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This paper introduces a local-to-unity/small sigma process for a sta-
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time scales. More specifically, the short run component evolves in the
calendar time and the long run component evolves in an ultra long time
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1 Introduction

The macroeconomic and financial models used in practice provide reliable
predictions at short horizons of 1 to 5 years. Recently, there has been a grow-
ing interest in providing long run predictions at horizons of 10 to 50 years,
in the context of transition to low carbon economy, climate risk and rare
extreme events, for evaluating of necessary behavioral and technical changes.
In the financial sector as well, the long run predictions may soon become
mandatory for prudential supervision in banks and insurance companies.

The long-run predictions are difficult to compute for several reasons. The
standard prediction models with short lags and the associated statistical in-
ference methods are inadequate for long horizons. Moreover, long run pre-
dictions at horizons of 50 or 100 years are difficult to compute from macroe-
conomic or financial time series observed over periods shorter or equal to the
prediction horizon of interest. Therefore, the long run predictions remain
mainly model based. As such, they can be improved so that:

i) The estimation methods account for the long run component, even
though it is difficult to detect over the sampling period.

ii) The long run predictions produce reasonable outcomes in the sense
that point forecasts should take values from the set of admissible values of
the predicted variable.

iii) The prediction errors are not underestimated due to the selected dy-
namic model and its estimation method.

This paper examines the feasibility of such improvements in the class of
dynamic stochastic linear models with long run properties already known in
the literature to some extent. The Structural Vector Autoregressive (SVAR)
models are stochastic linear systems which are second-order identifiable un-
der a set of parameter restrictions. The SVAR models are used in macroe-
conomics, monetary economics and macro-finance for the analysis of mul-
tivariate economic processes and prediction of future shock effects through
impulse response functions [see Hurwicz (1962) for the introduction of the
term ”structural” and Sims (1980), (2002) for SVAR applications]. Two
types of SVAR models can be distinguished, which are the stationary (reg-
ular) SVAR models and cointegrated SVAR models with nonstationary unit
root components. While both types of SVAR models are efficient instruments
of short run analysis, they have limitations in application to the long run and
ultra long run analysis. More specifically,

i) the presence of nonstationary features, such as nonstationary unit roots,
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implies explosive patterns in trajectories, which are incompatible with the
behavior of variables such as the growth rate of per capita real GDP, produc-
tivity, real food expenditure per capita, interest rates, real exchange rates,
and some commodity prices, or spot-forward spreads. 1 In general, variables
transformed to stationarity by differencing or expressed as rates of growth
are not explosive; ii) the identification restrictions imposed on the long run
behaviour, i.e. the so-called long run identification restrictions [Blanchard,
Quah (1989), Christiano et al. (2006)] can affect the long-run predictions
and the long run patterns of impulse response functions [Sims (1986)] as
well as their signs [Uhlig (2005)]; iii) the long run risk is diversified away
and often disregarded in stationary SVAR models [see e.g. Bansal, Yaron
(2004), Bansal, Kiku, Yaron (2010), Croce, Lettau, Ludvigson (2015) for re-
cent papers on the long run analysis with regular SVAR models estimated as
stationary processes].

Among the macroeconomic time series, those considered stationary often
display persistence up to high lags, in the sample autocorrelation functions.
Therefore, a large body of literature use the local-to-unity model linking
the aforementioned two types of SVAR dynamics and develop associated
inference methods [see e.g. Chan, Wei (1987), Phillips (1987), Magdalinos,
Phillips (2007), and the recent survey by Muller, Watson (2020)]. However,
the standard local-to-unity models may not be suitable for stationary time
series (see the discussion in Appendix 1).

The aim of our paper is to propose an alternative approach by considering
a stationary VAR model with a stationary short run (SR) component and
a stationary multivariate ultra long run (ULR) component with asymptotic
unit root and close to zero sigma,

For illustration, let us consider the framework of stationary Gaussian
processes (where strict stationarity and second-order stationarity are equiv-
alent). This simplified framework is not only convenient for comparing our
analysis with the large body of literature on structural SVAR models, but
also for introducing and interpreting the notion of an ultra long run process
in a stationary time series seen as a sum of a regular and a singular com-
ponents. There exist two generic representation theorems of a time series
seen the Wold representation theorem for weakly stationary processes [Wold

1See for instance the discussion on the mean reverting feature of consumption in Beeler,
Campbell (2012) and the analysis of spot-forward spreads in Gospodinov (2009), Gospodi-
nov et al. (2021).
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(1938)] and the Volterra representation theorem for strictly stationary pro-
cesses [Rozanov (1967), Priestley (1988)]. These two representations coincide
for the Gaussian stationary processes. According to the Wold representation,
any (multivariate) stationary Gaussian process y(t) can be written as:

y(t) =
∞∑
j=0

Ajεt−j + Zt, (1.1)

where dimy = dim ε = dim Z ≡ n, the (n × n) matrices Aj are such that∑∞
j=0AjA

′
j exists and is finite, (εt) is a Gaussian white noise, εt ∼ IIN(0, Id).

The moving average component is the regular component. The component
Zt is the singular component of process (y(t)) and is measurable with respect
to F−∞ = ∩tFt where Ft is the σ-algebra generated by the current and lagged
values of y. Following Doob (1944), this singular component is also referred
to the deterministic component of the process. This explains why in practice,
Zt is often disregarded and replaced by a deterministic constant:

y(t) =
∞∑
j=0

Ajεt−j +m. (1.2)

The term ”deterministic” is misleading, because the stationary singular com-
ponent can be constant over time while being stochastic, so that Zt = Z is
independent of the noise and normally distributed: Z ∼ N(m,Σ), where Σ
does not necessarily degenerate to zero. The fact that Zt is measurable with
respect to F−∞ means that it is only influenced by the infinitely distant past
and has a long run interpretation. In particular, the singular component is
such that:

E[Zt+h|Ft] = Zt = Z, for any h, t.

Thus Zt is a stationary martingale, which is a particular stationary unit
root process 2. The singular component can be approximated by a moving
average:

2Since Zt+h = Zt = Z, the theoretical prediction error is equal to zero. This explains
the terminology ”purely predictable” process also used for this singular component. This
other terminology is also misleading since in practice we observe y from an initial date
only, and, if F0,t is the σ-algebra generated by y(0), . . . , y(t), then E(Zt+h|F0,t) is different
from Zt.

4



ZT (t) =
∞∑
j=0

A∗Tjε
∗
t−j,

where (ε∗t ) is another Gaussian white noise, independent of (εt) and
∞∑
j=0

A∗TjA
∗′
Tj

is finite. This approximation leads to the triangular array (doubly indexed
by t and T ):

yT (t) =
∞∑
j=0

Ajεt−j +
∞∑
j=0

A∗Tjε
∗
t−j

=
∞∑
j=0

Ajεt−j + ZT (t), (1.3)

which approximates the representation (1.1) of y(t).
The stationary moving average approximation of the singular component

Zt = Z is slowly varying over time and has a negligible effect on the dynamics
of y(t) in the short run. As shown later in the text, it has a significant
impact in the long run dynamic, and is therefore interpreted as the Ultra
Long Run (ULR) component. Moreover, process {yT (t)} remains stationary,
but becomes non-ergodic.

More generally, in the VAR framework we can write the n-dimensional
process yT (t) as a sum of the short run (SR) component ys(t), which for ease
of exposition is assumed to follow a VAR(1) process, and an ULR component:

yT (t) = ys(t) + Ayl(t/T ), (1.4)

where A is a (n, L) matrix of coefficients of full column rank L and :

ys(t) = Φys(t− 1) + Ω1/2εt, (1.5)

where the eigenvalues of Φ are of modulus strictly less than 1 to ensure the
stationarity of the SR process ys, the (n, n) matrix Ω is positive definite and
εt is a multivariate strong white noise process with second-order moments,
but not necessarily Gaussian. The component [yl(τ)] follows a L-dimensional
(continuous time) multivariate Ornstein-Uhlenbeck process:
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dyl(τ) = −Θyl(τ)dτ + SdWτ , (1.6)

where Θ is of dimension L × L and such that the eigenvalues of matrix 3

exp(−Θ) are of modulus strictly less than one to ensure the stationarity of
process yl. Process (Wτ ) is a L-dimensional Brownian motion independent
of the noise in the short run component and S is a positive definite matrix
of dimension (L,L). The ULR component is deduced from the continuous
time underlying process [yl(τ)] by applying the time deformation and time
discretization. More specifically, the short run component evolves over cal-
endar time, whereas the long run component evolves over time measured on
a scale with an ultra large time unit T that tends to infinity with T . In par-
ticular, for any date t, yl(t/T ) will tend to yl(0), which is constant over time
and random. This limit is a singular process. Equations (1.4)-(1.6) impose
a special structure on the VAR(1) model, turning it into a Structural VAR
where the SR and ULR shocks can be identified.

The process (1.4)-(1.6) is an example of a local-to-unity model with be-
havioral foundations [see the discussion in Sims (1988), Section 2]. Indeed, its
dynamics is compatible with a dynamic equilibrium of two types of individu-
als (consumers, investors), who operate at two different frequencies and have
different information sets. By considering these two frequencies jointly, we do
not support the ”belief that data collection and modelling strategy usually
lead economists to use data corresponding to a ”fine” time unit relative to
the phenomena they are studying” [Sims (1991), p429].

In the approximate Wold representation (1.3) of (1.4)-(1.6) the number
of underlying shocks is equal to n + L = dimεt + dimWτ , which is larger
than the dimension of [yT (t)]. These two types of shocks are measured on
different time scales. The number of ULR processes L is assumed to be less
that n (the dimension of Z) by imposing the condition of full column rank
on matrix A. The (n, L) matrix A is introduced to identify the components
of the array that are not sensitive to long run shocks. More precisely, for any
direction γ such that γ′A = 0, the combination γ′yT (t) = γ′ys(t), no longer
depends on the ULR component and T . This allows us for considering the
ULR co-movement relationships (i.e. the γ′s).

The paper is organized as follows. Section 2 discusses the second-order
properties of the model such as the theoretical autocovariances and spectral

3exp(−Θ) is defined as : exp(−Θ) =
∑∞
j=0[(−1)jΘj/j!].
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density of the (triangular) array. We show how the theoretical autocovari-
ances and spectra depend on T , derive their limits when T tends to infinity
and reveal a lack of uniformity in their convergences. As a consequence, new
identification issues arise for statistical inference.

Statistical inference is discussed in Section 3. We focus on estimation
methods based on the first- and second-order sample moments. Under the
triangular array representation [yT (t)], the sample autocovariances can have
asymptotic properties which are very different from the standard properties.
Therefore, the sample autocovariances and autocorrelations may not be fully
informative about the parameters of interest. We show that different types
of autocorrelation functions (ACF) have to be considered jointly. These are:

i) the standard ACF evaluated at multiples of large lags;
ii) short run ACF evaluated at short lags over short episodes of time;
iii) long run ACF at large lags computed from historical averages of the

observed process [yT (t)].
We show that, from rolling averages and different ACF’s, it is possible to es-
timate consistently (under the standard structural identification restrictions
for SVAR):

i) the parameters Φ and Ω driving the short run dynamics;
ii) the levels [yl(τ), τ ∈ (0, 1)] of the underlying long run continuous time

model;
iii) the matrix A of factor sensitivities;
iv) the volatility of the ULR component, i.e. the matrix SS ′.
The ”estimators” in i)-iv) converge at different rates. In particular the

ULR parameters converge at slower rates, which reveals weak identification
issues. However, the main identification issue is the impossibility to estimate
consistently the drift Θ in the Ornstein-Uhlenbeck (OU) dynamics (the im-
possibility theorem). This implies that, even with an infinite number of
observations, the long run estimation risk cannot be diversified away. Thus,
the evaluation of the long run estimation risk is crucial for the long run pre-
dictions and impulse responses. Section 4 highlights the importance of taking
into account the estimation risk when computing the long run prediction in-
tervals and the Value-at-Risk. We also discuss the prudential principle and
the limitation of Bayesian approaches in this respect. Section 5 illustrates
the proposed methodology by Monte-Carlo studies and provides an empiri-
cal application to a set of macroeconomic series. It compares the approach
introduced in this paper with the treatment of long run risk in the applied
macroeconomic literature. Section 6 concludes. A comparison with alter-
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native local-to-unity models is provided in Appendix 1. The Law of Large
Numbers (LLN) for triangular arrays used for deriving the asymptotic results
is given in Appendix 2, and the Central Limit Theorems (CLT) in Appendix
3. Additional figures are provided in Appendix 4.

2 Dynamic properties

2.1 The VAR representation

A time discretized multivariate Ornstein-Uhlenbeck process is a Gaussian
VAR(1) process. Hence, the triangular array model (1.4) - (1.6) can be
rewritten as [see Meucci (2010)]:

yT (t) = ys(t) + Ayl,T (t), (2.1)

where :

ys(t) = Φys(t− 1) + Ω1/2εt, (2.2)

yl,T (t) = exp(−Θ/T )yl,T (t− 1) + Σ
1/2
T ε∗t , (2.3)

with :

vec(ΣT ) = [Θ⊕Θ]−1{Id− exp[−(Θ⊕Θ)/T ]}vec(SS ′), (2.4)

and the Kronecker sum defined by:

Θ⊕Θ = Id⊗Θ + Θ⊗ Id, (2.5)

with ⊗ the Kronecker product.
System (2.1) -(2.4) shows that the process [(yT (t)] for any given T is

the sum of two independent VAR(1) processes 4. These two processes are
stationary, when their initial values are drawn in a stationary distribution
such as, for example, N(0, Σ), with vecΣ = [Θ⊕ Θ]−1vec(SS ′) for the ULR
component.

4When the unobserved components are integrated out, the process [yT (t)] follows a
weak VARMA model with orders depending on L and on the assumptions on Φ and Θ.
This interpretation is not used later on.
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The VAR dynamics of the ULR component is such that the autoregressive
coefficient exp(−Θ/T ) tends to Id, when T tends to infinity while at the same
time the volatility ΣT given in (2.4) tends to 0. Therefore it is a sequence of
multivariate stationary processes, with an asymptotic multivariate unit root
and close to zero sigma. They are examined in the framework of a local-to-
unity and small sigma analysis with respective rates of convergence to Id and
0 being of equal order 5 1/T [see Kadane (1971) for the introduction of small
sigma asymptotics to econometrics]. This approach differs from the local-to-
unity analysis with fixed sigma that leads to nonstationary processes at the
limit [see e.g. Stock (1991), p 437, Muller, Watson (2016), p 1723, in the
univariate case]. To clarify this difference with the literature (we elaborate
on this point in Appendix 1), let us consider below a univariate process:

yT (t) = ys(t) + yl,T (t), (2.6)

where :

ys(t) = φys(t− 1) + ηεt, η > 0, (2.7)

yl,T (t) = exp(−θ/T )yl,T (t− 1) + [
s2

2θ
[1− exp(−2θ/T )]]1/2ε∗T,t. (2.8)

For a given T , the variance of the innovation of the ULR component is
proportional to 1 − ρ2T , where ρT = exp(−θ/T ) is the autoregressive coeffi-
cient. Therefore, the autoregressive coefficient and the volatility tend to 1
and 0, respectively, in a constrained manner that is consistent with the time
deformation interpretation.

An array with such a dynamic might be interpreted as a local level model.
Let us recall the standard definition of a local level model introduced by
Harvey (1989) [see also Durbin, Koopman (2002)]. In our notation, a local
level model is a time series model such that:

y(t) = ys(t) + yl(t),

where ys(t) = ηεt, yl(t) = yl(t − 1) + sε∗t . Like our model, the local level
involves a decomposition with a short term component, here a noise process,
and a long run component, which is a random walk. The main difference

5Since exp(−Θ/T ) ∼ Id−Θ/T, exp[−Θ⊕Θ/T ] ∼ Id− (Θ⊕Θ)/T.
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between the standard local level and our model is the specification of the
long run component. The random walk representing the long-run compo-
nent in the standard local level model is nonstationary and has ”explosive”
trajectories in the long run unlike the ULR process (see also the discussion in
Appendix 1 of the different local-to-unity models proposed in the literature).

As shown in the next Section, the ULR model allows for a stochasti-
cally varying ”local level” without an explosive pattern. The ULR model
also differs from the model with a local level smoothly varying in time in a
deterministic pattern [Dalhaus (2012), Dalhaus et al. (2017)].

2.2 Autocovariances and Spectrum

Let us now consider the theoretical autocovariances and spectrum. For ease of
exposition, we consider the univariate model (2.6)-(2.8) and known parameter
values.
For a fixed T , the autocovariance of process yT (t) defined by (2.6)-(2.8) at
lag h is given by:

γT (h) = η2ϕh +
s2

2θ
[1− exp(−2hθ

T
)], h ≥ 0. (2.9)

We have the following proposition:

Proposition 1

i) If h is fixed, T →∞, γT (h)→ η2ϕh.
ii) If h = hT →∞, when T →∞, γT (hT ) ∼ s2

2θ
[1− exp(−2hT

T
)].

In particular, if hT →∞, T →∞, hT/T → 0, then γT (hT )→ 0.

If hT →∞, T →∞, hT/T → c, then γT (hT )→ s2

2θ
[1− exp(−2cθ)].

The asymptotic behaviour of the sequence of autocovariances is complex as
it is different at short and ULR lags. For the short lag (resp. long lag)
only the short run (resp. long run) component matters. Moreover, the
convergence of this autocovariance function to a limit is not uniform. This
causes identification issues discussed in the next Section.

Similarly, let us consider the spectrum at a given date T given by :
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ST (w) =
η2

2π

1

1 + ϕ2 − 2ϕcosw
+

s2

2πθ

1− exp(−2θ/T )

1 + exp(−2θ/T )− 2exp(−θ/T )cosw
.

(2.10)
We get the following limiting behaviour:

Proposition 2

i) For w fixed, T →∞, ST (w)→ η2

2π

1

1 + ϕ2 − 2ϕ cosw
, if w 6= 0,

ST (w)→∞ , if w = 0.
ii) If wT → 0+, T →∞,

ST (wT ) ∼ η2

2π

1

(1− ϕ)2
+

s2

2πθ

1− exp(−2θ/T )

1 + exp(−2θ/T )− 2exp(−θ/T )coswT

∼ η2

2π

1

(1− ϕ)2
+

2θ/T

w2
T

.

In particular, if Tw2
T ≈ λ, then ST (wT ) ≈ η2

2π

1

(1− ϕ)2
+

2θ

λ
.

The lack of uniform convergence of the sequence of spectra is analogous to
the lack of uniform convergence of the sequences of autocovariances discussed
above. For a fixed w, w 6= 0, the limit depends on the short run dynamics
only. When wT tends to 0 at an appropriate rate 1/

√
T , the limit involves

both the short- and long-run parameters, ϕ and θ, respectively.

3 Statistical Inference

So far, we have discussed the asymptotic behaviours of the theoretical autoco-
variances and spectrum in Section 2.2. This Section examines the asymptotic
properties of the sample autocovariances and sample spectrum computed
from the observations on yT (t), t = 1, ..., T, corresponding to a triangular
array.

The standard sample autocovariances are based on global averages that
conceal the local mean effect due to the ULR component. Therefore, we
distinguish the three following types of sample ACF:

i) the standard ACF evaluated at long lags from observations that are
sufficiently far apart;
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ii) the short run ACF computed at short lags from short time series of
observations;

iii) the long run ACF based on short run averages of observations.
As shown below, these ACF’s have distinct behaviours and interpretations,
explaining the long run predictability puzzle reported in Fama, French (1988),
(1989), or the debate on the predictability of consumption growth from log
price/dividend ratio [Becler, Campbell (2012), Section 4.1]. This shows also
that the standard asymptotic properties of moment estimators have to be
modified in models with long run component [see e.g. Bansal, Kiku, Yaron
(2012), (2016) for the use of GMM in models with long run risk].

3.1 ACF Evaluated at Distant Lags

Let us denote the multivariate sample autocovariance by:

Γ̂T (h) =
1

T − h

T∑
t=h+1

yty
′
t−h −

1

T − h

T∑
t=h+1

yt
1

T − h

T∑
t=h+1

y′t−h. (3.1)

From Proposition 1 ii) given for the one-dimensional case, we expect a rather
regular behaviour of the multivariate sample autocovariances at long lags
hT = cT for any given c, c ∈ (0, 1).

To interpret this result, let us first consider the sample mean. We have:

1

T − hT

T∑
t=hT+1

yt =
1

T − cT

T∑
t=cT+1

ys(t) +
A

T − cT

T∑
t=cT+1

yl(t/T ).

The first term tends to 0 by the standard Law of Large Numbers applied to
the short run stationary component. The second term is a Riemann sum that
tends to the associated stochastic integral, by applying the Stroock, Varad-
han theory of diffusion approximation [Stroock, Varadhan (1979), Section
11]. In brief, we have asymptotically:

1

T − cT

T∑
t=cT+1

yt →
A

1− c

∫ 1

c

yl(v)dv, (3.2)

where → denotes the convergence in probability (and also the weak conver-
gence of processes indexed by c).
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The sample mean does not converge to the theoretical mean of process [yT (t)]
equal to 0. A similar derivation can be done for the cross-product (see
Appendix 2). This result is summarized in the Proposition below.

Proposition 3
For large T ,

Γ̂T (cT ) =
A

1− c

∫ 1

c

yl(v)y′l(v − c)dv A′

−
[

A

1− c

∫ 1

c

yl(v)dv

] [
A

1− c

∫ 1

c

yl(v − c)dv
]′

+ op(1),

where oP (1) is negligible in probability.

Proposition 3 reveals a non-standard asymptotic behavior of sample au-
tocovariances evaluated at long lags. When h increases, these sample au-
tocovariances do not converge to constant values, such as their theoretical
analogues (i.e. s2

2θ
[1 − exp(−2θ)] in the univariate case, see Proposition 1).

The sample autocovariances at large lags still converge, but to a stochastic
limit that depends on the trajectory of the ULR component.

3.2 Short Run Sample Autocovariances

For a fixed h, the sample autocovariance Γ̂T (h) does not provide a good
approximation of ΓT (h), which is the autocovariance function of the short
run component (which follows from Proposition 1, i)). Indeed, Γ̂T (h) is a
global measure that is impacted by the local level effect due to the ULR
component. This effect can be adjusted for as follows. Let us consider a
subset of observations corresponding to the interval (cT, cT + HT ), where
HT → ∞, HT/T → 0, and compute the sample autocovariances over this
interval:

Γ̂c,T (h) =
1

HT

cT+HT∑
t=cT+1

yt y
′
t−h −

1

HT

cT+HT∑
t=cT+1

yt
1

HT

cT+HT∑
t=cT+1

y′t−h. (3.3)

Because HT << T and the ULR component is close to the purely predictable
component, we have:
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yt = ys(t) + Ayl(t/T )

≈ ys(t) + Ayl(c) + op(1),

for t ∈ (cT+1, cT+HT ). The process corresponds to the short run component
plus a stochastic ”local mean” equal to Ayl(c). Then the standard LLN can
be applied to the process conditional on [yl(τ)].

Proposition 4
For any fixed h, h ≤ HT , any c, c ∈ (0, 1), and any HT , with HT →

∞, HT/T → 0, we have : Γ̂c,T (h) → Γs(h), where Γs(h) is the theoretical
autocovariance function of the short run component.

The above result can be used to estimate consistently some parameters
of interest. Let us consider a grid c1 ≤ ... ≤ cKT

of [0, 1] .
Then, for each ck we compute the sample mean:

m̂T (ck) =
1

HT

ckT+HT∑
t=ckT+1

yt (3.4)

≈ 1

HT

ckT+HT∑
t=ckT+1

[ys(t) + Ayl(ck)]

≈ Ayl(ck), by the LLN applied to the short run component.

Corollary 1:
The sample means m̂T (ck) are consistent estimates (predictors) of the

values of the underlying URL process, up to the multiplicative matrix A. By
standard arguments, the sample means converge at speed 1/

√
HT .

Then several estimates of the autocovariances of the short run component
Γ̂ck,T (h), k = 1, ..., K can be computed and used to estimate Γs(h) by:

Γ̂T,s(h) =
1

K

K∑
k=1

Γ̂ck,T (h), h ≤ HT . (3.5)

Corollary 2:

14



The autocovariances Γs(h), h ≤ HT , can be consistently estimated by
Γ̂T,s(h), h ≤ HT . They converge at speed 1/

√
HTK.

In a structural SVAR model, under the usual identification restrictions
on Φ,Ω, consistent estimates of the identifiable short run parameters can be
obtained from the moment conditions:

Γs(1) = ΦΓs(0), Γs(0) =
∞∑
j=0

ΦjΩΦj′ , (3.6)

after replacing Γs(h), h = 0, 1, ... by Γ̂T,s(h) These estimators converge at
speed 1/

√
HTK.

Let us now discuss the estimation of matrix A. A multivariate factor
model is commonly defined up to an invertible transformation. In the linear
framework, for any (L,L) invertible matrix Q, we get the same L-variate
model with A replaced by AQ−1 and yl replaced by Qyl that is an O.U.
process as well. Under the identification restriction on A which is imposed
to solve this multiplicity, we get an estimate ÂT of A by using the principal
component analysis (PCA). Next, by applying a pseudo inverse of ÂT , which
is Â+

T = (Â′T ÂT )−1Â′T , approximations ŷlT (ck) = Â+
T m̂T (ck) of yl(ck) are

obtained. This leads to the following corollary: 6

Corollary 3:
The matrix A and the values yl(ck) are consistently estimated with the

convergence rate of estimators of 1/
√
HT .

In particular,

Corollary 4:
For T = ∞, the long run component yl(c), c ∈ [0, 1], is filtered without

errors. Since

ys(t) = yt − yl(t/T ) ≈ yt − ŷlT (c),

for t ∈ (cT, cT + HT ), the short run component is known as well in any
neighbourhood of a date cT .

6If the identification restriction on C is C ′C = IdL, the pseudo inverse becomes Ĉ+
T =

Ĉ ′
T .
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Corollary 4 shows that asymptotically, the underlying SR and ULR com-
ponents can be detected. Therefore, in this model involving two time scales,
the identification of the short and long run dynamics at different ”frequen-
cies” is possible without introducing any additional structural identifying
restrictions. This result is analogous to the asymptotic detection of smooth
deterministic local level [Dalhaus (2012), Dalhaus et al. (2017)], although in
a context of stochastic local levels. Corollary 4 is also compatible with the
remark of Beeler, Campbell (2012) in a critic of the Bansal et al. (2012) long
run modelling approach : ”Predictable variations in long run (component)
might exists in the data, but might be masked by temporary fluctuations
that are omitted from the long-run risk model. If this is the case, however,
economic agents must perceive those variations in order for them to influence
asset prices”.

It is also possible to derive the asymptotic distribution of the difference
between the local sample mean m̂T (ck) and its stochastic limit m(ck) =
Ayl(ck) (see Appendix 3).

Proposition 5 : Let us assume that HT → ∞ and H2
T/T → 0, when

T →∞. Then we have :√
HT [m̂T (ck)− Ayl(ck), k = 1, . . . , K]

tends in distribution to N(0, Id⊗ Σ∞), with :

Σ∞ =
+∞∑

h=−∞

cov [ys(t), ys(t− h)].

This asymptotic result can be used to derive the asymptotic distributions
of
√
HT [ÂT − A] and of

√
HT [ŷlT (ck)− yl(ck)].

Proposition 5 shows that the condition H2
T/T → 0, if T →∞, eliminates

the effect of the smooth varying stochastic level, when deriving these asymp-
totic distributions. If H2

T/T → γ > 0, say, an additional term should have
to be included in the asymptotic variance formula.

3.3 Long Run ACF

The dynamics of the ULR component can be analysed by means of the prox-
ies ŷlT (c) of yl(c). Asymptotically, this is as if the underlying continuous
time O.U. process were observed on the interval [0, 1]. Then, a maximum
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likelihood method, that is an OLS estimator in our Gaussian case, can be
applied after substituting the proxies ŷlT (c) for the true value yl(c) over the
grid of (c1, . . . , cK). Let us examine the consequences of disregarding the
first step estimation error, that is the fact that ŷT l(c) 6= yl(c) and computing
the ML estimator on a regularly spaced grid which is getting finer with T .
The following well-known result is commonly used in the high frequency data
literature.

Proposition 6
Let us consider a regular grid c1 < . . . < cKT

of [0,1], and assume observ-
able yl(c1), . . . , yl(cKT

), then if KT →∞,
i) The volatility parameter S can be estimated consistently with a con-

vergence rate 1/
√
KT .

ii) The ”drift” parameter Θ cannot be consistently estimated.

The last statement follows from the impossibility theorem for continuous
time models [see Banon (1978), Jiang, Knight (1997)]. Although the drift
parameter can be estimated, the distribution of its estimator does not degen-
erate to a point mass at the true value even when T → ∞. The estimation
risk on some of the long run parameters persists indefinitely, and it cannot
be diversified away given the observations on a single time series. Below, we
show that finite sample techniques can be used to address this issue.

3.4 Summary of the Estimation Approach

Under the identification restriction on the short run structural VAR and the
identification restriction on the long run factor (and A), the parameters can
be estimated along the following steps:

Step 1 : Compute the short run sample autocovariances at lags 0 and
1 from formula (3.5) and apply a method of moment estimation based on
the moment conditions (3.6) under the short run identification restrictions
on the short run SVAR. This step provides consistent estimates of short run
parameters Φ,Ω.

Step 2 : Compute the short run local means at different dates ckT, k =
1, . . . , K, from formula (3.4). This step provides approximations m̂T (ck) of
Ayl(ck), k = 1, . . . , K.
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Step 3 : Concatenate the vector of K summary statistics m̂T (ck), k =
1, . . . , K, each of dimension n to perform a principal component analysis

(PCA) of the matrix :
K∑
k=1

[(m̂T (ck)m̂
′
T (ck)] ≡ M̂T .. Keep only the princi-

pal directions associated with the statistically significant eigenvalues of M̂T .
Under the identification restriction A′A = IdL forA, this step provides :

i) an estimate L̂T of the number of underlying long run components;

ii) an estimate of the ”factor sensitivity” matrix A, ÂT , say;

iii) the approximations of the underlying long run component values at
the c′ks, k = 1, . . . , K:

ŷlT (ck) = Â′T m̂T (ck), k = 1, . . . , K,

where Â′T is a pseudo-inverse of ÂT .

Step 4 : Apply the maximum likelihood estimation based on the joint
distribution of yl(ck), k = 1, . . . , K, with the pseudo-observations ŷlT (ck), k =
1, . . . , K, instead of the unobserved yl(ck), k = 1, . . . , K, to get estimates
Θ̂T , ŜT of the long run parameters in (1.6).

Step 5 : This approach can be completed by a residual plot that com-
pares the observed values y to fitted values ŷ computed on another grid
γ1, . . . , γK∗ , i.e. the values y(γkT ) to the values :

ŷT (γkT ) = Φ̂
(γk−γk−1)T
T ŷs(γk−1T )− ŷlT (γk)

= Φ̂
(γk−γk−1)T
T [y(γk−1T )− ŷlT (γk−1)] + ŷlT (γk).

Since the emphasis of this paper is on structural dynamic modelling rather
than the estimation in a narrow sense, a more detailed discussion of the
asymptotic theory addressing the first step estimation errors on yl(ck) and of
the appropriate choices of HT and the size KT of a regular grid on [0, 1], when
T tends to infinity is out of the scope of this paper. This would require a
functional limit theorem for triangular arrays [see Gourieroux et al. (2022)].
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The distinct rates of convergence of the consistent estimators mentioned
in the subsection above, and the impossibility theorem which implies that
Θ̂T is inconsistent, complicate the efficiency analysis 7. It follows from the
impossibility theorem that when T → ∞ the accuracy of the consistent
approximations of the long run component values ŷlT (ck), k = 1, . . . , KT , that
converge at a speed of order 1/

√
HT , can be disregarded and the accuracy

of Θ̂T , ŜT , can be negligible when KT/HT → 0. Then the finite sample
confidence intervals (CI) of any known scalar nonlinear transformation of
Θ̂T , ŜT can be derived by the test inversion [see Kendall, Stuart (1967),
Chap. 20, for a description of this technique, Stock (1991), Section 2.3, or
Pesavento, Rossi (2006), for an application in a univariate standard local-to-
unity model, Carpenter (1999), Dufour (2006) for nuisance parameters and
bootstrap extensions].

The estimation steps 1-4 can be related to the literature on mixed fre-
quency data because of the apparent resemblance of combining data mea-
sured on one time scale with averaged data measured on a time scale with
larger units [see e.g. Deistler et al. (2016), Ghysels (2016)]. Our approach
differs from this literature in the following respects:

i) The observations at mixed frequencies (MF) are generated by the same
time series, while we consider two different latent processes. In our approach,
the observations at different frequencies are used as a tool for identifying
the short and long run dynamics, rather than to interpolate the missing
observations.

ii) The MF literature considers fixed frequencies, i.e. two fixed time scales.
In our framework, we consider an ultra long time scale with a unit that tends
to infinity with the number of observations. Therefore, the impossibility
theorem and its consequences for the long run prediction intervals do not
concern the MF literature.

iv) Similarly to the MF literature, our estimation approach is based on
the Yule-Walker equations at different frequencies to disentangle the short
and long run parameters [see e.g. Chen, Zadrozny (1998)].

7The block decomposition introduced in the proposed estimation approach is a time
series analogue of the granularity theory for panel data with a dynamic common factor
[Gagliardini, Gourieroux (2014)]. We refer to this literature on panel data for the difficulty
in defining the notion of efficient estimation when the rates of convergence of estimators
are different.

19



4 Long Run Predictions

Let us now consider the long run predictions 8. Our objective is to find the
intervals for predictions at large leads as a fixed function of the sample size
with a good coverage rate. We assume that the underlying parametric model
is well specified.

4.1 Information Sets

Corollary 4 implying that the long and short run components can be detected
and identified asymptotically simplifies the analysis of predictions, which
depend on different information sets. The predictions are conditioned on the
current and lagged values of the observed process yt = (yt, yt−1, ...). As only
shocks to the ULR component are needed to analyse the systematic long run
risk 9, it is preferable to work with the information set (ys(t), yl(t/T )). From
Corollary 4 these two information sets are equivalent when T is large.

This result is easy to interpret in the context of the Wold/Volterra decom-
position. Let (Ft) denote the sequence of σ-algebras generated by process
(yt). The purely predictable component Z is measurable with respect to
the σ-algebra F−∞ = ∩tFt and is stochastic if F−∞ does not degenerate to
(Ø,Y). Thus this component belongs to the σ-algebra generated by process
(yt). Even if the observations are available only since an initial date t = 0
rather than since −∞, the purely predictable component Z can be recovered
asymptotically, if T →∞

4.2 Theoretical Predictions

Let us consider the predictive distribution l(y(T +HT )|y(T )) of y at horizon

HT , that is, the conditional distribution of y(T +HT ) given y(T ). Given the

equivalence of the two information sets, the independence between the short
and long run components and the Markov assumption on these components,
the predictive distribution is:

8The prediction problem is different from the problem of testing the unit root hypothesis
and comparing the power functions of the alternative test procedures.

9Such a practice is facilitated in our framework since the SR and ULR components
are independent. This independence assumption and the two time scales provide the
structural aspect to the VAR allowing for separate analysis of shocks on the SR and ULR
components, respectively.
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l(y(T +HT )|y(T )) ≈ ls(ys(T +HT )|ys(T )) ∗ ll[Ayl,T (T +HT )|yl,T (T )], (4.1)

where ∗ denotes the convolution ls, ll the (conditional) distributions of SR
and ULR components respectively.
Two cases can be distinguished:

i) For short run predictions, with HT/T → 0, when T →∞, we have :

l(y(T +HT )|y(T )) ' ls(ys(T +HT )|ys(T )) ∗ δAyl,T (t). (4.2)

= ls(y(T +HT )− Ayl,T (T )|ys(T )), (4.3)

where δAyl,T (T ) denotes the point mass at Ayl,T (T ).

ii) For long run predictions, with HT/T → γ, γ > 0, when T →∞, by the
ergodicity of the short run component and the fact that it has zero mean :

l(y(T +HT )|y(T )) ' ll[Ayl,T (T +HT )|yl,T (T )] (4.4)

= ll[Ayl(1 + γ)|yl(1)]. (4.5)

Hence, at short horizons, only the short run dynamics and short run com-
ponent matter, up to a known drift. At long horizons, only the long run
dynamics and long run component matter.

4.3 Sample-Based Predictions

The theoretical predictive distributions derived in Section 4.2 depend on the
unobserved factor values and on the unknown short and long run parameters.
In practice, they need to be replaced by the estimated predictive distribu-
tions. This replacement is not innocuous, even for large T, because of the
impossibility theorem implying the impossibility to approximate Θ consis-
tently. There is a long run estimation risk that has to be accounted for in
the prediction interval computation. In applied research, it would concern
the computation of the Value-at-Risk (VaR), the required capital (in a finan-
cial application of VaR), or deriving the impulse response functions [compare
to Gospodinov (2004), Pesavento, Rossi (2006)].
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In this section we focus on a combination XT+HT
= a′Y (T +HT ) of vari-

ables to be predicted at large horizons HT = cT and on one-sided prediction
intervals. The one-sided prediction intervals are essential for the computation
of the VaR and required capital at horizon HT under the current financial
regulation. The approach below is easily extended to two sided prediction
intervals. We denote the set of all model parameters by β.

4.3.1 The standard approach

Before we describe the proposed method, let us recall the standard predic-
tion interval which can be computed when a consistent estimator β̂T of β is
available.

i) For a given risk level α, a theoretical conditional quantile q satisfies the
following equality:

Pβ[XT+HT
< q(1− α, β, Y (T ))|Y (T )] = 1− α, ∀β. (4.6)

In our Markov framework, it is asymptotically equivalent to :

Pβ[a′Ys(T+cT )+a′Yl(T+cT ) < q(1−α; β, Ys(T ), Yl(T ))|Ys(T ), Yl(T )] = 1−α, ∀β,

or, by the independence between the SR and ULR components and the er-
godicity of the SR component :

Pβ[a′Ys(T +cT )+a′Yl(T +cT ) < q(1−α; β, Yl(T ))|Yl(T )] = 1−α, ∀β. (4.7)

The only parameters appearing in this expression are the long run parameters
Θ, S, and the parameters of the stationary distribution of the short run
component (since processes Ys and Yl are independent and Ys(T ) no longer
appears in the conditioning set).

ii) Since the conditional quantile depends on the unknown parameter β
and on the unobserved long run component, it is common to replace them
by their consistent approximations in the expression of the conditional quan-
tile, that is q(1 − α, β̂T , Ŷl(T )), and to introduce the associated estimated
prediction interval. Then for large T , we have :

Pβ[a′XT+HT
< q(1− α; β̂T , Ŷl(T ))|Yl(T )] ' 1− α, ∀β. (4.8)
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iii) Even if a consistent estimator β̂T is available, in finite sample the
estimation risk can exist. It is commonly evaluated by a bootstrap equivalent
of a Monte-Carlo experiment based on simulated trajectories with the true
parameter value replaced by its estimate β̂T [see Kilian (1999)].

4.3.2 The approach adjusted for finite sample

As shown in Section 3.3, parameter Θ cannot be consistently estimated,
which follows from the impossibility theorem. This implies that the standard
approach mentioned above, including possibly the bootstrap procedure, is
no longer valid. Yet, in Section 3.4 we have shown that when KT/HT → 0,
confidence sets for Θ , which are valid in finite sample, can be obtained. Then,
the remaining parameters, for which consistent estimators are available, can
be replaced by their estimates in the prediction interval formula without
entailing significant errors at large T .

Let IT (1−α1;Y (T )) denote a confidence set for parameter β at confidence
level 1− α1. It satisfies :

Pβ[β ∈ IT (1− α1;Y (T ))] = 1− α1,∀β. (4.9)

Then, a one-sided sample-based prediction interval at confidence level 1− α
is obtained by fixing the upper bound of the interval as :

Q(α, α1;Y (T )) = max
β∈IT (1−α1;YT )

q(1− α + α1, β, Ŷl(T )), (4.10)

for any choice of α1 ∈ [0, α]. Indeed we have :

Pβ[a′XT+HT
< Q(α, α1;Y (T ))|Y (T )] ≥ 1− α, ∀β, α1, (4.11)

by applying the Bonferroni inequality.
This sample-based prediction interval depends on the confidence set cho-

sen for the estimation of β and in particular on the level α1. Then, we can
also optimize it with respect to α1. In terms of financial regulation, this
corresponds to searching for the minimum required capital compatible with
level 1 − α. Thus, the one-sided sample-based prediction interval has an
upper bound defined by a min-max procedure :

Q∗(α;Y (T )) = min
0<α1<α

max
β∈IT (1−α1;YT )

q(1− α + α1; β, Ŷl(T )). (4.12)
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Let α∗1T , β
∗
T denote the solutions of the min-max optimization (4.12). These

solutions depend on Y (T ) and are fixed endogenously.
The consequences of the additional estimation risk, as compared with the

standard computation of Section 4.3.1 are examined below. We have :

Q∗(α;Y (T )) = q(1− α; β̂T , Ŷl(T )) + {q(1− α + α∗1T ; β∗T , Ŷl(T ))− q(1− α; β̂∗T , Ŷl(T ))}

= q(1− α; β̂T , Ŷl(T )) + {q(1− α; β∗T , Ŷl(T ))− q(1− α; β̂T , Ŷl(T ))}
+ {q(1− α + α∗1T ; β∗T , Ŷl(T ))− q(1− α; β∗T , Ŷl(T ))}. (4.13)

Formula (4.13) has three terms with the following interpretations:
• the first term is the estimated quantile, that is, the estimated theoretical

measure of risk.
• the next two terms represent the estimation risk. The first among

them is due to the replacement of approximation β̂T by an extreme β∗T of
the confidence set. In the univariate case illustrated below, it is either a
lower or upper bound of the confidence interval. The second term is due
to adjusting of confidence levels for the lack of accuracy. It increases the
confidence interval from 1 − α to 1 − α + α∗1T , making it more conservative
in the light of the definition of a theoretical Value-at Risk (VaR) [Robinson
(1977)].
Let us now illustrate the above approach in a univariate framework.

Example 1: In the univariate model (2.6)-(2.8) the impossibility theo-
rem concerns the scalar parameter θ. All other parameters η, ϕ, s, as well as
the value of the underlying long run component at T can be replaced by con-
sistent estimators and approximations. Therefore, we focus on the theoretical
quantile as a function of parameter θ. It is easy to check that for predict-
ing y(T + HT ) at time T and a large horizon HT = γT , the corresponding
quantile is:

q(θ, α) = exp(−θγ)yl(T ) + Ψ−1(1− α)

√
η2 +

s2

2θ
[1− exp(−2θγ)],

where Ψ denotes the cumulative distribution function of the standard normal.
Let us now consider a confidence interval for θ at level 1− α1 :

IT [1− α1;Y (T )] = [θL,T (α1), θU,T (α1)], say.
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Since function q(θ;α) is not necessarily increasing or decreasing in θ, we get :

Q(α, α1;Y (T )) = max[q(θL,T (α1), α− α1), q(θU,T (α1), α− α1)].

In the last optimization with respect to α1, 0 < α1 < α, the optimum will
not be reached in practice for α1 = 0, or α1 = α. Indeed for α1 = 0, the
confidence interval is usually of infinite length, whereas for α1 = α, that is
α− α1 = 0, q(θ, α− α1) is infinite.

4.3.3 Bayesian approach and the prudential principle

The approach developed in Section 4.3.2 assumes a well-specified parametric
dynamics for the SR and ULR components. The same assumption underlies
the derivation of the one-sided prediction intervals in a Bayesian framework
[see e.g. Muller, Watson (2016), (2020), Schorfheide, Song, Yaron (2018) for
such approaches). Let us introduce a prior π(β). Then a Bayesian one-sided
prediction interval at level 1−α can be defined by a quantile QB(α;YT ) such
that :

P [a′XT+H < QB(α;Y (T ))|Y (T )] = 1− α, (4.14)

where the conditional probability includes the integration with respect to the
”stochastic” parameter β. More precisely, we get :

∫
Pβ[a′XT+H < QB(α;Y (T ))|Y (T )]π(β|Y (T ))dβ = 1− α, (4.15)

where π(β|Y (T )) denotes the posterior distribution of β. As already noted in
the literature [see [Robinson (1977), Muller, Norets (2016), Muller, Watson
(2020), Section 7.4, for confidence sets versus credible sets], this condition
does not ensure that the condition :

Pβ[a′XT+H < QB(α;Y (T ))|Y (T )] ≥ 1− α, ∀β,
holds uniformly in β, which is a common characteristic of a prediction in-
terval. This coverage condition is only satisfied in average for a specific
posterior (i.e. indirectly for a specific prior). In particular, for financial
regulation, this Bayesian practice is not prudential, as in general it
implies an undervaluation of required capital and is very sensitive
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to the choice of the prior 10. As a consequence, it is not permitted by
the current prudential financial supervision.

5 Illustration

To illustrate the properties of the SVAR model with a stationary ULR com-
ponent, we perform a Monte-Carlo study to show the behaviour of various
summary statistics. Next we apply the proposed methodology to a set of
macroeconomic time series.

5.1 A Monte-Carlo study

5.1.1 The model

We consider a bivariate model h = 2 with one long run component L = 1.
The short run parameters are :

Φ =

(
0.3 0
0 0.7

)
,Ω1/2 =

(
1 1
0 2

)
,

with a triangular Ω1/2 matrix to get directional short run causality between
these two components. The matrix of ”factor sensitivities” is set to : A =
(1, 1)′ and the long run parameters for the univariate long run component
to θ such that exp(−10 θ) = 0.4 and s = 1.

The simulated series are of length T = 7200, which corresponds to about
20 years of 360 days, if the basic time unit is one day. We fix the long run
grid to c1 = 1/20, c2 = 2/20, . . . , c20 = 20/20 corresponding to multiples of
years, and the length of the short run episode to HT = 60, which is equivalent
to two months.

Figure 1 provides a simulated path of process y(t) = (y1t, y2t)
′. For each

series the effect of the stationary ULR component is masked by the variation
of the short run component. We also observe rather parallel smooth waves
created by the single latent ULR factor.

10Except in the special case when Pβ [α′XT+H < QB(α;Y (T )|Y (T )] is independent of
β. In a simple framework, this can arise if the statistic used to construct the prediction
interval has some invariance property with respect to the nonidentifiable parameters. But
such invariant procedures are difficult to construct for a multivariate Θ.
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[Figure 1 : Simulated Trajectory of y(t)]

Figure 2 displays the evolutions of the averages m̂1(ck), m̂2(ck), k = 1, . . . , 20
obtained with a bandwidth of 60.

[Figure 2 : Trajectory of m̂(ck)]

We observe parallel evolutions of these averages revealing an underlying single
long run component.

5.1.2 The sample autocorrelation functions

Let us now consider the different types of ACF introduced in Section 3.
These are the standard joint ACF computed from yt, t = 1, . . . , T, up to lag
H = 1000 (Figure 3) and the standard joint ACF computed from yt, t =
1, . . . , HT = 60, up to lag H = 15 (Figure 4). The main difference between
them is how the autocorrelation is demeaned, i.e. globally in Figure 3, and
locally in Figure 4.
Figure 5 provides the joint ACF computed from 20 observations of the aver-
ages m̂(ck), k = 1, . . . , K = 20, up to lag 10 of the long run time unit. It is
given for bandwidths of 60 and 80, respectively.

These figures show the importance of considering jointly the different
ACF’s. The standard one in Figure 3 reveals the persistence, that is, a
slow decay of the auto- and cross-correlations. However, this persistence
effect conceals the important features concerning the short and long run
components, respectively. By diminishing the length of the time series in
Figure 4, and then adjusting for the mean, we reveal the dynamics of the
short run component. Next by averaging and changing the time scale in
Figure 5, we reveal the dynamics of the long run component.

[Figure 3 : The Standard ACF]

[Figure 4 : The Local ACF ]

[Figure 5 : ACF of Averages]
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5.1.3 Finite sample properties of the ML estimator of θ.

Let us also provide information on the lack of consistency and finite sample
distribution of the ML estimator of θ computed from observations on process
yl over a grid ck = k/K, of [0, 1].
We consider K = 25 used in the application of Section 5.2, and the Gaussian
AR(1) model :

ỹ(k) = exp(−θ/K)ỹ(k − 1) +
√

1− exp(−2θ/K)ε̃(k), k = 1, . . . , K, (5.1)

where the ε̃(k)′s are IIN(0,1). Without loss of generality the scale parameter
is set equal to 1, since parameter θ is scale invariant. Parameter θ is esti-
mated by the maximum likelihood conditional on y(0) where y(0) is drawn
in N(0, 1).

For each level α, α = 0.05, 0.1, 0.5, 0.9.0.95, we derive the one sided α-
percentiles interval for ρ̂K = exp(−θ̂/K) as a function of ρ = exp(−θ/K).
This provides belts that can be inverted to get the 1−α confidence intervals
for ρ from an estimate ρ̂K . The sudden change of slope in the 0.95 quantile
occurs when ρ is too large, It is due to the finite sample properties of the
estimator close to a unit root [see Stock (1991), Figure 2, in the pure unit
root case].

By comparing the estimate with the 50% quantile, we get information on
the skewness of the finite sample distribution of the estimator of ρ.

[Insert Figure 6: Confidence Belts]

5.2 Application to Economic Time Series

5.2.1 The series

As an empirical exercise and to facilitate the comparison with the recent lit-
erature [Muller, Watson (2016), (2020)], we consider the same five quarterly
US macro-series as those examined by Muller, Watson in their papers. The
series obtained from the Federal Reserve Bank of St Louis FRED database
are the growth rates of total factor productivity (TFP), per-capita GDP,
consumption, investment and labor compensation. They are not annualized
and cover the period 1948 Q2-2019 Q2 prior to the COVID pandemic. The
evolutions of these series are displayed in Figure a.1, which corresponds to
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Figure 2 in Muller, Watson (2020). We give in Figure a.2 in Appendix 4 the
associated ACF and cross-ACF.

The standard tools of time series analysis reveal no persistence, i.e. no
remaining ”unit root” features in the growth rates. However, in the frame-
work of a model with SR and ULR components, the standard ACF provides
no clear information about the ULR. The ACF at short lags reveals only the
persistence of the short run component. The autocorrelations at very long
lags are close to zero due to the large variance of the SR component relatively
to the variance of the underlying ULR component.

Following the standard approach, ARMA models are fitted to the series
without taking into account the underlying structure represented as the sum
of a SR and an ULR components. In particular, they are estimated by OLS-
type estimators that optimize the SR prediction performance at horizon 1,
whereas we are interested in the ULR prediction performance. Nevertheless
we estimate an ARMA model for each series and then compute the standard
prediction intervals at a date corresponding to T = 275. Consistently with
our proposed ULR approach, we choose the ultra-long horizon equal to H =
200 quarters, i.e. 50 years 11. The standard prediction intervals are given in
the first column of Table 2.

5.2.2 Filtering the ULR component

To filter out the potential ULR component, we partition the time scale mea-
sured in quarters into non-overlapping intervals of length 11 quarters. Then,
the raw data are averaged over each interval and their average is assigned
to the middle date of each interval. We get new series of length 25 on a de-
formed time scale of 21 quarters. Although this filtering approach follows the
same idea as the low frequency approach of Muller, Watson (2016), (2020),
it differs from their approach with respect to the following. Muller, Wat-
son base their analysis on projections on a fixed number of low frequency
periodic functions of time, with frequencies such as 2T/j, j = 1, . . . , 14 [see
Muller, Watson (2020), Section 3]. This approach uses all observations to
construct the summary statistics. Therefore, Muller and Watson’s approach
is a global-in-time approach while ours is local-in-time. A drawback of the
global-in-time approach is easy to point out in the context of a model with
two additive components, which are a ULR component and a white noise as

11Different ULR horizons corresponding to other fractions of T can also be considered,
such as H = 120, i.e. 30 years.
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the SR component. It is well-known that the spectrum of white noise pro-
cess is characterized by positive equal weights at each frequency. Hence, the
global-in-time projection approach does not eliminate the effect of the noise,
and as a consequence does not focus on the ULR component only. From a
purely theoretical perspective, this approach shows a lack of coherency with
respect to the Wold representation. While the modelling assumes a regular
infinite order moving average process, the projection is intended to detect
singular components (which are stochastic combinations of deterministic pe-
riodic functions of time). Our approach distinguishes between the regular
and singular (i.e. SR and ULR) components and attenuates the effects of
the SR component in order to filter out the ULR component. The ACF and
cross-ACF of the series of filtered components are provided in Figure a.3 in
Appendix 4. The AR(1) models are estimated from each filtered serie. The
values of estimated autoregressive coefficients in the ULR time scale and the
calendar time scale measured in quarters are given in Table 1.

Table 1 : Autogressive Coefficients for the ULR Component

Series tfp gdp c inv lab.
ULR Scale (−)0.275 (−)0.139 (−)0.025 0.546 0.160
quarter scale 0.889 0.836 0.714 0.947 0.847

Due to time deformation, the small values of autregressive coefficients in
the ULR scale becomes much larger and closer to 1 in the calendar time scale
measured in quarters.

Next, each estimated AR(1) model is used to predict at the same ULR
horizon as described in Section 5.2.1 corresponding to about H = 18 in the
ULR time scale. 12 We provide the plug-in theoretical prediction intervals in
the second column of Table 2, and the intervals adjusted for estimation risk
(see Section 4.3.2) in the third column. The differences between columns 2
and 3 show the importance of taking into account the estimation risk in ULR
predictions due to the significant increase of 10% to 200% in the length of
the prediction formula in the third column.

These results can be compared with the prediction intervals computed
from the series of raw data. The prediction intervals based on raw data are

12Some filtered ULR series show negative autocorrelation coefficients. They seem to be
due to the special cleaning treatment of the series in the database. Since the prediction
formulas depend on ρ2 only, the sign has no impact on the prediction intervals.
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shorter than the adjusted filtered ULR prediction intervals. In addition, they
are biased, since they assume a constant mean instead of a slowly varying
mean. Our results cannot be directly compared to the prediction intervals
derived for the same series in Muller, Watson as they derived prediction
intervals for the change averages between T and T + H at 90%. Because
of the averaging and using critical values associated with lower confidence
levels, Muller, Watson report shorter prediction intervals.

Table 2 : Prediction Intervals at 95%

Series Raw Data Filtered ULR Filtered ULR
(unadjusted) (adjusted for

estimation risk)
tfp (0.781, 1.634) (0.437, 1.436) (0.108, 1.763)
gdp (0.0065, 0.0090) (0.0054, 0.0081) (0.0048, 0.0087)

c (0.0069, 0.0089) (0.0070, 0.0094) (0.0067, 0.0096)
inv (0.0065, 0.0085) (−0.0017, 0.0113) (−0.0136, 0.0231)
lab (0.0065, 0.0091) (0.0076, 0.0111) (0.0069, 0.0119)

6 Concluding Remarks

The aim of this paper is to introduce stationary long run components for
stationary SVAR models and to derive long run prediction intervals for this
model. It follows from the impossibility theorem that the long run predictions
have to account for a significant long run estimation risk that makes the
prediction intervals significantly wider.

The ULR framework is an alternative to other local-to-unity models in-
troduced in the literature, where the long run component leads to explosive
evolutions, with trajectories that either explode in the ultra long run, or take
extreme values with high probabilities (see Appendix 1). This questions the
validity of long run predictions based on these models for a variety of eco-
nomic or financial variables, which are not explosive and take values from
limited sets.

As shown in this paper, by applying well-chosen block decomposition of
observations, it is possible to separate the statistical inference on short and
long run parameters as well as to identify the short and long run components
of the process. The main message of this paper is related to the impossibility
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theorem, and conveys the impossibility to consistently estimate some long
run parameters. This implies that estimation risk is significant and has to be
taken into account in the long run prediction intervals, as well as in the VaR
and required capital computation methods. While the proposed approach is
clearly model-based, from a prudential perspective the long run estimation
risk should not be artificially underestimated by either using an over-scaled
local-to-unity model (see Appendix 1), or a Bayesian prediction approach
that does not ensure the uniform coverage of the prediction interval (Section
4.3.3). More generally, prediction methods that appear misleadingly precise
because of underestimating the long run risk, need to be avoided.

The analysis presented in the paper can be extended to additive decompo-
sitions of short and long run component with non- Gaussian distributions, to
avoid the standard identification issues in the second-order analysis of SVAR
[see Gourieroux, Monfort, Renne (2017)]. It can also be extended to nonlin-
ear dynamic models with a non-additive decomposition into the short and
long components with independent nonlinear dynamics of those components
[see Gourieroux et al. (2021)].
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Figure 1 : Simulated Trajectory of Bivariate Process y(t)
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Figure 2 : Trajectory of m̂(ck)
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Figure 3 : The Standard ACF
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Figure 4 : The Local ACF

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

Lag

A
C

F

Series 1

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

Lag

Series 1 & Series 2

−15 −10 −5 0

−
0.

4
0.

0
0.

4
0.

8

Lag

A
C

F

Series 2 & Series 1

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

Lag

Series 2

41



Figure 5 : ACF of Averages

0 2 4 6 8 10

−
0.

4
0.

0
0.

4
0.

8

Lag

A
C

F

Series 1

0 2 4 6 8 10

−
0.

4
0.

0
0.

4
0.

8

Lag

Series 1 & Series 2

−10 −8 −6 −4 −2 0

−
0.

4
0.

0
0.

4
0.

8

Lag

A
C

F

Series 2 & Series 1

0 2 4 6 8 10

−
0.

4
0.

0
0.

4
0.

8

Lag

Series 2

bandwidth = 60

42



0 2 4 6 8 10

−
0.

4
0.

0
0.

4
0.

8

Lag

A
C

F
Series 1

0 2 4 6 8 10

−
0.

4
0.

0
0.

4
0.

8

Lag

Series 1 & Series 2

−10 −8 −6 −4 −2 0

−
0.

4
0.

0
0.

4
0.

8

Lag

A
C

F

Series 2 & Series 1

0 2 4 6 8 10

−
0.

4
0.

0
0.

4
0.

8

Lag

Series 2

bandwidth= 80

43



Figure 6: Quantiles of Estimated ρ at 0.05, 0.1, 0.5, 0.9 and 0.95
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Appendix 1

Local-To-Unity (LTU) Models

This appendix provides a brief survey of the different types of LTU
models introduced in the literature to compare their ability of representing
the dynamics of time series featuring ”persistence” in sample autocorrela-
tions and a significant long run risk. The condition on the extremes is :
supt P [|yt| > A] ≡ π(A) < 1, say. The above condition eliminates explosive
trends as well as explosive variances. For expository purpose, we consider the
univariate (AR(1)) Gaussian process, where (εt) denotes a Gaussian white
noise.

Initially the aim of the LTU models was to approximate a unit root model
such that Corr(yt, yt−1) = 1. Recall that there exists two types of unit root
Gaussian AR(1) models:

i) The random walk

yt = yt−1 + σεt, σ > 0,

where y0 is either deterministic, or stochastic, independent of εt, t > 0. This
process is such that yt = y0 + Σt

τ=1ετ . It is nonstationary and ”explosive”
with supt P (|yt| > A) = 1.

Such models have for instance be applied to time varying parameters
(mean and log-variances) to analyze the long run GDP growth in Antolin-
Diaz et al. (2017).

ii) The singular process

yt = yt−1,

with a stochastic y0. This is a stationary process such that supt P [|yt| >
A] = P (|y0| > A) = π(A) < 1. It has no explosive features.

Let us now consider local-to-unity models, which are written for triangular
arrays, yT (t). Thus the condition on the extremes is expected to be uniform
in T :
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sup
T

sup
t≤T

PT [|yT (t)| > A] = π(A) < 1. (a.1)

a) Local-to-Unity with 0 initial value [Chan, Wei (1987), Phillips
(1987)]

yT (t) = exp(−c/T )yT (t− 1) + σεt, with yT (0) = 0, c > 0.

The distribution of yT (t) is N

(
0, σ

1− exp(−2ct/T )

1− exp(−2c/T )

)
.

In particular yT (γT ) ∼ N

[
0, σ21− exp(−2cγ)

1− exp(2c/T )

]
, γ > 0.

At dates equal to multiples of the number of observations, we see that
PT [|yT (γT )| > A] → 1, for T → ∞. The condition on the extremes is
not satisfied.

b) Stationary Local-to-Unity [Elliott (1999), top of p820, Elliott,
Muller (2003)].

yT (t) = exp(−c/T )yT (t− 1) + σεt,

where the initial value yT (0) is drawn in the unconditional distributionN(0,
σ2

1− exp(−2c/T )
).

When T →∞, the unconditional distribution of yT (t) tends to N(0,∞),
and the condition on the extremes is not satisfied.

c) Scaled Local-to-unity with 1/T scale effect [Muller, Watson (2016),
footnote 9, Muller, Watson (2020), p11].

yT (t) = exp(−c/T )yT (t− 1) +
σ

T
εt,

yT (0) = 0.

In this case, we get :

yT (γT ) ∼ N(0,
σ2

T 2

1− exp(−2cγ)

1− exp(−2c/T )
) ≈ N(0, 0),

when T tends to infinity. The scale effect is too strong leading to a
deterministic constant zero at long horizons and an artificial total
diversification of the long run risk.
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d) Scaled Random Walk [Muller, Watson (2020), p11]
yT (t) = yT (t− 1) +

σ

T
εt,

yT (0) = 0.

Similarly as for the scaled LTU in c) we have :

yT (γT ) ∼ N(0,
σ2

T 2
γT ) = N(0,

σ2γ

T
) ≈ N(0, 0),

when T tends to infinity. The scale effect is too strong.

e) The Ultra Long Run (ULR)

This dynamic model bridges the gap between the standard LTU models
a), b) and the scaled LTU in c). It is defined as :

yT (t) = exp(−c/T )yT (t− 1) + σ
√

1− exp(−2c/T )εt.

For each fixed T , we get a stationary process as in example b), but due to
the choice of the variance, the unconditional distribution N(0, σ2) no longer
depends on T . Therefore the uniform condition for the extreme be-
comes:

supT supt≤T PT [|yT (t)| < A] = P (σU < A) = π(A) < 1, where U ∼
N [0, 1], and is satisfied.

When T → ∞, the dynamic is close to the ”dampered unit root” pro-

cess : yT (t) = (1− c

T
)yT (t− 1) + λ/

√
Tεt, considered in Gospodinov (2009),

Gospodinov, Maynard, Pesavento (2021).

f) Other time deformation models

The ULR model can be extended to other time deformations, for instance
corresponding to a large time unit of T d, d > 0. It is easy to show that the
ULR model corresponding to d = 1 is a limiting case. Indeed, by taking
appropriate averages of the observations, we observe asymptotically the un-
derlying OU process on (0,∞), if d < 1. Therefore parameter c (in the
notation of this appendix, θ in the notation of the text) can be estimated
consistently. In some sense the ULR model is the first prudential model in
this class of time deformed autoregressive models.
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Appendix 2

Asymptotic Behaviour of
1

T − cT

T∑
t=cT+1

[yT (t)y′T (t− cT )]

We have :

1

T − cT

T∑
t=cT+1

[yT (t)y′T (t− cT )]

=
1

T − cT

T∑
t=cT+1

[ys(t)y
′
s(t− cT )] + A

1

T − cT

T∑
t=cT+1

[ylT (t)y′lT (t− cT )]A′

+
1

T − cT

T∑
t=cT+1

[ys(t)y
′
lT (t− cT )]A′ +

A

T − cT

T∑
t=cT+1

[ylT (t)y′s(t− cT )].

The first term of the right hand side of the equality tends to zero in prob-
ability by the standard Law of Large Numbers for stationary geometrically
mixing Gaussian processes.

The second term tends to the corresponding stochastic integral by ap-
plying the convergence of Riemann sums [Stroock, Varadhan (1979), Section
11,]

With respect to the discussion on asymptotic behaviour of sample means,
the two remaining terms representing the cross-effects of the short and long
run components are new. We have to check if they are negligible. This is
a consequence of the weak Law of Large Numbers for mixingales [De Jong
(1998)].

Since the weak LLN for a triangular array is usually discussed in the
univariate process, we consider below the case n = L = 1 for expository
purpose. The approach is easily extended to matrices by applying the same
reasoning element par element. Let us consider the fourth term and denote :

XTt = yl,T (t)ys(t− cT ) = yl(t/T )ys(t− cT ),

and FTt =
(
yl(t/T ), ys(t− cT )

)
an infinite array of σ-fields.
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a) L1-mixingale condition

Let us check that (XTt,FTt) satisfies the condition of a L1−mixingale
array [Andrews (1988), De Jong (1998), Definition 1].

i) By construction XTt is measurable with respect to the increasing se-
quence of σ-fields FTt, t varying. Therefore condition (2) in De Jong (1998),
definition 1, is trivially satisfied [see Andrews (1988), p460, remark b)].

ii) Let us now consider condition (1) in De Jong definition 1. We have :

||E[XTt|FT,t−m]||1

= ||E[yl(t/T )|yl
(
t−m
T

)
]E[ys(t− cT )|ys(t−m− cT )]||1,

by the independence between the SR and ULR components and their Markov
properties. Then,

||E[XTt|FT,t−m]||1

= || exp(−θm/T )yl(
t−m
T

)ϕmys(t−m− cT )||1

≤ ||yl(
t−m
T

)ys(t−m− cT )||1ϕm ≡ Kψ(m),

where K is a constant by the independence of the SR and ULR components
and their stationarity, and where ψ(m) = ϕm tends to zero when m tends to
infinity. Thus condition (2) is satisfied.

b) Weak LLN

There exist different versions of weak LLN for L1-mixingales. The stan-
dard version in Andrews (1988), Theorem 1, is not applicable in our frame-
work due to a too strong condition of uniform integrability of XTt. However,
we can apply De Jong (1995), Theorem 1 [see also De Jong (1998), p 214].
In his notations, the conditions are satisfied with BT = 1 constant. Indeed
we have :
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limK→∞ lim supT→∞
1

T

T∑
t=1

||XTt1l[XTt]>K ||1

= limK→∞ ||XTt1l[XTt|>K ||1 by stationarity,

= 0 , since the expectation of XTt exists.
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Appendix 3

Asymptotic Behaviour of Local Means

The local mean at date cT is defined by [see eq. (3.4)] :

m̂T (c) =
1

HT

cT+HT∑
t=cT+1

yT (t)

=
1

HT

cT+HT∑
t=cT+1

ys(t) +
1

HT

cT+HT∑
t=cT+1

Ayl(t/T ).

By the independence assumption the two components of the right hand
side can be analyzed separately.

a) Analysis of the SR component

Since the SR process is stationary, the sample average m̂sT (c) =
1

HT

cT+HT∑
t=cT+1

ys(t)

has the same distribution as the average
1

HT

HT∑
t=1

ys(t). Therefore under the

assumption of geometric ergodicity of ys (that is the modulus of the eigen-
values of Φ strictly smaller than 1) and the existence of its second-order
moments, we have :

i) m̂sT (c)→ 0, if HT →∞,

ii)
√
HT m̂sT (c)→ Σ

1/2
∞ Zs(c),

where Zs(c) ∼ N(0, Id), and Σ∞ =
∑+∞

h=−∞ cov [ys(t), ys(t− h)].

iii) Moreover, for different levels ck, k = 1, . . . , K, the limiting Zs(ck), k =
1, . . . , K can be chosen independent, if HT/T → 0.

b) Analysis of the second component

Let us consider the difference :
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∆T (c) =
1

HT

cT+HT∑
t=cT+1

yl(t/T )− yl(c).

Since (yl) is a Gaussian process, ∆T (c) is also a Gaussian process. We
have :

√
HT∆T (c) =

1√
HT

cT+HT∑
t=cT+1

[yl(t/T )− yl(c)]

=
1√
HT

HT∑
h=1

[yl(c+ h/T )− yl(c)].

The Ornstein-Uhlenbeck process has a closed form expression with respect
to its value yl(c) at c and the future values of the Brownian motion as :

yl(c+ h/T ) = exp(−Θh/T )yl(c) + exp(−Θh/T )

∫ c+h/T

c

exp(Θu)SdWu.

Then the asymptotic behaviour of
√
HT∆T (c) depends on the indepen-

dent effects of yl(c) and the future of the Brownian motion Wc+u.

i) Effect of yl(c)

The component of ∆T (c) depending on yl(c) is :

∆1T (c) =
1

HT

HT∑
h=1

[exp(−Θh/T )− Id]yl(c)

' − 1

HT

HT∑
h=1

[Θh/T ]yl(c), if HT/T → 0, when T →∞,

' − Θ

THT

HT∑
h=1

hyl(c)

' −HT

2T
Θyl(c).
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Therefore,
√
HT∆1T (c) ∼ −H

3/2
T

2T
Θyl(c), and this term is negligible if

HT/T
2/3 → 0, if T →∞.

iii) Effect of Wc+u

Let us now denote ∆2,T (c) the component associated with the future of
the Brownian motion. We have :

∆2T (c) =
1

HT

HT∑
h=1

{exp[−Θh/T ]

∫ c+h/T

c

exp(Θu)SdWu}

=
1

HT

HT∑
h=1

h∑
k=1

{exp(−Θh/T )

∫ c+k/T

c+(k−1)/T
exp(Θu)SdWu}

=
1

HT

HT∑
k=1

{[
HT∑
h=k

exp(−Θh/T )]

∫ c+k/T

c+(k−1)/T
exp(Θu)SdWu}

=
1

HT

[Id− exp(−Θ/T )]−1

∑HT

k=1{(Id− exp[−Θ(HT − k)/T ]) exp(−Θk/T )

∫ c+k/T

c+(k−1)/T
exp(Θu)SdWu}.

For expository purpose, i.e. to avoid the matrix notations, let us consider
the one-dimensional case. ∆2T (c) is zero-mean with variance :
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V [∆2T (c)] =
s2

H2
T

1

[1− exp(−θ/T )]2

HT∑
k=1

{(1− exp[−θ(HT − k)/T ])2 exp(−2θk/T )∫ c+k/T

c+(k−1)/T
exp(2θu)du}

=
s2

H2
T

exp(2θc)

2θ[1− exp(−θ/T )]2

HT∑
k=1

[1− exp(−θ(HT − k)/T )]2[1− exp(−2θ/T )]

=
s2

H2
T

exp(2θc)

2θ

1− exp(−2θ/T )

[1− exp(−θ/T )]2

HT∑
k=1

(1− exp(−θ(HT − k)/T ])2

=
s2

H2
T

exp(2θc)

2θ

1− exp(−2θ/T )

[1− exp(−θ/T )]2

{HT − 2
1− exp(−θHT/T )

1− exp(−θ/T )
+

1− exp(−2θHT/T )

1− exp(−2θ/T )
}. (∗)

Let us now expand the term within brackets when T → ∞, HT → ∞,
HT/T → 0. We get the equivalent expression :

HT − 2T
θ

[1− exp(− θHT

T
)] + T

2θ
[1− exp(−2θHT

T
)]

≈ 1
3

θ2H3
T

T 2 .

Therefore, by introducing this expansion in equation (∗) we get :

V [
√
HT∆2T (c)]

≈ s2
exp(2θc)

2θ

1− exp(−2θ/T )

[1− exp(−θ/T )]2
1

3

θ2H2
T

T 2

≈ 1

3
s2 exp(2θc)

H2
T

T
.
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Appendix 4

Additional Figures

We provide in this appendix additional figures for illustrating the results of
Section 5.2.

Figure a.1 : Growth Rates of TFP, Per-Capita GDP, Consumption, In-
vestment and Labor Compensation in US

Figure a.2 : ACF and Cross-ACF of the Raw Data

Figure a.3 : ACF and Cross-ACF of Filtered ULR component.
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Figure a.1 : The series
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Figure a.2: ACF and Cross-ACF of the Raw Data
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Figure a.3: ACF and Cross-ACF of Filtered ULR Components
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