated with the

eigenvalue γ′1β1 = β′1γ1, which is strictly positive. By the Perron-Froebenius Theorem

[see Meyer (2000)] the non-negative matrix A (resp. A′) has a unique eigenspace of

dimension 1 generated by a non-negative eigenvector, here β1 (resp. γ1)
8.

3.2.2 Case K = Rk+(A) = 2

For K = 2, we get Q =

(
1 q12
q21 1

)
, and (Q′)−1 =

1

1− q12q21

(
1 −q21
−q12 1

)
.

Without the subscript 0 for the ”specific factorization of the true matrix”, the in-

equality restrictions in Proposition 1 become :


β1,j + q21β2,j ≥ 0, q12β1,j + β2,j ≥ 0, j = 1, . . . , n,

1

1− q12q21
(γ1,j − q12γ2,j) ≥ 0,

1

1− q12q12
(−q21γ1,j + γ2,j) ≥ 0, j = 1, . . . ,m.

It is easy to check that these inequalities imply 1− q12q21 > 0. The latter inequality

is satisfied, in particular, when we consider local identification in a neighbourhood of

8It is easy to check that β1 (resp. γ1) is also an eigenvector of AA′ (resp. A′A). Therefore they
are both elements of a singular value decomposition (SVD) (see Remark 3 in Section 4.1). Such a
model is commonly applied in the network literature with an adjacency matrix, whose leading left
and right eigenvectors of the SVD are used to define the ”so-called” hub and authority centralities,
respectively [see Cai et al. (2021) and the references therein].
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B = (β1, β2), C = (γ1, γ2), i.e. in a neighbourhood of q12 = q21 = 0. Then, the system

of inequalities is equivalent to :


β1,j + q21β2,j ≥ 0,∀j, with β2,j > 0, −q21γ1,j + γ2,j ≥ 0, ∀j, with γ1,j > 0,

q12β1,j + β2,j ≥ 0, ∀j, with β1,j > 0, γ1,j − q12γ2,j ≥ 0,∀j, with γ2,j > 0,

or 
q12 ≥ supj:β1,j>0(−β2,j/β1,j), q12 ≤ infj:γ2,j>0(γ1,j/γ2,j),

q21 ≥ supj:β2,j>0(−β1,j/β2,j), q21 ≤ infj:γ1,j>0(γ2,j/γ1,j).

From Proposition 1, we deduce the following result :

Proposition 2 : ForK = Rk+(A) = 2, the admissible matricesQ =

(
1 q12
q21 1

)
are such that :

− infj:β2,j>0(β1,j/β2,j) ≤ q21 ≤ infj:γ1,j>0(γ2,j/γ1,j),

− infj:β1,j>0(β2,j/β1,j) ≤ q12 ≤ infj:γ2,j>0(γ1,j/γ2,j).

Therefore, among the 2(n+m) inequality restrictions in Proposition 1, only four are

active and the remaining ones are redundant. We deduce the necessary and sufficient

exclusion conditions for essential uniqueness [Brie (2015)].

Corollary 1 : Under Assumption A.3 and for K = Rk+(A) = 2, the nonnegative

factorization is essentially unique if and only if there exists at least one index j1 such

that β1,j1 = 0, β2,j1 > 0, one index j2 such that β1,j2 > 0, β2,j2 = 0, one index j3 such

that γ1,j3 = 0, γ2,j3 > 0 and one index j4 such that γ1,j4 > 0, γ2,j4 = 0.

Without the ”exclusion” restrictions of Corollary 1 and under Assumption A.2

iii), there exists a multiplicity of admissible non-negative factorizations that are easily

deduced from one of them. This is the case we are interested in.

Let us now discuss the degree of under-identification. Since the identification issue

of factorial directions up to multiplicative non-negative scalars is solved in represen-

tation (2.13), we can focus our attention on the identification of πk, β
∗
k , γ

∗
k, k = 1, 2.

For K=2, the decomposition (2.13) is: A = a[π̃1β̃
∗
1 γ̃
∗′
1 + π̃2β̃

∗
2 γ̃
∗′
2 ].
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It is easy to derive the closed-form parametrization of the identified set for the given

origin (β∗1 , β
∗
2), (γ∗1 , γ

∗
2) (see online Appendix 1):

β̃∗1 = p1β
∗
1 + (1− p1)β∗2 , with p1 = β′1e/(β

′
1e+ q21β

′
2e),

β̃∗2 = p2β
∗
1 + (1− p2)β∗2 , with p2 = q12β

′
1e/(q12β

′
1e+ β′2e),

γ̃∗1 = p3γ
∗
1 + (1− p3)γ∗2 , with p3 = γ′1e/(γ

′
1e− q12γ′2e),

γ̃∗2 = p4γ
∗
1 + (1− p4)γ∗2 , with p4 = −q21γ′1e/(q21γ′1e− γ′2e),

π̃1/π̃2 = (β′1e+ q21β
′
2e)(γ

′
1e− q12γ′2e)/(q12β′1e+ β′2e)(−q21γ′1e+ γ′2e).

Corollary 2 : For Rk(A) = Rk+(A) = 2, the components πk, β
∗
k , γ

∗
k, k = 1, 2 are

not identifiable, with a degree of under-identification equal to 2.

The set of admissible decompositions (2.13) is described in closed form by means

of additional parameters q12, q21. The conditions on q12, q21 derived in Proposition 2

remain valid when β, γ are replaced by β∗, γ∗.

3.2.3 General Case

For K = 2, the identified set is described by two parameters q12, q21 satisfying 2(m+n)

inequality restrictions. These restrictions are linear and Proposition 2 shows that

only 4 of them are active. In the general case, the identified set is parametrized by

K(K − 1) parameters, which are the off-diagonal elements of matrix Q. Therefore,

the identified set is a manifold of fixed dimension. These parameters satisfy K(n+m)

inequality restrictions by Proposition 1. The degree of under-identification increases

rather quickly with the non-negative rank and the subset of active restrictions cannot

be derived analytically. To determine these restrictions and provide a simplified

definition of the identified set, numerical algorithms are needed, such as the Active Set

Sequential Quadratic Programming (SQP) algorithm, some of them being available

from Artelys Knitro [see Gill et al. (2002), Liu (2005)] at www.artelys.com.

A similar problem arises in sharp set identification for discrete choice models and

treatment effects analysis. The main difference is that those inequality restrictions
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are linear, e.g. as for K = 2 in Section 3.2.29, while in our framework they are

nonlinear when K ≥ 3. Indeed, for K = 3, we get : Q =

 1 q12 q13
q21 1 q23
q31 q32 1

 and,

up to the determinant, matrix (Q′)−1 has cofactor elements, such as 1 − q23q32 for

instance, that are quadratic in Q (more generally, they are polynomials of degree less

or equal to K−1). Moreover, it is easy to see that the identified set is neither convex,

nor star-convex, in general.

4 Statistical Inference

A major challenge for statistical inference is the lack of identification of the true NMF.

This identification issue can be addressed either by introducing identification restric-

tions and applying the standard maximum likelihood approach, or by estimating the

set of all identifiable NMF directly, either pointwise, or from a confidence set10. These

two approaches are linked. For example, the set of all identifiable NMF’s can be de-

duced from one of them, as shown in Section 3.3.2 for Rk+(A) = 2. Therefore, we

can first identify one NMF (i.e. an origin) and next deduce all the remaining ones

from the origin. This will provide an estimator of the identified set. Alternatively,

we can derive directly an asymptotic confidence set of the identified set at a given

confidence level by inverting appropriately a test procedure.

In this respect, the identified set described in Proposition 1 has the general form11

considered in Shi and Shum (2015), eq. (1.1)-(1.2). However, their results can only

be used if the origin is well-defined and has a consistent and asymptotically normally

distributed estimator. These are the main points considered in this section.

The proposed method proceeds as follows: 1) We show the convergence of the set

of maximum likelihood estimators of B,C to the identified set; 2) For a fixed number

of observations, a multiplicity of ML estimators is obtained. Therefore, we introduce

an alternating ML algorithm to fix the selected ML estimator for any T . This sequence

of alternating ML estimators is well-defined and converges to the identified set, but

9See the linear moment functions defining the inequalities in Chernozhukov et al. (2007), Section
2.1.

10We distinguish between the pointwise estimated identified set and the confidence set of the
identified set at a given confidence level.

11up to the introduction of nuisance slackness parameters [Shi and Shum (2015), Remark p. 497].
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not necessarily pointwise to a given element of this set; 3) Next, we fix an origin in

the interior of the identified set, obtained as the solution of an auxiliary optimization.

The objective function of that auxiliary optimization is optimized with respect to an

alternative parametrization in (a, π, β∗, γ∗). This step provides a consistent estimator

of an origin in the identified set.

The new Identifying Maximum Likelihood (IML) approach is used to estimate the

identified set, analyze the key properties of this set estimator and derive its asymptotic

distributional properties. We study analytically the properties of the distribution of

the identified set estimator by using the random set theory in [Molchanov, Molinari

(2018)]. In addition, we derive the ML estimator of matrix A under a given non-

negative rank constraint and the efficiency bound of this identifiable matrix-parameter

estimator. The approach is feasible because of the properties of the maximum likeli-

hood estimator reviewed below.

4.1 The ML approach

In our framework of nonlinear models with partial identification, the ML estimator(s)

does not have a closed-form expression. Hence, we have to distinguish the properties

of the statistical convergence of ML estimators to the true identified set when the

number T of observations tends to infinity from the numerical convergence of the

algorithm used to approximate the ML estimator when the number of iterations

tends to infinity12.

4.1.1 Consistency of ML Estimators

Let us assume that the network model is well-specified and the true transition is :

l(yt|yt−1;A0) = l(yt|yt−1;B0C
′
0), (4.1)

with a non-negative rank K0 of matrix A0 assumed to be known. We consider a

12In this respect, our analysis differs from the literature on exact NMF that implicitly assumes
that A0 is observed and examines the computational complexity, i.e. the possibility of finding a
decomposition of A0 in polynomial time, called the NP-hardness [see Gillis (2020) for a survey].
This literature disregards the uncertainty of observations.
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constrained ML maximization, providing:

(B̂T , ĈT ) = arg max
B≥0,C≥0

T∑
t=1

log l(yt|yt−1;BC ′). (4.2)

Due to the identification issue, there exists a large multiplicity of solutions to the finite

sample optimization (4.2). Under additional regularity conditions given in online

Appendix 2, the above set of ML estimators is consistent.

Proposition 3 : Under Assumptions A.1-A.3 and a.1 in Appendix 2, the set of

ML estimators (B̂T , ĈT ) converges to the set A0 of NMF associated with A0 = B0C
′
0,

when T tends to infinity.

More precisely, let d(., .) denote the Euclidean distance on IRK(n+m), NMF0 =

{(B,C), B ≥ 0, C ≥ 0, withBC ′ = B0C
′
0}, andD[(B̂T , ĈT ), NMF0] = min(B,C)∈NMF0

d[(B̂T , ĈT ), (B,C)], then D[(B̂T , ĈT ), NMF0] tends to zero, when T tends to infinity.

Under the regularity conditions, this convergence is uniform in (B̂T , ĈT ). It will also

imply the convergence to this set of the well-defined alternating ML estimator intro-

duced in the next section. Thus, (B̂T , ĈT ) does not necessarily converge to the true

factorization (B0, C0) due to the identification issue, but for a large T , (B̂T , ĈT ) is

close to another admissible NMF that can depend on T .

4.1.2 Alternating ML (AML) Algorithm

A ML estimator of matrix A = BC ′ does not always have a closed-form. In practice, it

is computed numerically from an algorithm, such as a Newton-Raphson algorithm. In

our framework of partial identification, a Newton-Raphson type of algorithm cannot

be used jointly for B and C. The reason is that each iteration requires an inversion

of the Hessian matrix, which is not invertible due to the identification issue. The

AML algorithm, also called the block mirror descent (BMD) algorithm [Hien and

Gillis (2021)], or zig-zag algorithm [see Hautsch at al. (2023)] solves this issue. In the

presence of a multiplicity of NMFs, we apply an AML algorithm [see, e.g. Gourier-

oux, Monfort and Renault (1990), Kim and Park (2008), Hastie et al. (2015), Gillis

(2020), Chapter 8 for alternating least squares, Hien and Gillis (2021) for NMF]. We

observe that, even if the factorization B,C is not identifiable, B (resp. C) is identi-
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fiable when C is known (resp. B is known). This leads to the following alternating

ML algorithm, where at step p, B̂p,T , Ĉp,T is computed and then B̂p+1,T , Ĉp+1,T are

recursively obtained as follows:

B̂p+1,T = arg max
B≥0

T∑
t=1

log l(yt|yt−1;BĈ ′p,T ), (4.3)

Ĉp+1,T = arg max
C≥0

T∑
t=1

log l(yt|yt−1; B̂p+1,TC
′). (4.4)

By construction, this algorithm produces at each iteration p a higher value of the

log-likelihood function than at iteration p− 1.

We have to distinguish the ML estimator from the alternating ML estimator ob-

tained from the algorithm (4.3)-(4.4). As mentioned earlier, when some parameters

are not identifiable there is a multiplicity of ML estimators of B and C. However,

there is a unique sequence of alternating ML estimators for the given starting values,

even though the AML algorithm does not necessarily numerically converge pointwise,

due to the identification issue. Moreover, even if it converges numerically to a global

maximum13, the limit can depend on the starting value and does not necessarily

correspond to a point in the interior of the identified set. The dependence on the

initialization has been observed in practice and led to a literature on the optimal

choice of the starting value [see the discussion in Gillis (2020), Chapter 4 and Espos-

ito (2021)]. This shows a confusion between the effect of non-identification and the

fact that the algorithm can stop at a local, instead of global maximum in some cases.

The discussion of starting values is different when the focus is on the estimation

of matrix A under the NMF restriction. Indeed, the matrix A is identifiable even

if the pair of matrices B and C is not. For this identifiable parameter matrix A it

is possible to prove that the AML estimator and the infeasible ML estimator have

identical asymptotic distributions, if the starting value of the AML algorithm is a

consistent estimator of A [see Vrahalis et al. (2003), Hautsch et al. (2023)]. Such

starting values could be derived from an unconstrained estimator of A if the number

n2 of elements in A is not too large, compared to the number of observations nT .

13See, Grippo and Sciandrosse (2000) for the numerical convergence conditions.
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4.2 Nonnegative rank K0 = Rk+(A0) = 1

As pointed out in Section 3.2.1, the NMF is essentially unique for K0 = 1. The

assumption K0 = 1 greatly simplifies the estimation and explains its frequent use in

applied econometrics [see e.g. Cai et al. (2021)]. Because the ML estimator is unique

in this case, it can be computed from a standard Newton-Raphson algorithm.

We introduce the identification restrictions: A = aβγ′, with a > 0, β ≥ 0, γ ≥ 0,

and β′e = γ′e = 1. Let us now consider a dynamic model described in Section 2.2.3,

which is the latent parametric model l(y; θ), where θ is replaced by Ayt−1 (see, Section

2.2.3). We get :

l(yt|yt−1;A) = l(yt; aβγ
′yt−1). (4.5)

The partial derivatives of the log-likelihood with respect to a, β, γ are easily derived

from the partial derivatives of the latent log-likelihood with respect to θ. We have :

∂ log l

∂β
(yt|yt−1;A) = aγ′yt−1

∂ log l

∂θ
(yt; aβγ

′yt−1),

∂ log l

∂γ
(yt|yt−1;A) = ayt−1β

′∂ log l

∂θ
(yt; aβγ

′yt−1),

∂ log l

∂a
(yt|yt−1;A) = γ′yt−1β

′∂ log l

∂θ
(yt; aβγ

′yt−1).

(4.6)

The asymptotic properties, especially the asymptotic distribution of the ML estima-

tors of a, β, γ, depend on the location of the true vectors β0, γ0. These properties are

straightforward under the strict positivity assumption below.

Strict Positivity Assumption A.2 iii): The entries of β0 and γ0 are strictly

positive.

Under this strict positivity assumption, the non-negativity-constrained ML estima-

tors have asymptotically strictly positive entries, and the unconstrained and non-

negativity constrained estimators are asymptotically equivalent. However, the ML

estimator has to account for the linear constraint of unit sum. This estimator with-

out the non-negativity restrictions is defined as :

(â, β̂, γ̂) = arg max
a,β,γ

T∑
t=1

log l(yt; aβγ
′yt−1), s.t : β′e = γ′e = 1.
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The first-order conditions for the Lagrange multipliers associated with the linear

restrictions and denoted by λ, µ , are :

T∑
t=1

[aγ′yt−1
∂ log l

∂θ
(yt; aβγ

′yt−1)]− λ = 0,
T∑
t=1

[ayt−1β
′∂ log l

∂θ
(yt; aβγ

′yt−1)]− µ = 0,

T∑
t=1

[γ′yt−1β
′∂ log l

∂θ
(yt; aβγ

′yt−1)] = 0, β′e = γ′e = 1.

The FOC need to be solved in a, β, γ, λ, µ.

Asymptotically, when T tends to infinity, we get consistent and asymptotically

normal ML estimators of B and C. Their asymptotic variance-covariance matrix has

a standard form [see Gourieroux and Monfort (1995), Section 10.3] and its estimate

can be computed by standard software.

Remark 4: As pointed out in Section 3.2.1, β1 (resp. γ1) can be interpreted as an

eigenvector of A (resp. A′). It is easy to check that β1 (resp. γ1) is an eigenvector of

AA′ (resp. A′A). This implies that A = β1γ
′
1 is a singular value decomposition (SVD)

of matrix A, for which statistical inference is available mainly in a Gaussian framework

[Anderson (1963), Tipping and Bishop (1999)]. However, for Rk(A0) = Rk+(A0) = 1,

the SVD estimation method is not relevant, as its standard asymptotic properties

do not account neither for the non-negativity of the data nor the non-negativity of

matrix A0. Moreover, the SVD interpretation of the NMF is no longer valid for

Rk+(A0) ≥ 2. Indeed, matrix AA′ (resp. A′A) is also non-negative, and, except the

Perron, Froebenius eigenvector β1 of AA′, all other eigenvectors β2, β3, ... must have

at least one negative, or non-real component.

4.3 Nonnegative rank K0 = Rk+(A0) ≥ 2.

As mentioned in Section 3.2.3, it is sufficient to estimate one of the admissible NMF’s,

i.e. an origin in the identified set, to deduce the sharp identified set. The problem

with applying the AML method is that the convergence of the AML estimator to the

identifed set does not imply its pointwise convergence to a given NMF, which could

be used as an origin. Moreover, since the origin is used to derive the asymptotic
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distribution of the estimator of the identified, it has to be in the interior of the

identified set. This section shows how an IML algorithm can solve these issues,

allowing us to derive the asymptotic distribution of the estimated set of admissible

NMF’s. For expository purpose, we provide in the text the relevant assumptions. The

additional assumptions needed for asymptotic analysis are given in online Appendix

2.

4.3.1 Consistency of the alternating ML estimator

In this section we consider the consistency of AML approximation of the identified

set when T tends to infinity and the number of iterations pT in the AML algorithm

depends on T in a suitable manner. Let us consider the dynamic model :

l(yt|yt−1;A) = l(yt; a
K∑
k=1

πkβ
∗
kγ
∗′
k yt−1), (4.7)

with β∗
′

k e = γ∗
′

k e = 1, k = 1, . . . , K, π′e = 1 and the identified set:

A0 = {a, πk, β∗k , γ∗k, k = 1, . . . , K, such that a
K∑
k=1

πkβ
∗
kγ
∗′
k = A0}.

where A0 is the true value of A.

Section 2.2 shows that the underlying parametric families l(y; θ), θ ≥ 0, are often

constructed from the products of Poisson, or exponential distributions. Therefore,

they satisfy the following assumption :

Assumption A.4 : The underlying log-likelihood log l(y; θ) is concave in θ, θ ≥ 0.

Under Assumption A.4, if l(yt|yt−1, A) = l(yt, Ayt−1) and the components of yt are

non-negative, each step of the AML algorithm outlined in Section 4.1.2 leads to a

unique solution in (B,C), because the objective function is log-concave in B (resp.

C) for a given C (resp. B), and then also under the alternative parametrization

(a, πk, β
∗
k , γ

∗
k, k = 1, . . . , K). Therefore, the AML estimator is a function of the under-

lying (normalized) log-likelihood
1

T
LT (A) =

1

T

T∑
t=1

log l(yt;Ayt−1), and of the initial

values used in the algorithm (and of the number of iterations p). Let the set of pa-

rameters be denoted by α = (πk, β
∗
k , γ

∗
k, k = 1, . . . , K) and the selected initial value
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by αo. The AML estimator at iteration p can be written as :

α̂T (αo, p) ≡ δ(
1

T
LT (.);α0, p), (4.8)

where δ is a deterministic function. Then, for large T , the AML estimator will

converge asymptotically to the value :

α∞(αo, p) = δ[E0 log l(Yt;A0Yt−1);α
0, p], (4.9)

that belongs in the set A0 if p is large. Note that this limiting value can depend

on the starting value α0 of the algorithm. More precisely, under Assumptions A.1-

A.4 and the additional regularity conditions a.1 given in online Appendix 2, we have

the following proposition as a direct consequence of the numerical consistency of the

AML approximation (for p → ∞ and T fixed) and of the uniform convergence in

Proposition 3 :

Proposition 4: For large T , there exist a function c(.) and a number of iterations

pT such that, for any p ≥ pT : D[αT (αo, p),Ao] < c(αo)/T, where D measures the

distance between αT (αo, p) and the set Ao.

In practice, we can apply the AML algorithm with a given starting value αo and a

number of iterations p. The number p needs to be set sufficiently large for Proposition

4 to be satisfied. Then, the asymptotic bias of the alternating ML estimator will be

sufficiently small to become negligible in the asymptotic distribution of the IML

estimator derived later in the text. Two optimizations are performed at each step

of the algorithm, with respect to B and C, respectively. A Newton-Raphson type

of algorithm can be used in each of these optimizations. Under the log-concavity

assumption A.4, the Newton-Ralphson algorithm is a special case of the steepest

ascent algorithm, which increases the objective function at each step. As the increase

of the objective function at each step of the algorithm is ensured, the AML with a fixed

number of iterations in each intermediate optimization will also increase the objective

function, which is sufficient for the numerical consistency of the AML algorithm under

Assumption A.4.

It follows from Proposition 1 that all other elements of A0 are functions of α∞(αo; p)
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and of the elements of a matrix Q with unitary diagonal elements, such that :

B[α∞(αo, p)]Q ≥ 0, C[α∞(αo, p)][Q′]−1 ≥ 0.

This defines a set Q[α∞(αo, p)] of admissible values of transformation Q.

Equivalently, we have a parametric representation of the identified set A0 of NMF’s :

A0 = {α : α = ζ[α∞(αo, p), Q], Q ∈ Q[α∞(αo, p)]}, (4.10)

where ζ is a known function. Then, the set A0 is consistently estimated as:

ÂT = {α : α = ζ[α̂T (αo, p), Q], Q ∈ Q[α̂T (αo, p)] ≡ Q̂T (αo, p)}. (4.11)

The estimation method presented above will allow us to approximate the identified

set for a sufficiently large p .

Proposition 4 implies that the above AML (set) estimator is a set maximizer of

the log-likelihood function, which is flat at the maximum. This AML estimator could

be used to derive a Monte-Carlo confidence set for the identified set based on a quasi-

likelihood ratio with the quantiles computed by simulations [see, Chen, Christensen

and Tamer (2018), Remark 1, p. 1972]. In our framework, the chosen quasi-prior

distribution would need to ensure the existence of the log-likelihood function LT (A).

For example, it would have to satisfy the non-negativity restrictions on matrix A in

a Poisson autoregressive model. Moreover, the generic form of the estimated confi-

dence set, i.e. {A : LT (A) ≥ ξ}, where LT denotes the log-likelihood and ξ is the

estimated quantile, is hard to determine unless the appropriate parametrization given

in Proposition 1 is used.

Because of the lack of identification, we do not have the numerical stability of

α̂T (α0, p), for large p. Therefore, we cannot expect to prove the asymptotic normality

of this AML estimator. In order to stabilize the algorithm, we include an additional

optimization step.

4.3.2 How to introduce an identification restriction by Identifying Max-
imum Likelihood

An identification issue is commonly solved either by introducing implicit identification

restrictions, or by reparametrizing the model and dividing the parameters into the
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set of identifiable and non-identifiable parameters (this is the ”global” reduced form

reparametrization considered in Shi and Shum (2015) and Chen et al. (2018), Section

5.1.1). These approaches are not suitable in our framework, where the parametriza-

tion of the identified set depends on a selected origin in A0. Hence, we introduce

indirectly K(K − 1) identification restrictions.

Let us consider an alternative parametrization method. For a given origin, the

identifiable set is parametrized by vec∗Q = q, where vec∗Q denote the stacked ele-

ments of Q except for the diagonal elements equal to 1. Let α̃ denote the solution of

the AML algorithm at step p. α̃ is not necessarily an element in the interior of the

identified set. Moreover, it depends on the starting value.

Let us now determine an interior origin α∗0. We define the extended parameter

vector (q, α̃) ≡ α. Using this notation, the NMF α̃ is now represented as (0, α̃).

We define the interior origin of the identified set as the optimizer of an additional

criterion with respect to the additional parameter q. Several criteria g̃(q, α̃) = g(α),

where α ∈ A0, arise naturally :

i) The concentration of a discrete probability distribution is usually measured by
K∑
k=1

(πk log πk). This quantity is negative, attains its minimum for πk = 1/K, ∀k,

that is a uniform distribution, and increases to zero with the concentration of the

distribution. Therefore, given α̃, the factorization provides us the least concentrated

latent heterogeneity defined by :

α∗0 = arg max
α∈A0

−
K∑
k=1

πk(q, α̃) log πk(q, α̃),

where the minimization is in q for a given α̃. This means that the new selected origin

is α∗0 = (q(α̃), α̃), where:

q∗(α̃) = Argmaxq∈Q(α̃) −
K∑
k=1

πk(q, α̃) log πk(q, α̃),

where the domain of q can depend on α̃.

ii) The volume/collinearity criterion is: g(α) = det(B∗
′
B∗),where B∗ = (β∗1 , . . . , β

∗
K),

or g(α) = det(C∗
′
C∗), where C∗ = (γ∗1 , . . . , γ

∗
K). As above B∗, C∗ depend on (q, α̃),

but we do not account for it to keep the notation simple. The above criterion measures
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the volume of the parallelepiped generated by the columns of B∗ (resp. C∗). The

larger this volume, the less ”collinear” the columns of B∗ (resp. C∗) 14. Alternatively,

the collinearity measure could be applied to the matrix B itself. Let B̃ denote the

corresponding element of α̃. Then we have:

B(q, α̃) = B̃Q, and det[B(q, α̃)′B(q, α̃)] = det[Q′B̃′B̃Q] = (det(Q))2det(B̃′B̃).

The maximization of the collinearity measure is equivalent to the maximization of

(det(Q))2 on the domain Q(α̃). This objective function is independent of α̃, but the

constraints on q depend on α̃.

The patterns of these criteria and their combinations are illustrated and discussed

in Online Appendix 3 for the example of Section 6. When they are used, the optimum

of function g can still be reached on the boundary of the domain of values of q1,2, q2,1

rather than in its interior.

iii) The repulsion criterion. It follows from Proposition 1 that the points in the

interior of the identified set are such that the elements β∗i,j and γ∗i,j are strictly positive.

Therefore, a point in the interior can be reached by combining the previous criteria

with a third one such that
∑

i

∑
j(ln(β∗i,j) + ln(γ∗i,j)) that creates a repulsion effect

on the boundary of the domain.

To approximate the interior origin α∗0, an additional optimization step needs to

be included in the AML algorithm15. Let the recursive system in this algorithm be

denoted by: α(p+1) = H(α(p)), where H depends on the observations. Then, the

identifying maximum likelihood (IML) algorithm is the following :

step 1: Select an initial value α(0). The parameter value needs to be in the

parameter set. In particular, the associated starting values B(0), C(0) have to be non-

negative and of a given rank K. This rank condition on the starting value is important

to ensure non-degenerate behavior of the algorithm at the next steps.

step p : At step p, a value α(p) is available.

i) Apply the AML algorithm to get a value α̃(p+1) = H(α(p)).

This value is considered as an approximation of a point in the identifiable set.

14These criteria are the analogues of SVD identification restrictions: B′B = C ′C = Id, where all
factorial directions are orthonormal.

15This additional step is the analogue of step 2 in the estimation approach introduced in Davezies
et al. (2022), Section 3.1., where it is applied to an approximate identified set instead of the identified
set itself.
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It can be used to parametrize the set Â(p) by q.

ii) Perform the optimisation of the additional criterion to get :

q(p+1) = Optq∈Q(p+1) g̃(q; α̃(p+1)),

where Q(p+1) is the domain defined by the inequality restrictions with α̃(p+1). Then,

the solution is a function of α̃(p+1), that is : q(p+1) = q(α̃(p+1)), say, where function

q(.) does not depend on the observations.

iii) Find α(p+1) by transforming α̃(p+1) with the linear transformation Q(p+1) asso-

ciated with q(p+1) to get π
(p+1)
k , k = 1, ..., K arranged in a decreasing order16. More

precisely:

compute Q(p+1) such that q(p+1) = vec∗Q(p+1);

compute B̃(p+1), C̃(p+1) from α̃(p+1);

compute B(p+1) = B̃(p+1)Q(p+1), C(p+1) = C̃(p+1)[Q(p+1)′ ]−1;

compute α(p+1) from B(p+1), C(p+1), etc.

The main difference between the AML and IML algorithms concerns the consis-

tency when T, pT tend to infinity according to Proposition 4. The AML converges to

the set A0, but the convergence is not pointwise. The IML converges to a given inte-

rior origin α∗0 that allows us to perform a Taylor expansion of the first-order conditions

in order to derive the asymptotic normality, as in Shi and Shum (2015).

The IML method requires the availability of algorithms for the optimization of

nonlinear functions under a large number of nonlinear inequality restrictions. The

recent developments in Active Set Sequential Quadratic Programming (SQP) have

largely solved this problem [see e.g. Gill et al. (2002) and Liu (2005) for a proof of

numerical convergence].

Remark 5: The additional intermediate optimization in the IML algorithm does not

necessarily have to be introduced starting from the first iteration p = 1. It can be

introduced later, when p is sufficiently large to get a value close to the identified set

by Proposition 4. In this respect, the IML is used to stabilize pointwise the values

obtained from the AML algorithm.

16To solve the up-to-permutation idenification issue.
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4.3.3 Asymptotic distributions

The standard asymptotic arguments can be used to derive the asymptotic normality

of the IML estimator adjusted to reach α∗0, since α∗0 is in the interior of A0 and if the

associated π∗0k, k = 1, ..., K are all distinct17. To clarify the role of the intermediate

optimization in the IML algorithm, let us first consider the standard information

matrices. Two information matrices appear naturally18 :

i) The information based on unconstrained A, is E0

[
−∂

2 log l(yt|yt−1;A)

∂ vec A ∂ vec A′

]
. This

matrix is invertible by the assumption of identifiable A, but can be of a high dimension

in practice.

ii) The information matrix corresponding to parameter α: J0 = E0[−
∂2 log l(yt|yt−1;α)

∂α∂α′
]

is constrained by the unit mass restrictions on π, β∗k , γ
∗
k, k = 1, . . . , K. This matrix

has a smaller dimension, but is not of full rank because of the lack of identification.

The IML algorithm introduced above has extended the constrained maximum

likelihood approach by adding asymptotically the identification restrictions corre-

sponding to the first-order conditions of the optimization of g̃(q, α) with respect to q,

that are :

∂g̃(q, α)

∂q
= 0⇒ q = q(α), (4.12)

of a number equal to the degree of underidentification.

These limiting conditions have been replaced by
∂g̃

∂q
[q(α̂T ), α̂T ] = 0 in the IML

algorithm and can be expanded in a neighbourhood of [q(α∗0) = 0, α∗0]. We get :[
∂2g̃

∂q∂q′
[0, α∗0]

dq

dα
(α∗0) +

∂2g̃

∂q∂α′
(0, α∗0)

]√
T (α̂T − α∗0) ' 0,

that are the additional asymptotic linear restrictions D′2
√
T (α̂T−α∗0) = 0 on

√
T (α̂T−

α∗0), say, to be taken into account for the computation of the asymptotic variance of

α̂T . More precisely,

17This additional condition is analogous to the condition of distinct eigenvalues in the joint spectral
decomposition of AA′ and A′A in the SVD.

18For expository purpose, we keep the same notation l for the conditional likelihood as a function
of A, or a function of α.
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Proposition 5 : If α∗0 is in the interior of A0, if the associated π∗0k, k = 1, ..., K,

are all distinct, if assumptions A.1-A.4 and the additional regularity assumptions

a.1-a.2 are satisfied, then,
√
T (α̂T −α∗0)

d−→ N(0, J11
0 J0 J

11
0 ), where J11

0 is the North-

West block in the block decomposition of the inverse of matrix

(
J0 D
D′ 0

)
, D =

(D1, D2), D1 defining the 2K+1 unit mass restrictions on πk, β
∗
k , γ

∗
k, k = 1, . . . , K, and

D2 defining the (asymptotic) linearized restrictions corresponding to the intermediate

optimizations in the IML algorithm.

Proof: See Appendix 1.1.

In the expression of the asymptotic variance-covariance matrix, the three main

components are the information related with the unconstrained ML of α, the unit mass

restrictions D1 and the restrictions D2 due to additional intermediate optimization,

respectively.

Remark 6: The sequence of optimizations cannot be replaced by a penalty term in

the objective function as suggested by the machine learning literature either to ensure

the (numerical) convergence of the AML algorithm [see e.g. Kim and Park (2008),

Schachtner et al. (2011), Hastie et al. (2015)], or to circumvent the curse of dimen-

sionality [De Paula et al. (2023), eq. (10)]. In our framework, this Penalty Function

Approach (PFA) would lead to an objective function of the form log lT (y;α)+λTg(α),

where the tuning parameter λT would be a function of T , appropriately chosen to en-

sure the numerical convergence. It is easy to see why this approach will not provide an

estimator converging to an interior origin in the identified set. Indeed, the asymptotic

first-order conditions would become
∂ log lT (y, α)

∂α
+ λT

∂g(α)

∂α
. These FOCs are not

aligned with the direction allowing us to remain in the set, since
∂g(α)

∂α
=
dg̃[q(α), α]

dα

differs from
∂g̃(q, α)

∂q
[see also Ariaz et al. (2018), Section 5, for a critique of PFA in

a SVAR model with partial identification].

The asymptotic Gaussian uncertainty on the IML estimator of α∗0 determines all

the uncertainties on the IML estimator of the set A0 of NMF’s. More precisely,

any other element of A0 can be written as a deterministic function of α0: ξ(q, α
∗
0),

with q ∈ Q(α∗0). Then, that element can be estimated by ξ(q, α̂T ), which is a given

function of αT . Therefore, it inherits the asymptotic properties of α̂T : it is consistent
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of ξ(q, α∗0), asymptotically normal, and its asymptotic variance-covariance matrix is

obtained from the Slutsky formula (i.e. the δ-method), whenever q is not on the

boundary of Q(α∗0). If q is on the boundary, its asymptotic distribution will become

a truncated normal, and can be easily found by simulation.

Remark 7: The IML approach can be used to derive the lower and upper bounds

on partially identified scalar parameters, and to obtain the measures of uncertainty

on these bounds. The examples are the minimum and maximum values of functions
K∑
k=1

(πk log πk), det(B̃′B̃), det(C̃ ′C̃). This procedure is analogous to determining the

confidence intervals for average marginal effects in a fixed effects panel logit model

[Liu et al. (2023), Davezies et al. (2022)]. Likely, there exists an interval of admissible

values of the above uncertainty measures. Such an interval is easy to obtain for the

measure of concentration when K = 2. However, the lower and upper bounds will be

reached on the boundaries of the identified set for q12, q21 when K = 2, for example.

Then, the joint asymptotic distribution of these bounds cannot be Gaussian due to

the effect of infimum in Proposition 2 19. Note that the joint asymptotic distribution

of these two bounds is easily derived by simulations and, by construction, we cannot

have bound reversal in the estimation.

Remark 8: The IML approach can also be used to derive a confidence set for A0 with

the correct asymptotic level, following Shi and Shum (2015). However this asymptotic

confidence set is difficult to represent graphically due to the high dimension of A0.

4.3.4 Asymptotic distribution of ÂT

The IML approach helps us find the estimates and confidence intervals of identifiable

parameters, such as the elements aij of matrix A. In practice, we may encounter the

curse of dimensionality that complicates the unconstrained estimation of A. More-

over, the estimator has to be applied under the constraint of a given non-negative

rank : Rk+(A) = K, and the rank-constrained confidence intervals are likely nar-

rower than the unconstrained ones. They can be derived from α̂T by simulations,

given that :

19In this respect, Assumption A.1 i) of normality of the upper and lower bounds in Imbens et al.
(2004), Stoye (2009) is not satisfied in our framework.
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aij ' â
K∑
k=1

π̂kβ̂
∗
ikγ̂
∗
jk = âij.

Asymptotically, âij will converge to the true value aij,0 that does not depend on

the choice of interior origin α∗0 . Similarly, its asymptotic variance-covariance matrix

is also independent of this choice, i.e. of the selected function g̃ and of the starting

values of the IML algorithm. The additional constraints D2 are introduced only for

solving the identification issue.

Proposition 6 The asymptotic distribution of the IML estimator of matrix A

does not depend on the interior origin α∗0 in the identified set, i.e. on the choice of

the additional optimization criterion.

Proof: See Appendix 1.2.

We have introduced an IML estimator of A0 under the non-negative rank restriction

Rk+(A0) = K0, derived its asymptotic Gaussian behavior20 and found the expres-

sion of the associated efficiency bound on this identifiable matrix parameter. The

asymptotic variance-covariance matrix of ÂT is obtained by applying the Slutsky

formula based on the first-order expansions of a
∑K

k=1 πkβ
∗
kγ
∗
k in a neighbourhood of

α∗0 = (a∗0, π
∗
0k, β

∗
0k, γ

∗
0k, k = 1, ..., K). Then, the asymptotic confidence intervals for the

identifiable parameter functions of A also share the asymptotic efficiency properties.

The asymptotic expansion and normality of the IML estimator of A could also

be used to derive the asymptotic distribution of the log-likelihood ratio test statistic

corresponding to the test of hypotheses: H0 : Rk+A = K−1 against H0 : Rk+A = K

that is a chi-square distribution with an appropriate degree of freedom. Then, we

would deduce a sequence of test procedures to estimate Rk+(A). Due to the curse of

dimensionality we cannot follow a ”general to specific” approach, starting from the

highest possible rank K = inf(n,m) and testing it against the alternative of a lower

value of K. Instead, we have to start from the smallest value of K = 0 and test it

against higher values of K = 1, 2, ...

20This asymptotic Gaussian distribution is degenerate because of the reduced rank.
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5 Extension to Nonparametric Identification

5.1 The Identified Set

The proof of Proposition 1 is valid in a nonparametric framework. Let us consider

a pair of real variables (X, Y ) with a continuous joint distribution on a product of

intervals and assume a positive pdf f(x; y) on that interval. We can be interested in

a decomposition :

f(x, y) =
K∑
k=1

πkβk(x)γk(y), (5.1)

where (πk) defines the latent heterogeneity distribution, and βk(x), γk(y) are the pdf’s

of x and y, respectively. This is a mixture model in which each joint distribution

βk(x), γk(y) in the mixture satisfies the independence condition [see Compiani and

Kitamura (2016) for mixtures in Econometrics]21.

The proof remains valid if functions β1, . . . , βK (resp. γ1, . . . , γK) are a.s. linearly

independent. Since the model is already normalized, Proposition 1 becomes :

Proposition 1’ : Let us consider a true factorization of the joint pdf :

f0(x, y) =
K∑
k=1

b0k(x)γ0k(y) = B0(x)C0(y),

where the functions b0k are positive densities (not necessarily with unitary mass) and

γ0k are probability densities. Then, the other observationally equivalent decomposi-

tions are B(x) = B0(x)Q,C(y) = C0(y)(Q′)−1, where the matrix Q is invertible, with

unitary diagonal elements and such that :B0(x)Q ≥ 0, a.s. in x, C0(y)(Q′)−1 ≥
0 a.s. in y.

The decomposition (5.1) of the joint p.d.f. has alternative interpretations. For in-

stance, the conditional p.d.f. can be written as:

f(y|x) =
f(x, y)

f(x)
=

K∑
k=1

b0k(x)

f(x)
γ0k(y) ≡

K∑
k=1

b∗0k(x)γ0k(y).

21This condition can be written for more than two variables, so that the mixture becomes iden-
tifiable and easier to analyse [Hall and Zhou (2003), Kasahara and Shimotsu (2009)]. A suitable
notion of nonnegative rank has not yet been introduced in the literature for 3- or 4-entry tables.
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Therefore, it is equivalent to impose a reduced rank condition on the joint distribution,

or on the conditional distributions. This problem is considered in Henry, Kitamura

and Salanie (2014), where the pair of variables is denoted by Y,W , the representation

is written conditionally on a third variable X, and the independence condition on the

elements of the mixtures is called the exclusion restriction [see also Compiani and

Kitamura (2016)].

5.2 Nonparametric Identifying Maximum Likelihood

The estimation approach outlined in Section 4 can be extended to the functional pa-

rameter framework, with functional parameters bk, k = 1, . . . , K, scalar parameters

πk, k = 1, . . . , K, and additional parameters in vec∗Q. Let us assume i.i.d. observa-

tions on (Xi, Yi), i = 1, . . . , n. Then, a kernel based AML can be applied with the

objective function :

n∑
i=1

{K(
xi − x
hn

)K(
yi − y
hn

) log
K∑
k=1

[bk(x)γk(y)]},

where K(.) denotes a kernel, hn the bandwidth and
∫
γk(y)dy = 1, k = 1, ..., K. The

maximisation with respect to bk(x), γk(y), k = 1, . . . , K provides the functional esti-

mators of bk(.), γk(.), k = 1, . . . , K, and then functional estimators of πk, βk(.), γk(.).

Next, to solve the identification issue, an additional optimisation has to be per-

formed to fix a mixture in the identified set. Criteria equivalent to the criteria intro-

duced in Section 4.3.2 can be used, either the concentration criterion
K∑
k=1

(πk log πk),

or the volume/collinearity criterion det Γ, with Γ =

∫
γ(y)γ′(y)dy.

The analysis of the asymptotic properties of this functional estimation approach

are out of the scope of this paper and are left for future research22.

22In this framework the benchmark is a functional parameter, a case that is not included in Shi
and Shum (2015).
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6 Illustration

We consider in this section observations yt, t = 1, . . . , T , on a process satisfying a

multivariate autoregressive conditional Poisson (ACP) model:

yit|yt−1 ∼ P(aiyt−1 + µi), ai ≥ 0, µi ≥ 0, i = 1, . . . , n, (6.1)

where y1t, . . . , ynt are independent given yt−1. The process is such that E(Yt|Yt−1) =

AYt−1 + µ and ergodic if the eigenvalues of A are of modulus strictly less than 1.

6.1 The true dynamics

We consider a process of dimension four n = 4, and the true matrix A0 of non-negative

rank equal to 2. This matrix is given by :

A0 =
1

96


1
1
1
1

 (1, 1, 2, 2) +
1

96


1
2
1
2

 (1, 1, 1, 1)

=
1

96


2 2 3 3
3 3 4 4
2 2 3 3
3 3 4 4

 =


0.0208 0.0208 0.0312 0.0312
0.0312 0.0312 0.0416 0.0416
0.0208 0.0208 0.0312 0.0312
0.0312 0.0312 0.0416 0.0416

 . (6.2)

and the true intercept is µ0 = (2, 2, 2, 2)′. The matrix A0 can be rewritten to highlight

its interpretations in terms of probability distributions (see eq. 2.13). We have :

A0 = a0[π0β
∗
01γ
∗′
01 + (1− π0)β∗02γ∗

′

02), (6.3)

where a0 = 1/2, π0 = 1/2,

β∗01 =
1

4


1
1
1
1

 , γ∗01 =
1

6


1
1
2
2

 , β∗02 =
1

6


1
2
1
2

 , γ∗02 =
1

4


1
1
1
1

 . (6.4)

By Proposition 2, we get :

−1 ≤ q12 ≤ 1, −1/2 ≤ q21 ≤ 1/2. (6.5)
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Therefore the identified set for the matrix :

B = B0Q =
1

96


1 1
1 2
1 1
1 2

( 1 q12
q21 1

)
,

is convex and generated by the four extreme matrices corresponding to :

(q12 = −1, q21 = −1/2), (q12 = −1, q21 = 1/2), (q12 = 1, q21 = −1/2), (q12 = 1, q21 = 1/2)

For instance the first extreme point is :

B =
1

96


1/2 0
0 1

1/2 0
0 1

 ,

and has some zero entries, i.e. satisfies the sparsity property.

We generate simulated trajectories of a four-dimensional count process for t =

1, . . . , T = 500 and display in Figure 1 the first 200 values. The initial values are set

equal to yit = 3, i = 1, . . . , 4 at t = −50. The observed values vary between 0 and 10.

0 50 100 150 200

0
2

4
6

8

Figure 1: Evolution of yt

By construction, the effect of lagged values is captured by the sufficient statistics:

z1,t = y1,t + y2,t and z2,t = y3,t + y4,t displayed in Figure 2.
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Figure 2: Evolution of the Sufficient Statistics

The process zt = (z1,t, z2,t)
′ follows a conditional Poisson model with a NMF of non-

negative rank equal to 2, i.e. the dimension of z. We observe clustering of small and

large values in Figures 1 and 2 because of serial dependence of both processes. The

true parameter values chosen in this experiment can complicate the inference because

matrix A0 has two non-negative singular values, the first one 37.9 times bigger than

the second one, making it difficult to distinguish between the ranks Rk(A)=1 and

Rk(A)=2 in practice. Moreover, the uniform distributed heterogeneity in matrix A0

factorization complicates the identification.

6.2 Inference

To find the NMF, we consider the maximum likelihood estimation of matrix A from

the simulated data. The log-likelihood computed from the component series i =

1, ..., 4 at times t = 1, ..., T and concentrated with respect to µ is:

l(A; y) ≈
4∑
i=1

T∑
t=2

{−(ȳi + ai(yt−1 − ȳ)) + yi,t ln(ȳi + ai(yt−1 − ȳ))} (6.6)

where ȳ denotes the marginal mean of the series and ≈ stands for the equality up to an

additive term independent of parameter A. This concentrated log-likelihood function

is maximized by applying the IML algorithm in which the additional maximization

criterion combines the concentration measure π ln π + (1− π) ln(1− π), the measure

of collinearity of the standardized factors β∗, i.e. |det(B∗′B∗|, and the repulsion

criterion. The joint use of the three criteria is needed in our experiment. The use of

the concentration criterion only in the auxiliary optimization is insufficient to define

37



an origin in the true identified set. It allows us only to reduce the degree of under

identification by one. With the additional collinearity criterion, the solution α∗ is

located on the border of the identified set. Then, the repulsion criterion allows us

to reach a point α∗0 in the interior. A discussion of the patterns of these additional

objective criteria as a function of Q is provided in the Online Appendix 3.1 for the

non-negative rank K = 2.

The IML estimated components q1,2 and q2,1 of matrix Q, based on AML matrices

B̂T and ĈT are reported in Appendix 3.3 and obtained by maximizing the auxiliary

objective function with the volume/collinearity and repulsion criteria are q̂1,2 =0.1833

and q̂2,1 = 0.0872 for T = 500 and q̂1,2 = 0.1557 and q̂2,1 = -0.0393 for T = 1000.

For the sample size T=500, we get the IML estimated matrices:

B̂IML
500 = B̂AML

500 ∗ Q̂500 =


0.0291 0.1181
0.0395 0.0939
0.1331 0.0279
0.1182 0.0511

 , ĈIML
500 = ĈAML

500 ∗ (Q̂′500)
−1 =


0.0926 0.3922
0.1250 0.2903
0.17648 0.2112
0.4542 0.0840

 , Â500 =


0.0490 0.0379 0.0301 0.0232
0.0405 0.0322 0.0268 0.0259
0.0233 0.0248 0.0294 0.0628
0.0310 0.0297 0.0317 0.0580

,

with d̂ist = 0.5136, π̂ = 0.4881, and the normalized matrices are:

β̂∗500 =


0.0911 0.4056
0.1236 0.3226
0.4158 0.0959
0.3693 0.1757

 , γ̂∗500 =


0.1091 0.4010
0.1474 0.2969
0.2080 0.2159
0.5354 0.0859

 ,

For the sample size T=1000, we get the estimated matrices:

B̂IML
1000 = B̂AML

1000 ∗ Q̂1000 =


0.0480 0.0687
0.0628 0.0750
0.1379 0.0220
0.1225 0.0409

 Ĉ1000 =IML= ĈAML
1000 ∗ (Q̂′1000)

−1 =


0.1140 0.3718
0.0794 0.3321
0.1558 0.1774
0.4670 0.1901

 , Â1000 =


0.0310 0.0266 0.0197 0.0355
0.0351 0.0299 0.0231 0.0436
0.0240 0.0183 0.0254 0.0687
0.0292 0.0233 0.0264 0.0650

,

with d̂ist = 0.4119, π̂ = 0.5777 and the normalized matrices are:
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β̂∗1000 =


0.1292 0.3323
0.1692 0.3630
0.3715 0.1067
0.3299 0.1978

 , γ̂∗1000 =


0.1397 0.3470
0.0973 0.3099
0.1908 0.1655
0.5720 0.1774

 ,

where d̂ist is a weighted measure of distance between ÂT and A0 (see online Appendix

3.2).

Additional estimation results are provided in on-line Appendix 3. In on-line Ap-

pendix 3.2 we show the unconstrained OLS estimation of matrix A based on the

Seemingly Unrelated Regressions (SUR) model. The approach is simple to imple-

ment, although much less accurate than the IML method because the constraint of

a known rank is not used and the OLS provides negative values of some estimated

coefficients, which are incompatible with the parameter set. The results of the AML

step of our procedure are given in on-line Appendix 3.3. We observe that the estima-

tors of matrix A converge, while the AML estimators of B∗ and C∗ show much more

variation due to the identification issue.

7 Concluding Remarks

We introduce the Identifying Maximum Likelihood (IML) method for estimation of

the identified set of NMF’s and derive the asymptotic distribution of the estimated

set and of specific elements of that set. Moreover, we provide a ML estimator of

the non-negative matrix A0 under a given non-negative rank constraint and derive

its asymptotic distribution. The proposed approach is related to the nonparametric

identification in mixture models. Although the non-negative matrix factorization

(NMF) is a well-known technique of dimension reduction for non-negative matrices,

it is used wihout an associated probability model for the observed data. Our paper

fills this gap by considering a stochastic dynamic network model.

Our approach can be used in a variety of applications with a lack of local identifi-

ability when an element of the identified set is characterized as a solution of auxiliary

optimizations, and the identified set can be parametrized given this element consid-

ered as a new origin of the identified set (manifold). In practice, the dimension of

the parametric identified set can be very large and impossible to be represented in a

low-dimensional figure. However, it is possible to illustrate various elements or cuts
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of that set, which have structural interpretations and are easier to plot and discuss

[see on-line Appendix 4].

Partial identifications of the same type are encountered in Singular Value Decom-

position (see on-line Appendix 5) and the analysis of monetary shock effects under

the sign restrictions on impulse response functions [Baumeister and Hamilton (2015),

Ariaz, Rubio-Ramirez and Waggoner (2018), Granzeria et al. (2018)]. For example,

in a VAR(1) model Yt = ΦYt−1 + ut, with ut ∼ N(0,Σ) and Σ = AA′, the matrix

A is not identifiable. The identified set can be reduced by imposing a restriction so

that a ”monetary policy impulse vector (a column of A) implies negative responses

on prices and non-borrowed reserves and positive responses on federal funds rate, at

all horizons”. Then, the reduced identified set of these impulse vectors can be easily

parametrized [see, a description of the IRF identified set in Gourieroux, Jasiak (2024),

Proposition 2]. To select the most interpretable βk’s or γ′ks, one can use an approach

similar to the factor analysis of time series, where the dynamic factors are obtained

from the SVD, by projecting factorial directions on the observable time series (the

so-called mimicking dynamic factors). A similar approach can be applied in the NMF

framework with partial identification.
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Appendix 1: Proofs of Propositions 5 and 6

1. Proof or Proposition 5

i) The proof is standard and based on the asymptotic expansion of the first-order

conditions on the Lagrangean for the equality restrictions (note that the inequality

restrictions are not binding if α∗0 belongs in the interior of A0). These asymptotic

expansions are :

(
J0 D
D′ 0

)[ √
T (α̂T − α∗0)√
T (λ̂T − λ∗0)

]
'

 1√
T

T∑
t=1

∂ log l

∂α
(yt|yt−1;α∗0)

0

 , (a.1)

where λ̂T is the associated estimator of the Lagrange multipliers. Because α∗0 is a max-

imizer of E0 log l(yt|yt−1, α), the score in (4.13) is asymptotically normally distributed
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with mean zero and variance J .

Then, the result follows whenever the matrix

(
J0 D
D′ 0

)
is invertible. 23

ii) Let us now discuss this invertibility condition by finding the null space of this

matrix, i.e. the solutions θ, λ of the system : J0θ +Dλ = 0, D′θ = 0.

We know that D′J0θ+D′Dλ = 0⇒ λ = −(D′D)−1D′J0θ. Then the system in θ only

is : (Id− P )J0θ = 0, D′θ = 0, where P is the orthogonal projector on the space

generated by D.

Since the columns of (Id− P )J0 are orthogonal to the columns of D, we see that

θ = 0 is the unique solution of the above system, if and only if : Rk((Id − P )J0) =

dimα− dim q − 1− 2K. This statement is Assumption a.2 viii) in on-line Appendix

2.

2. Proof or Proposition 6

The asymptotic first-order conditions involve J0
√
T (θ̂T − α∗0) +D1

√
T (λ̂T − λ∗10) +

D2

√
T (λ̂2T−λ∗20) and D′1

√
T (α̂T−α∗0) +D′2

√
T (α̂T−α∗0) in the left hand side of system

(4.13). Asymptotically, a change of the benchmark modifies the matrix D2 as well as

the associated Lagrange multipliers by linear transformations R and R−1, respectively.

Then, the first-order conditions provide the same solution for
√
T (α̂T −α∗0) when D2

is replaced by D̃2 = D0R and λ̂2T − λ∗20 by ˆ̃λ2T − λ̃∗20 = R−1(λ̂2T − λ∗0), where R is

invertible. This proves that the asymptotic variance-covariance matrix is independent

of the choice of the additional optimization criterion.

23We cannot use the usual block formula to compute J11
0 [see e.g. Gourieroux and Monfort,

Section 10.3.b)], because J0 is not invertible due to the identification issue. However, it is easy to
check that a closed form expression of the asymptotic variance of the estimator is : [(Id−P )J0(Id−
P ) + P ]−1(Id− P )J0(Id− P )[(Id− P )J0(Id− P ) + P ]−1, where P is the orthogonal projector on
the space generated by D.
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