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1 Introduction

This supplemental material to ”Generalized Covariance Estimator” is organized as follows.

Section 2 contains theoretical Appendices 1, 2, 3 and 4 in Sections 2.1 up to 2.4. Appendix 1

(Section 2.1) illustrates the SUR interpretation of the VAR(1) model. It is used to derive the

multivariate portmanteau statistic as a Lagrange multiplier test statistic. This interpretation

allows us to find the asymptotic distribution of sample autocovariances. The closed-form

asymptotic expansions underlying the proof of Proposition 3 are given in Appendices 2 and

3 (Sections 2.2 and 2.3). Appendix 4 (Section 2.4) discusses the possibility of reaching a

parametric efficiency bound for a copula density through a sequence of state discretizations.

Section 3 provides additional simulation results illustrating the finite sample distribution of

the GCov estimator and the effect of lag H. Section 4 provides additional empirical results for

the analysis of commodity prices. We provide summary statistics of the series and diagnostics

tools. We also report the estimation results for the VAR(3) model. In Section 5, we review

various constrained causal VAR models existing in the literature on multivariate analysis and

explain why a GCov approach can be used as an alternative to the OLS.
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2 Appendices

2.1 APPENDIX 1: The SUR Interpretation

Let us consider a stationary process satisfying the causal VAR(1) representation:

Yt = α +BYt−1 + ut,

where ut is a multivariate i.i.d. process with E(ut) = 0, V (ut) = Σ, and Σ is invertible.

We derive the asymptotic distribution of the OLS estimator of B under the null hypothesis

H0 : B = 0 and the closed-form expression of the Lagrange Multiplier (LM) test statistic.

i) GLS estimator

This is an example of a SUR model with identical regressors Xt = Yt−1 in all equations.

Then, the GLS estimator of B is obtained by applying the OLS equation by equation. We

have:

B̂ = Γ̂(1)Γ̂(0)−1 ⇐⇒ B̂′ = Γ̂(0)−1Γ̂(1)′.

Moreover, we have asymptotically

√
T [vec(B̂′)− vecB′] ≈ N [0,Σ⊗ Γ(0)−1], (a.1)

where the ⊗ denotes the Kronecker product [see e.g. Chitturi (1974), eq. (1.13)]. In partic-

ular, under the null hypothesis H0 : (Γ(1) = 0) ≡ (B = 0), we have Σ = Γ(0) and

√
Tvec(B′) ∼ N(0,Γ(0)⊗ [Γ(0)−1]). (a.2)

ii) Lagrange Multiplier test

It follows that the Lagrange Multiplier (LM) test statistic for testing H0 : (B = 0) = (Γ(1) =

0) is:

ξ(1) = Tvec[Γ̂(0)−1Γ̂(1)′]′[Γ̂(0)−1 ⊗ Γ̂(0)]vec[Γ̂(0)−1Γ̂(1)′]

where the asymptotic covariance matrix of vec(B̂′) is estimated under the null hypothesis
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[see Hosking (1981a,b)]. It is also equal to:

ξ(1) = Tvec[Γ̂(0)−1Γ̂(1)′]′[Γ̂(0)−1/2 ⊗ Γ̂(0)1/2][Γ̂(0)−1/2 ⊗ Γ̂(0)1/2]vec[Γ̂(0)−1Γ̂(1)′]

= Tvec[Γ̂(0)−1/2Γ̂(1)′Γ̂(0)−1/2]′vec[Γ̂(0)−1/2Γ̂(1)′Γ̂(0)−1/2],

where we use the equality: vec(ABC) = (C ′ ⊗ A)vecB [see e.g. Lemma 4.3.1 in Horn,

Johnson (1999), or Magnus, Neudecker (2019), ch. 18, p. 440-441]. Moreover, we have

[vecC]′[vecC] = Tr CC ′. Therefore,

ξ(1) = T Tr[Γ̂(0)−1/2Γ̂(1)′Γ̂(0)−1Γ̂(1)Γ̂(0)−1/2]

= T Tr[Γ̂(1)′Γ̂(0)−1Γ̂(1)Γ̂(0)−1]

= T TrR̂2(1). (a.3)

Thus, the LM statistic is a function of the sample R̂2(1) of the VAR(1) model.

iii) Asymptotic behavior of Γ̂(1)

From (a.2) we easily deduce the asymptotic distribution of
√
Tvec[Γ̂(1)′] [see also Chitturi

(1976), Hannan(1976)]. Indeed, we have:

√
T Γ̂(1)′ = Γ̂(0)

√
TB̂′ ≈ Γ(0)

√
TB̂′,

and then

vec[
√
T Γ̂(1)′] = vec[Γ(0)

√
TB̂′] = [Id⊗ Γ(0)]vec(

√
TB̂′).

It follows that:

vec[
√
T Γ̂(1)′] ∼ N [0, [Id⊗ Γ(0)][Γ(0)⊗ Γ(0)−1][Id⊗ Γ(0)]]

= N [0,Γ(0)⊗ Γ(0)].

Although the above discussion concerned h = 1, i.e. Γ̂(1), it is also valid for Xt = Yt−h,

or Xt = (Y ′t−1, ..., Y
′
t−H)′. Then, it is easy to see that under H0, vectors vec[

√
T Γ̂T (h)],

h = 1, ..., H are asymptotically independent and have the same Gaussian distributionN [0,Γ(0)⊗
Γ(0)].
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2.2 APPENDIX 2: Asymptotic Expansions

As the objective function, i.e. the portmanteau statistic, is a sum of similar terms in h, we

provide the derivatives and expansions for H = 1, given that the extension to any H > 1 is

straightforward.

A.2.1 First-Order Derivative of Tr R2(1; θ)

Without loss of generality, we consider lag h = 1. At lag h = 1, we have

Tr R2(1; θ) = Tr[Γ(1; θ)Γ(0; θ)−1Γ(1; θ)′Γ(0, θ)−1].

The first-order partial derivatives are computed by considering the differential:

d Tr R2(1; θ) =
J∑
j=1

∂Tr R2(1; θ)

∂θj
dθj.

We have:

d Tr R2(1; θ) = Tr[dΓ(1; θ)Γ(0; θ)−1Γ(1; θ)′Γ(0, θ)−1]

+ Tr[Γ(1; θ)d[Γ(0; θ)−1]Γ(1; θ)′Γ(0, θ)−1]

+ Tr[Γ(1; θ)Γ(0; θ)−1dΓ(1; θ)′Γ(0, θ)−1]

+ Tr[Γ(1; θ)Γ(0; θ)−1Γ(1; θ)′d[Γ(0, θ)−1]],

because d[A(θ)B(θ)] = dA(θ)B(θ) +A(θ)dB(θ) and d Tr[A(θ) +B(θ)] = Tr [dA(θ) + dB(θ)].

In addition, we know that Tr (AB) = Tr (BA), T r A′ = Tr A. Hence,

d Tr [R2(1; θ)] = Tr [Γ(0; θ)−1Γ(1; θ)′Γ(0; θ)−1dΓ(1; θ)]

+ Tr [Γ(1; θ)′Γ(0; θ)−1Γ(1; θ)d[Γ(0; θ)−1]]

+ Tr [dΓ(1; θ)′Γ(0; θ)−1Γ(1; θ)Γ(0; θ)−1]

+ Tr [Γ(1; θ)Γ(0; θ)−1Γ(1; θ)′d[Γ(0; θ)−1]

= 2Tr [Γ(0; θ)−1Γ(1; θ)′Γ(0; θ)−1dΓ(1; θ)]

+ Tr
[
[Γ(1; θ)′Γ(0; θ)−1Γ(1; θ) + Γ(1; θ)Γ(0; θ)−1Γ(1; θ)′]d[Γ(0; θ)−1]

]
.

We have:

d[A(θ)−1] = −A(θ)−1dA(θ)A(θ)−1.
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Next, let us substitute this expression into the formula of d Tr [R2(1; θ)]:

d Tr R2(1; θ) = 2Tr [Γ(0; θ)−1Γ(1; θ)′Γ(0; θ)−1dΓ(1; θ)]

− Tr
[
Γ(0; θ)−1[Γ(1; θ)′Γ(0; θ)−1Γ(1; θ) + Γ(1; θ)Γ(0; θ)−1Γ(1; θ)′]Γ(0; θ)−1dΓ(0; θ)

]
= 2Tr [Γ(0; θ)−1Γ(1; θ)′Γ(0; θ)−1dΓ(1; θ)]

− Tr
[
[R̃2(1; θ)Γ(0; θ)−1 + Γ(0; θ)−1R2(1; θ)]dΓ(0; θ)

]
, (a.4)

with

R̃2(1; θ) = Γ(0; θ)−1Γ(1; θ)′Γ(0; θ)−1Γ(1; θ). (a.5)

A.2.2. First-Order Conditions (FOC)

The First-Order Conditions are:

∂Tr R̂2(1; θj)

∂θj
= 0, j = 1, ..., J = dimθ

⇐⇒ 2Tr[Γ̂(0; θ)−1Γ̂(1; θ)′Γ̂(0; θ)−1
∂Γ̂(1; θ)

∂θj
]

−Tr{ [ ˆ̃R2(1; θ)Γ̂(0; θ)−1 + Γ̂(0; θ)−1R̂2(1, θ)]
∂Γ̂(0; θ)

∂θj
} = 0,

j = 1, ..., J = dimθ. (a.6)

A.2.3. Second–Order Expansion

We can derive the first-order conditions (FOC) in the neighborhood of θ̂ ≈ θ0. For some

matrix function A(θ) of θ, we consider the differential defined by:

dA(θ) =
J∑
j=1

∂A(θ)

∂θj
dθj,
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with dθj = θ̂j − θj0. From (a,6), we get:

dFOCj(θ) = 2Tr

[
∂Γ̂(1, θ)

∂θj
d[Γ̂(0; θ)−1Γ̂(1; θ)′Γ̂(0; θ)−1]

]

+ 2

[
Γ̂(0; θ)−1Γ̂(1; θ)′Γ̂(0; θ)−1d[

∂Γ̂(1; θ)

∂θj
]

]

− Tr
[

ˆ̃R2(1; θ)Γ̂(0; θ)−1 + Γ̂(0; θ)−1R̂2(1; θ)
]
d[
∂Γ̂(0; θ)

∂θj
]

− Tr {[∂Γ̂(0, θ)

∂θj
] d[ ˆ̃R2(1; θ)Γ̂(0; θ)−1 + Γ̂(0; θ)−1R̂2(1; θ)]}. (a.7)

In the above expression the terms without differential have to be evaluated at θ = θ0.

The expressions involving differential term d[.] are linear with respect to θ̂−θ0 and then of

order 1/
√
T . Moreover, for θ = θ0, we have Γ(0; θ0) invertible, Γ(1; θ0) = 0. Therefore Γ̂(0; θ0)

is of order 1 and Γ̂(1; θ0) of order 1/
√
T . We deduce that the second and third components

of the right hand side of the above equation (a.7) evaluated at θ = θ0 are negligible with

respect to the other components. Then, the right hand side of equation (a.7) can be replaced

by:

2Tr

[
∂Γ̂(1, θ0)

∂θj
d[Γ̂(0; θ)−1Γ̂(1; θ)′Γ̂(0; θ)−1]

]

− Tr

[
∂Γ(0, θ0)

∂θj
d[Γ̂(0; θ)−1Γ̂(1, θ)′Γ̂(0; θ)−1Γ̂(1, θ) + Γ̂(1, θ)Γ̂(0, θ)−1Γ̂(1, θ)′Γ̂(0; θ)−1]

]
.

i) The matrix J(θ)

Next, we use d[A(θ)B(θ)] = [dA(θ)]B(θ) + A(θ)[dB(θ)]. Let us consider the limiting FOC,

when the sample autocovariances are replaced by their theoretical counterparts and use
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Γ(1; θ0) = 0. We get:

dFOCj(θ) = 2Tr [
∂Γ(1; θ0)

∂θj
Γ(0; θ0)

−1dΓ(1; θ)′Γ(0; θ0)
−1]

− Tr[
∂Γ(0, θ0)

∂θj
[Γ(0; θ0)

−1dΓ(1, θ)′Γ(0; θ0)
−1Γ(1, θ0)

+ Γ(0, θ0)
−1Γ(1, θ0)

′Γ(0, θ0)
−1dΓ(1, θ) + dΓ(1, θ)′Γ(0; θ0)

−1Γ(1, θ0)
′Γ(0, θ0)

−1

+ Γ(1, θ0)Γ(0; θ0)
−1dΓ(1, θ)′Γ(0; θ0)

−1]]

= 2Tr [
∂Γ(1; θ0)

∂θj
Γ(0; θ0)

−1dΓ(1; θ)′Γ(0; θ0)
−1].

The matrix J(θ0) of second-order derivatives has elements (j, k) such that:

−Jjk(θ0) = 2Tr

[
∂Γ(1; θ0)

∂θj
Γ(0; θ0)

−1∂Γ(1; θ0)
′

∂θk
Γ(0; θ0)

−1
]
, ∀j, k,

or, equivalently:

J(θ0) = −2
∂vecΓ(1; θ0)

′

∂θ
[Γ(0; θ0)

−1 ⊗ Γ(0; θ0)
−1]

∂vecΓ(1; θ0)

∂θ′
. (a.8)

ii) Asymptotic equivalence for
√
T (θ̂T − θ0) (written for H = 1)

Hence we have:
√
T [θ̂T − θ0] = J(θ0)

−1
√
T dLT (θ)

dθ
= J(θ0)

−1
√
TX(Γ̂) + op(1), where op(1) is

negligible in probability and it follows from (a.6) that:

Xj(Γ̂) = 2Tr[Γ̂(0; θ0)
−1Γ̂(1, θ0)

′Γ̂(0; θ0)
−1∂Γ̂(1, θ0)

∂θj
]

− Tr {[ ˆ̃R2(1; θ0)Γ̂(0; θ0)
−1 + Γ̂(0; θ0)

−1R̂2(1; θ0)]
∂Γ̂(1, θ0)

∂θj
},

It is normally distributed as Γ̂ ≈ Γ with the Central Limit Theorem that holds for the sample

autocovariances. We have Xj(Γ̂) − Xj(Γ) = dXj(Γ). We can disregard all terms including

Γ(1, θ0) as Γ(1; θ0) = 0. Hence,

√
TXj(Γ̂) = 2Tr [Γ(0; θ0)

−1
√
T Γ̂(1; θ0)Γ(0; θ0)

−1∂Γ′(1; θ0)

∂θj
] + op(1)

= 2Tr [Γ(0; θ0)
−1∂Γ′(1; θ0)

∂θj
Γ(0; θ0)

−1
√
T Γ̂(1; θ0)] + op(1),
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by applying Tr A′ = Tr A and Tr(AB) = Tr(BA).

Since Tr (A′B) = (vecA)′(vecB) and vec(A⊗ C) = (C ′ ⊗ A), we deduce:

√
TXj(Γ̂) ≈ 2vec[Γ(0; θ0)

−1∂Γ(1; θ0)

∂θj
Γ(0; θ0)

−1]′vec[
√
T Γ̂′(1; θ0)]

= Aj(θ)vec[
√
T Γ̂′(1; θ0)], j = 1, ..., J = dimθ.

or, √
TX(Γ̂) = A(θ)vec[

√
T Γ̂′(1; θ0)],

where

A(θ) = 2
∂vecΓ(1; θ)′

∂θ

[
Γ(0; θ0)

−1 ⊗ Γ(0; θ0)
−1] . (a.9)

From the remark in Appendix 1 (Section 2.1), it follows that:

vec[
√
T Γ̂′(1; θ0)] ≈ N [0,Γ(0; θ0)⊗ Γ(0; θ0)].

Therefore
√
TX(Γ̂) is asymptotically normally distributed, with mean zero and asymptotic

variance:

Vasy[
√
TX(Γ̂)] = −2J(θ0). (a.10)

From (a.10), and the absence of correlation between the matrices Γ̂(h) at different lags, we

deduce the simplification in deriving the asymptotic variance-covariance matrix of
√
T (θ̂T −

θ0) in Corollary 1.

2.3 APPENDIX 3: Expansion of the Multivariate Portmanteau

Statistic

(i) Let us consider the asymptotic expansion of:

TLT (θ0) = T Tr [Γ̂(1; θ0)Γ̂(0; θ0)
−1Γ̂(1; θ0)

′Γ̂(0; θ0)
−1],

written for H = 1. Since Tr(C ′C) = [vecC]′[vecC], we have:

TLT (θ0) = Tvec[Γ̂(1; θ0)
′Γ̂(0; θ0)

−1]′vec[Γ̂(1; θ0)
′Γ̂(0; θ0)

−1].
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Moreover, since vec(ABC) = (C ′ ⊗ A)vecB, we get:

TLT (θ0) ≈ [
√
TvecΓ̂′(1; θ0)]

′[Γ(0; θ0)
−1 ⊗ Γ(0; θ0)

−1][
√
TvecΓ̂′(1; θ0)].

(ii) Then, let us consider the asymptotic expansion of the standardized residual-based port-

manteau statistic. By using (a.8), (a.9) and the above result, we get:

TLT (θ̂T ) ≈ vec[
√
T Γ̂′(1; θ0)

′]′Π vec[
√
T Γ̂′(1; θ0)

′], (a.11)

with

Π = Γ(0; θ0)
−1 ⊗ Γ(0; θ0)

−1

− [Γ(0; θ0)
−1 ⊗ Γ(0; θ0)

−1]
∂vecΓ(1; θ0)

∂θ′{
∂vecΓ(1; θ0)

′

∂θ
[Γ(0; θ0)

−1 ⊗ Γ(0; θ0)
−1]

∂vecΓ(1; θ0)

∂θ

}−1
∂vecΓ(1; θ0)

′

∂θ
[Γ(0; θ0)

−1 ⊗ Γ(0; θ0)
−1]. (a.12)

(iii) The condition

ΠVasy[
√
T vecΓ̂(1; θ0)

′] Π = Π,

with Vasy
√
T vec[Γ̂(1; θ0)

′] = Γ(0; θ0) ⊗ Γ(0; θ0) is verified. It is due to an interpretation

in terms of orthogonal projection of vec[
√
T Γ̂′(1; θ0)

′] on the ∂vecΓ(1; θ0)
′/∂θ for the scalar

product associated with Γ(0; θ0)⊗ Γ(0; θ0).

2.4 APPENDIX 4: Semi-Parametric versus Parametric Efficiency

The GCov approach can be applied to stacked nonlinear transformations of the series: Yt =

a(yt), say. Let us consider H = 1 for expository purpose. Then, the asymptotic variance-

covariance matrix of θ̂T depends on the choice of function a, including its dimension, and

Ω(θ0; a) depends on a. Thus, we can expect that there exist a transformation a∗, say, such

that:

a∗ = ArgmaxaΩ(θ0, a).

Let us assume that process (yt) is a univariate Markov process and consider a grid Ak =

[ak, ak+1] in Subsection 3.3. When the grid becomes very fine and the number of elements
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in the grid increases, we use more and more autocovariance conditions (see Section 8, iii))

and the chi-square measure becomes equivalent to the Kullback-Leibler measure between the

copula density and the uniform density. Then, the GCov estimator is a maximum likelihood

estimator based on the parametric copula. Therefore, as expected Ω∗(θ0) = MaxaΩ(θ0, a)

is the information matrix corresponding to this copula-based ML approach. In other words,

when a varies, we reach a parametric efficiency bound for the parameters characterizing the

copula. This is the property of adaptive estimation that follows from the i.i.d. assumption

on the error terms [see e.g. Hall, Welsh (1983) for adaptive estimation].

3 Simulation

We explore the GCov estimation of a VAR(1) model with parameters φ11 = 0.9, φ12 =

−0.3, φ2,1 = 0, φ22 = 1.2 and eigenvalues of matrix Φ equal to 0.9 and 1.2.

3.1 Long simulated path

Figure 1 shows the path of 1000 realizations of this process with t(4) distributed errors to

illustrate the occurrence of spikes and bubbles in the trajectory of a stationary process.

0 200 400 600 800 1000

−
10

−
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0
5

10

Figure 1: DGP with t(4) distributed errors, T=1000
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3.2 Additional statistics

3.2.1 ACF

Figure 2 presents the ACF function computed from a sample of length T=200 of the DGP

displayed in Figure 1 with t(4) distributed errors corresponding to the process in Section 7.1.
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Figure 2: ACF, DGP with t(4) distributed errors

We observe a long range of persistence in the autocorrelations of y1,t and persistent cross-

correlations of y1,t and y2,t. Even though the process is stationary, it features local trends

that can be mistakenly interpreted as global trends when the series is observed over a short

time.

3.2.2 Finite sample distribution of GCov estimator

Figure 3 presents and compares the densities of GCov estimators computed from the

process with t(4) distributed errors, and based on power transformations with exponents

1,2,3 and 4, number of lags H=10 and sample sizes T=200 and T=400.

The densities of GCov estimators for processes with t(6) distributed errors are displayed

below.

The densities based on t(4) distributed errors have longer tails. The densities based on

the sample size T=400 are closer to the normal density than those based on T=200.

3.2.3 Effect of H

Next, we examine the effect of lag H by replicating 1000 times the DGP with t(4) dis-

tributed errors (kurtosis infinity) estimated from 2 and 4 transforms and the sample size

T=400.
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Figure 3: Densities of GCov estimators, close to 1 eigenvalues, t(4) distributed errors: T=200
(solid line), T=400 (dashed line)
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Figure 4: Densities of GCov estimators: T=200 (solid line), T=400 (dashed line) errors with
finite kurtosis

Figure 5 shows the sample means of GCov estimators plotted as a function of lag H,H =

1, ..., 12.

When 2 transforms are used, one may prefer to select lags H greater than 2, while when

4 transforms are used, the GCov estimators seem equivalent at any lag H.

Figure 6 shows the variances of estimators plotted as a function of lag H,H = 1, ..., 12 for

the DGP with errors characterized by infinite kurtosis.

We observe that when 2 transforms are used, higher lags H offer greater chances of obtaining

estimators with lower variances. In the case of 4 transforms, lower lags H are associated with

lower variances of estimators.
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Figure 5: means of VAR(1) estimators: square for φ̂11, circle for φ̂12, triangle for φ̂21, cross
for φ̂22

2 4 6 8 10 12

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
0.

03
0

lag H

(a) 2 transforms

2 4 6 8 10 12

0.
01

0.
02

0.
03

0.
04

0.
05

lag H

(b) 4 transforms

Figure 6: variances of VAR(1) estimators: diamond for ˆvar(φ̂)11, square for ˆvar(φ̂)12, triangle
for ˆvar(φ̂)21, star for ˆvar(φ̂)22

4 Application to Commodity Prices

This section provides additional results for the empirical application presented in Section 7.2

of the paper. We provide the summary statistics and discuss the selection of H in GCov

estimation. Next, the alternative OLS-based methods, the diagnostics for the mixed VAR(1)

model and the mixed VAR(3) model are covered.

4.1 Summary statistics

The summary statistics of the wheat and corn futures are given in Table 1:

Table 1. Summary Statistics
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series q(0%) q(100%) q(50%) mean var skew kurtosis

wheat 371.50 539.25 428.75 433.91 769.73 1.07 4.42

corn 329.50 392.25 357.75 358.79 162.21 0.22 2.42

The summary statistics indicate that the series are not normally distributed. Moreover,

the wheat and corn futures are characterized by long-range persistence. The serial correlation

of the wheat and corn futures is illustrated by the autocorrelation function (ACF) plotted in

Figure 7.
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Figure 7: ACF series: wheat (Series 1) and corn (Series 2)

The ACF shows slowly decaying autocorrelations in the wheat and corn prices and per-

sistent cross-correlations.

4.2 Selection of order H

We compute the GCov estimators of the series at various lags H. The results are presented

in Figure 8.

We observe that the GCov estimators of VAR(1) parameters display some variation at

short lags and become stable at lags 5 and higher. To determine the optimal lag choice, we

plot the residual variances in Figure 9.

14



2 4 6 8 10 12
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

lag

pa
ra

m
et

er
s

●

●

●

●

● ● ● ●
●

●
●

●

Figure 8: VAR(1) estimators: square for φ̂11, circle for φ̂12, triangle for φ̂21, cross for φ̂22

2 4 6 8 10 12

30
40

50
60

70

lag

re
si

du
al

 v
ar

 a
nd

 c
ov

Figure 9: Residual variances and covariance as a function of H: solid line: wheat residual
variance, dashed line: corn residual variance, dotted line: covariance

We observe that both residual variances are minimized at lag H=10 that justifies our

choice of parameters estimates reported in Section 7.2.
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4.3 Mixed VAR(1) : Diagnostics

Let us now consider the mixed VAR(1) model estimated by the GCov estimator and discuss

the model diagnostics. The joint sample density of residuals is shown in Figure 10.
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Figure 10: Residuals: joint sample density

Figure 10 confirms the presence of nonlinear tail dependence due to some extreme values of

residuals.

Let us now examine the serial dependence of ut. We provide the ACF and cross-ACF

functions of residuals in Figure 11 and of squared residuals in Figure 12. The serial depen-

dence in the observed bivariate series is mostly accommodated by the mixed causal-noncausal

VAR(1) model:
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Figure 11: ACF residuals VAR(1): wheat (Series 1) and corn soy(Series 2)
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Figure 12: ACF squared residuals VAR(1): res1 (wheat) square (Series 1) and res 2 (corn)
square (Series 2)

The residuals still display some slightly significant autocorrelations and cross-correlations.

The squared residuals display some slightly significant serial correlation as well. To accom-

modate the remaining serial correlation, we estimate the VAR(3) model below.

4.4 Mixed VAR(3) Model

4.4.1 Estimation

The mixed VAR(3) model is estimated by the GCov from the autocovariances of errors

and squared errors with lag H = 10. The estimated model is as follows:

ŷt =

 2.314 −1.168

0.071 1.011

 yt−1 +

 −0.786 0.344

−0.146 −0.100

 yt−2 +

 −0.357 0.522

0.115 −0.051

 yt−3.
The roots of det(Id− Φ1z − Φ2z

2 − Φ3z
3) = 0 are equal to the reciprocals of eigenvalues of

the autoregressive matrix of a stacked VAR(1) representation of the process. They are given

in Table A1:
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Table A1. Estimation of mixed VAR(3) model: eigenvalues

eigenvalues

1.7045

-0.3592

0.1161 + 0.2759i

0.1161 - 0.2759i

0.9125

0.8348

We find that the roots are both inside and outside the unit circle with the causal order equal

to 5 and noncausal order equal to 1.

4.4.2 Residual ACF

Figure 13 shows the ACF and cross-ACF of the residuals and squared residuals. The

ACF’s show almost no remaining serial dependence, even at lags greater than the maximum

lag H = 10 used in the GCov estimation procedure.
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Figure 13: ACF: Residuals of VAR(3)
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5 Causal VAR Model

This Section links the GCov estimator with the literature on multivariate analysis of con-

strained causal VAR(p) models. These models are usually estimated by least squares esti-

mators based on autocovariances of ut with H = p, the causal autoregressive order. This

analysis is efficient if the errors are Gaussian. Otherwise, a GCov estimator involving addi-

tional transforms of ut can be more adequate to capture the skewness or kurtosis effects in

ut and their propagation through the AR dynamics.

The multivariate VAR(p) process is defined by:

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p + ut,

where θ = [vecΦ′1, ..., vecΦ
′
p]
′.

The (causal) VAR model has been commonly used in the literature on residual-based

portmanteau test [see e.g. Hosking (1980), Li, McLeod (1981)].

In the causal VAR specification, parameters Φ1, ...,Φp can be constrained by some linear or

nonlinear restrictions. This includes in particular:

i) The VAR(1) model with reduced rank of Φ1 [see, Velu et al. (1986), Ahn, Reinsel

(1988), Engle, Kozicki (1993), Reinsel, Velu (1998), Anderson (2002), Lam, Yao (2012)].

ii) The VAR(p) model with common canonical directions at all lags [see Kettenring (1971),

Neuenschwander, Flury ( 1995)].

iii) The VAR(p) processes with subprocesses, which are assumed independent [see, e.g.

Haugh (1976), El Himdi, Roy (1997), Yata, Aoshima(2016), Jin, Matteson (2018)], or based

on Dynamic Orthogonal Components [Matteson, Tsay (2011)].

iv) The VAR(p) model with causality restrictions [see e.g. Boudjellaba et al. (1994)].

v) The VAR(p) model with a Kronecker structure [Niu et al. (2020)].

and all other structural VAR models.
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