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Abstract

We consider a class of semi-parametric dynamic models with indepen-
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function, circumvents the inversion of high-dimensional matrices, and
achieves semi-parametric efficiency in one step. We derive the asymp-
totic properties of the GCov estimator and show its semi-parametric ef-
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1 Introduction

We consider a class of semi-parametric dynamic models with independent, identically dis-

tributed (i.i.d.) error terms. This class includes univariate and multivariate models, such as

the Double-Autoregressive (DAR), stochastic volatility, and mixed causal-noncausal Vector

Autoregressive (VAR) models. The i.i.d. assumption on the errors is used to define the

Generalized Covariance (GCov) estimator of the parameters of interest, which minimizes a

residual-based multivariate portmanteau statistic. The GCov is a one-step estimator that

is shown to be consistent, asymptotically normally distributed, and semi-parametrically effi-

cient.

The GCov estimator can be viewed as an alternative to the Continuously Updating Gen-

eralized Method of Moments (CUGMM) estimator [Hansen, Heaton, Yaron (1996)]. Unlike

a GMM estimator, which is based on non-central moments, the GCov relies on central mo-

ments, or equivalently, both non-central moments and products of non-central moments. The

expression of the asymptotic variance of the GCov estimator is relatively simple because of a

convenient standardization of the minimization criterion. In comparison to the CUGMM, the

GCov estimator does not require the inversion of matrices of high dimension [see e.g. Altonji

and Segal (1996) for the finite sample problems arising from the inversion of the covariance

matrix].

The GCov estimator can be applied to multivariate or univariate nonlinear dynamic

models. In the latter case, the objective function to be minimized can be computed from

a univariate series, or from several (nonlinear) transformations of that series obtained, for

example, by discretizing the state space. For testing the hypothesis of i.i.d. errors, we

consider the residual-based multivariate portmanteau statistic. We show that this statistic

asymptotically follows a chi-square distribution with the degrees of freedom adjusted for the

number of identifiable parameters. This extends the well-known result established for linear

causal dynamic VAR-type models to a nonlinear dynamic framework.

The following notation is used. For any m × n matrix A whose jth column is aj, j =

2



1, ..., n, vec(A) will denote the column vector of dimensionmn defined as vec(A) = (a′1..., a
′
j, ..., a

′
n)′,

where the prime denotes transposition. For any two matrices A ≡ (aij) and B, the Kronecker

product (A⊗B) is the block matrix having aijB for its (i, j)th block.

The paper is organized as follows. Section 2 recalls the interpretation and asymptotic

distribution of the multivariate portmanteau statistic. Section 3 defines the GCov estimator

and provides examples of semi-parametric dynamic models, which can be estimated by the

GCov estimator. We also discuss the identifiability of the parameters of interest characteriz-

ing the serial dependence. Section 4 presents the results on the consistency and asymptotic

normality of the GCov estimator. We discuss the simplification of the sandwich formula of

asymptotic variance and the differences between the GCov estimator and alternative method

of moments estimators with respect to the computational feasibility and choice of instru-

ments. The residual-based multivariate portmanteau statistic and its distribution are ex-

amined in Section 5. In Section 6, the generic GCov approach is extended to models with

errors that are both serially and cross-sectionally independent, with a special emphasis on

the causal/noncausal SVAR models. The finite-sample performance of the GCov estimator

is illustrated in Section 7 in a simulation study of mixed causal-noncausal models and in

an application to a dynamic model of commodity futures. Section 8 concludes. Proofs and

asymptotic expansions are gathered in Appendices 1 to 4 in Sections 2.1-2.4 of Supplemental

Material, which also contains additional examples, tables, figures, and references.

2 The Portmanteau Statistic

Let us consider a univariate strictly stationary time series (yt) with finite fourth-order mo-

ments. The test of the null hypothesis H0 = {γ(h) = 0, h = 1, ...., H}, with γ(h) =

Cov(yt, yt−h) is commonly based on the test statistic:

ξ(H) = T

H∑
h=1

ρ̂(h)2 = T

H∑
h=1

γ̂(h)2

γ̂(0)2
, (1)
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where γ̂(h) and ρ̂(h) are the sample autocovariance and autocorrelation of order h, respec-

tively.

Under the i.i.d. assumption on (yt) and the existence of fourth-order moments, this

statistic asymptotically follows a chi-square distribution χ2(H) with H degrees of freedom

[see, Box, Pierce (1970)]. The aim of this Section is to review the analogue of this statistic

for strictly stationary time series of higher dimensions.

Let us now consider a multivariate strictly stationary time series (Yt) of dimension K

with finite fourth-order moments. Even though the assumption of existence of the fourth-

order moment is needed to derive the asymptotic distribution, that distribution does not

depend on the fourth-order cumulant, or more generally, on the distribution of Yt [see Bartlett

(1946) p.30]. Then, the multivariate analogue of statistic (1) for testing the null hypothesis

H0 = {Γ(h) = 0, h = 1, ...., H}, where Γ(h) = cov(Yt, Yt−h) denotes the autocovariance

matrix of order h, is:

ξ(H) = T
H∑
h=1

Tr[R̂2(h)], (2)

where R̂2(h) is the sample analogue of the multivariate R-square defined by:

R2(h) = Γ(h)Γ(0)−1Γ(h)′Γ(0)−1. (3)

Since

R̂2(h) = Γ̂(0)1/2[Γ̂(0)−1/2Γ̂(h)Γ̂(0)−1Γ̂(h)′Γ̂(0)−1/2]Γ̂(0)−1/2,

where Γ̂(h) denotes the sample autocovariance matrix, the sample R-square is equivalent, up

to a change of basis, to the matrix within brackets, which is symmetric and positive-definite.

Therefore, it is diagonalisable with a trace equal to the sum of its eigenvalues that are the

squares of the canonical correlations between Yt and Yt−h, denoted by ρ̂2
j(h), j = 1, ...., K
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[Hotelling (1936)]. Hence:

ξ(H) = T
H∑
h=1

Tr[Γ̂(h)Γ̂(0)−1Γ̂(h)′Γ̂(0)−1] = T
H∑
h=1

[
K∑
j=1

ρ̂j(h)2]. (4)

Under the assumption of independently and identically distributed (i.i.d.) process (Yt) with

finite fourth order moments, this statistic follows asymptotically a chi-square distribution

χ2(KH) [see, e.g. Robinson (1973), Chitturi (1976), Anderson (1999), Section 7, Anderson

(2002), Section 5].

Remark 1: In the literature, there exist alternative test statistics that are asymptotically

equivalent to the test statistic ξ(H) under the null. For example, we can consider the causal

VAR(H) model:

Yt = α +B1Yt−1 + · · ·+BHYt−H + ut, (5)

and apply the Frisch-Waugh-Lovell theorem to obtain the statistic:

ξ̃(H) = T Tr[Γ̂∗(1)Γ̂∗(0)−1Γ̂∗(1)′Γ̂∗(0)−1], (6)

where Γ∗(1) = Cov(Yt, Yt−1),Γ∗(0) = V (Yt−1) and Yt−1 = (Y ′t−1, ...., Y
′
t−H)′.

The main difference between matrices Γ and Γ∗ is their dimension: Γ is the covariance

between one current and one lagged value of the series, while Γ∗ is the covariance between

one current and multiple past values of the series. Under the i.i.d. assumption on ut and

under the null hypothesis H0 : {B1 = · · · = BH = 0}, the explanatory variables in (5) are

(asymptotically) uncorrelated, as well as the autoregressive coefficients Γ̂(h)Γ̂(0)−1 [Mann,

Wald (1943), Chitturi (1974), eq. (2.9)]. This allows us to use H canonical correlations of

smaller dimension K given in (4) instead of a canonical correlation of dimension KH given

in (6). We derive the asymptotic distribution of the statistic under the null in Appendix 1

(Supplemental Material).
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3 The Generic GCov Approach

We introduce a class of semi-parametric multivariate nonlinear dynamic models with i.i.d. er-

rors and propose parameter estimators, which minimize the statistic LT (θ) =
∑H

h=1 TrR̂
2(h; θ)

evaluated from nonlinear transformations g(Yt, ..., Yt−h; θ) = g(Ỹt; θ) of an observed process

with unknown parameters θ. The minimizer of LT (θ) is called the Generalized Covariance

(GCov) estimator.

3.1 Semi-Parametric Model

Let us consider a strictly stationary process (Yt) satisfying a semi-parametric model of type:

g(Ỹt; θ) = ut, (7)

where g is a known function, Ỹt = (Yt, Yt−1, . . . , Yt−L), L is a non-negative integer, (ut) is

an i.i.d. sequence, not necessarily with zero mean, and θ is an unknown parameter vector.

We assume that the model is well-specified and the true value of parameter θ is θ0. Model

(7) does not imply a nonlinear causal autoregressive specification of order L for process (Yt)

because the dimension of Yt can be strictly larger (resp. smaller) than the dimension of ut.

Hence, model (7) is not directly invertible with respect to Yt. Moreover, ut is not assumed

to be independent of Ỹt−1. Therefore, the information generated by the current and lagged

values of Yt does not necessarily coincide with the information generated by the current

and lagged values of ut. The errors ut are not necessarily interpretable as either causal, or

non-causal innovations.

In the multivariate framework, model (7) can include nonlinear simultaneity effects, and

as a simultaneous system may admit several stationary dynamic equilibria (Yt). The GCov

estimator remains valid regardless of the equilibria observed. A nonlinear structural VAR

model, commonly studied in the literature and illustrated below, admits the semi-parametric

representation (7).
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While the second-order assumptions on the errors can be sufficient to define the GCov

estimator and some of its asymptotic properties, the i.i.d. assumption is needed when var-

ious transformations of the series are considered and the difference between the parametric

and semi-parametric efficiency is discussed 3. The i.i.d. assumption is also needed for struc-

tural interpretations of nonlinear impulse responses [see Gourieroux, Jasiak (2005),(2022),

Gourieroux, Monfort, Renne (2017), Sims (2021)]. In addition, it is commonly used in the

recent literature on portmanteau tests [see Hoga (2021), Section 2].

The GCov estimator is applicable to a variety of univariate or multivariate models written

in semi-parametric representations (7). The examples are given below:

Example 1: Double Autoregressive and Stochastic Volatility Models

i) A general model encompassing the Double-Autoregressive (DAR) model [Ling (2004)] can

be written as:

yt = m(yt−1; θ1) + θ3σ(yt−1; θ2) + σ(yt−1; θ2)ut.

We assume that the regularity conditions on functions m,σ ensuring the existence of a sta-

tionary solution are satisfied. Moreover, the initial value y0, is assumed drawn in the sta-

tionary distribution. The above model extends the standard ARCH-M model by allowing for

nonlinear drift and volatility functions. Its semi-parametric representation (7) is:

g(ỹt; θ) =
yt −m(yt−1; θ1)− θ3σ(yt−1; θ2)

σ(yt−1; θ2)
, with ỹt = (yt, yt−1).

ii) The stochastic volatility model below includes volatility shocks and ensures the coherency

of its discrete and continuous time representation [Nelson (1990)]:

yt = α + βyt−1 + γσ2
t + σtut, log σ2

t = a+ b log σ2
t−1 + vt,

where the bivariate errors (ut, vt) are i.i.d. sequences. This is an exponential ARCH-M

model with stochastic volatility and nonlinear simultaneity in (yt, σt). We assume satisfied

3In this respect, a weaker assumption of martingale difference sequence (mds) used, for example, in Velasco
(2022) would be inadequate, as it is not invariant to nonlinear tranformations.
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the sufficient regularity conditions of stationarity, such as |β| < 1, |b| < 1, and independence

of ut and vt. We also suppose that the initial values y0 and σ0 are drawn in the stationary

distribution. Let the bivariate process be denoted by Yt = (yt, σt)
′. Then:

g(Ỹt; θ) = [(yt − α− βyt−1 − γσ2
t )/σt, log σ2

t − a− b log σ2
t−1],

is the semi-parametric representation (7) of this model with a bidimensional error Ut =

(ut, vt)
′. In practice, the returns yt are observed and σt is replaced by either the implied or

realized volatility computed from high frequency data as a proxy for σt.

Example 2: Causal-Noncausal VAR Model

The multivariate causal-noncausal VAR(p) process is defined by:

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p + ut,

where θ = [vecΦ′1, ..., vecΦ
′
p]
′ and error ut is a multivariate non-Gaussian i.i.d. process with

finite fourth order moments. We assume that the roots of the characteristic equation det(Id−

Φ1λ− · · ·Φpλ
p) = 0 are of modulus either strictly greater, or smaller than one. Then, there

exists a unique (strictly) stationary solution (Yt) with a two-sided MA(∞) representation,

which satisfies model (7) with:

gt(Ỹt, θ) = Yt − Φ1Yt−1 − · · · − ΦpYt−p = ut.

The causal-noncausal VAR(p) model has been studied in Gourieroux, Jasiak (2016),(2017)

and Davis, Song (2020). The error ut cannot be interpreted as an innovation. Moreover,

even if function g is linear in the current and lagged values of Yt, the assumption of strict

stationarity of Yt implies the nonlinear causal dynamics of Yt with predictions E(Yt|Yt−1)

nonlinear in Yt−1 = (Yt, Yt−1, ...) and past-conditional heteroscedasticity V (Yt|Yt−1).

Model (7) can be transformed into a system of higher dimension by considering nonlinear

transformations of ut. Let us introduce J nonlinear transformations a1, ..., aJ . Then we have:

aj[g(ỹt; θ)] = aj(ut), j = 1, ...J,

or, equivalently a[g(ỹt; θ)] = a(ut) = vt, (8)
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where the transformed process (vt) is also an i.i.d. process.

The examples of commonly stacked transformations are the financial returns yt and their

squares: Yt = (yt, y
2
t ) [see Wooldridge (1991), Li, Mak (1994), Velasco, Wang (2015)], returns

and their absolute values Yt = (yt, |yt|) [see Pena, Rodriguez (2006)], or return signs and

their squares Yt = (sign(yt), y
2
t ), to separate the volatility dynamics from the bid-ask bounce

effect.

3.2 The GCov Estimator

The GCov estimator of θ in model (7) is defined as:

θ̂T (H) = Argminθ

H∑
h=1

Tr[R̂2(h, θ)], (9)

where

R̂2(h, θ) = Γ̂(h; θ)Γ̂(0, θ)−1Γ̂(h; θ)′Γ̂(0; θ)−1, (10)

and Γ̂(h; θ) is the sample covariance between g(Ỹt; θ) and g(Ỹt−h; θ).

Suppose that we observe Y1, . . . , YT . Then, the sample autocovariances of g(Ỹt; θ) are

computed from t = L + H + 1 up to T . These sample autocovariances have to be divided

by T instead of (T −H − L) to ensure that the sequence of multivariate sample covariances

remains positive semi-definite.

The GCov estimator has no closed-form expression, except in special cases such as the

unconstrained causal VAR model when the GCov and OLS estimates of parameters Φj are

equivalent.

Remark 2: If (ut) has no finite fourth-order moment, model (7) can be replaced by a trans-

formed model (8), so that the transformed errors aj(ut) have finite fourth-order moments.

Then, the GCov estimator depends on the selected number of lags H and selected transfor-

mation a.
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3.3 Discretization of the State Space

Let us consider a strictly stationary process (yt) and a discretization of the state space de-

fined by a partition: Ak, k = 1, ..., K + 1. We introduce the indicator functions Yk,t, k =

1, ..., K + 1, such that Yk,t = 1, if yt ∈ Ak, and Yk,t = 0, otherwise. Then, the trans-

formed variables, Yk,t, have finite moments of any order, even if the moments of (yt) do

not exist. Since
∑K+1

k=1 Yk,t = 1, ∀t, we only consider the K first components to define

Yt. Let us denote the K-dimensional vector with components pk = P [yt ∈ Ak] by p and

the K × K matrix with elements pkl(h) = P [yt ∈ Ak, yt−h ∈ Al] by P (h). We have:

Γ(h) = P (h)− pp′, Γ(0) = diagp− pp′ and Γ(0)−1 = diag(P−1)− ee′

1−e′p ,

where e is a vector of ones of dimension K. Then, it is easy to check that:

H∑
h=1

Tr R2(h) =
H∑
h=1

[
K+1∑
k=1

K+1∑
l=1

(pkl(h)− pkpl)2

pkpl
] =

H∑
h=1

χ∗2(h), (11)

where χ∗2(h) is the chi-square measure of (in)dependence between Yt and Yt−h. Thus, the

GCov estimator minimizes a measure of pairwise (in)dependence (see Section 7). This state

discretization can be used to reach the parametric efficiency of the GCov (see Appendix 4).

4 Asymptotic Properties of the GCov Estimator

This Section presents the asymptotic properties of the GCov estimator, which minimizes the

objective function LT (θ) =
∑H

h=1 Tr R̂
2(h; θ) evaluated from a sample of size T where R̂2(h; θ)

is computed from the transformations g(Ỹt; θ) = ut given in (7). The asymptotic expansions

and asymptotic variance formulas are derived in Appendix 2 (Supplemental Material).

4.1 Consistency and Identification

Under the strict stationarity of process (Yt) and the existence of second-order moments of

g(Ỹt, θ), the sample autocovariances Γ̂(h; θ) tend to their theoretical counterparts Γ(h; θ),
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when T →∞, and, if Γ(0; θ) is invertible for θ ∈ Θ, then LT (θ) tends to:

L∞(θ) =
H∑
h=1

Tr [R2(h; θ)].

If model (7) is well-specified, we have L∞(θ0) = 0, where the true value is the minimizer

θ0 = ArgminθL∞(θ). By applying the standard Jennrich’s equicontinuity argument [Andrews

(1992)], we get the consistency of the GCov estimator under an identification condition. More

precisely, let us introduce the following set of assumptions:

Assumption A1:

i) Θ is a compact set in a separable metric space with a non-empty interior Θ̄.

ii) The model is well-specified with a true value θ0 ∈ Θ.

iii) The matrices Γ(h, θ), h = 1, ..., H are continuous functions of θ on Θ̃ and Γ(0, θ0) is

invertible.

iv) The process (Yt) is strictly stationary4, geometrically ergodic with a continuous

invariant distribution.

v) g(Ỹ ; θ) exists and is measurable with respect to Ỹ and continuous with respect to θ,

θ ∈ Θ̃.

vi) The components gj(Ỹt; θ0), j = 1, ..., J of g(Ỹt; θ0) are square integrable.

vii) The transformations gj(Ỹt; θ), j = 1, ..., J satisfy the following equicontinuity condi-

tion:

supj=1,...,J |g2
j (Ỹt; θ)− g2

j (Ỹt; θ̃)| ≤ B(Ỹt)h[d(θ, θ̃)], θ, θ̃ ∈ Θ,

where d(θ, θ̃) is the distance on the metric parameter space, h(d) is a function that tends to

0 when d tends to 0, and B(Ỹt) is a sequence of non-negative variables, such that

supT
1
T

∑T
t=1 E[B(Ỹt)] <∞.

This set of assumptions is sufficient to define the objective function, i.e. to ensure the

invertibility of Γ̂(0; θ) for θ ∈ Θ and large T, and to prove the existence and consistency of

4This implies that g(Ỹt; θ) is strictly stationary for any transformation g and value of parameter θ, and
so are the true errors ut = g(Ỹt; θ0).
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the proposed estimator. The equicontinuity condition corresponds to Assumption W LIP in

Andrews (1992), p 248. This is a stochastic Lipschitz condition on gj(Y ; θ).

Proposition 1: Under Assumption A1, if θ = θ0 is the unique solution that minimizes

the limiting objective function L∞(θ) on Θ, then there exists a measurable GCov estimator

θ̂T = ArgminΘLT (θ) that is weakly consistent of θ0.

The uniqueness condition of the solution of the limiting optimization is an identification

condition. It implies that some parameters might not be consistently approximated by a

GCov estimator. The parameters characterizing the (nonlinear) serial dependence are gen-

erally identifiable, but not the parameters that only affect the marginal distribution of ut as

shown below.

Proposition 2 : Drift and scale parameters are not identifiable.

Proof :

Model (7) may include drift and scale parameters. In such a case, the function g can be

reparametrized to get

g(Ỹt; θ) = C[g̃(Ỹt;α)−m],

with θ = (α,m,C) and α are the other parameters. Since Tr R2 is invariant with respect

to affine transformations, m and C are not identifiable. Then, the GCov approach has

to be applied to g̃(Ỹt;α) with parameter α corresponding to the identification restriction

m = 0, C = Id.

This identification issue is addressed later on in a comparison of GCov with the GMM

estimator.

4.2 Asymptotic Normality and Semi-Parametric Efficiency

Let us now introduce the following additional assumption:

Assumption A.2 :
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i) The true value θ0 is in the interior Θ̃ of Θ.

ii) The function g(Ỹ ; θ) is twice continuously differentiable with respect to θ, θ in Θ̄.

iii) g(Ỹ ; θ0) and ∂g(Ỹ ;θ0)
∂θ′

have finite fourth-order moments,
∂2gj(Y ;θ0)

∂θ∂θ′
, j = 1, ..., J have

finite second-order moments.

The existence of moments, i.e. the tail condition, concerns the errors ut, not the observed

variable Yt itself, as shown in the stochastic volatility example.

Under Assumptions A.1 and A.2, the GCov estimator satisfies the first-order conditions

(FOC):

∂LT (θ̂T )

∂θ
= 0 ⇐⇒

H∑
h=1

∂ Tr R̂2(h; θ̂T )

∂θ
= 0.

Appendix A.2.1. provides the expressions of the derivatives. We have:

∂ Tr R̂2(h; θ̂T )

∂θj
= 2Tr [Γ̂(0; θ̂T )−1Γ̂(h; θ̂T )′Γ̂(0; θ̂T )−1∂Γ̂(h; θ̂T )

∂θj

− Tr {[ ˆ̃R2(h; θ̂T )Γ̂(0; θ̂T )−1 + Γ̂(0; θ̂T )−1R̂2(h; θ̂T )]
∂Γ̂(0; θ̂T )

∂θj
},

for j = 1, ..., J = dimθ and ˆ̃R2 = Γ̂(0; θ̂T )−1Γ̂(1; θ̂T )Γ̂(0; θ̂T )−1Γ̂(1; θ̂T ).

Remark 3: When K = 1, R2(h; θ) = ρ2(h; θ) is a scalar and the FOC become:

H∑
h=1

[ρ̂(h; θ)2[
dlogγ̂(h; θ)

dθ
− dlogγ̂(0; θ)

dθ
] = 0.

For ease of exposition, let us consider H=1. The expansion of the first-order conditions

in a neighborhood of θ0 is:

dLT (θ̂T )

dθ
= 0,

that implies
√
T
dLT (θ0)

dθ
+

d2LT (θ0)

dθdθ′

√
T (θ̂T − θ0) = op(1),
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where op(1) is negligible in probability. When T tends to infinity, we have:

√
T
dLT (θ0)

dθ
= A(θ0)

√
TvecΓ̂(1; θ0)′ + op(1),

and
d2LT (θ0)

dθdθ′
=

d2L∞(θ0)

dθ′dθ
≡ −J(θ0) + op(1),

where J(θ0) and A(θ0) are given in Appendix A.2.2. We deduce the following lemma:

Lemma 1: Under Assumptions A.1, A.2 and H = 1 and if ∂vecΓ(1; θ0)/∂θ′ is of full

column rank, then the GCov estimator converges at speed 1/
√
T and we have:

√
T (θ̂T − θ0) = J(θ0)−1A(θ0)

√
TvecΓ̂(1; θ0)′ + op(1),

where J(θ0) is invertible (a local identification condition).

Under the same assumptions
√
TvecΓ̂′(1; θ0) is asymptotically normally distributed with

mean zero. It follows that:
√
T (θ̂T − θ0) ∼ N [0, J(θ0)−1A(θ0)Vasy[

√
TvecΓ̂(1; θ0)′]A(θ0)′J(θ0)−1].

We get a sandwich expression J(θ0)−1I(θ0)J(θ0)−1 of the asymptotic variance-covariance ma-

trix of the GCov estimator, with I(θ0) = A(θ0)Vasy[
√
TvecΓ̂(1; θ0)′]A(θ0). In our framework,

the formula of the asymptotic variance-covariance matrix of the GCov estimator can be sim-

plified further (see Appendix A.2.3) because matrices J(θ0) and I(θ0) are proportional. From

Appendix 1, it follows that this result can be extended to any H, by using the fact that the

sample autocovariances computed from the i.i.d. errors are such that:

i) The vectors vec
√
T Γ̂T (h), h = 1, ..., H are asymptotically independent.

ii) Their common asymptotic variance is Γ(0)⊗ Γ(0).

Proposition 3: Under Assumptions A.1, A.2 and if Rk
[
∂vecΓ(1,θ0)′

∂θ
, ..., ∂vecΓ(H,θ0)′

∂θ

]
= dim θ,

we have:
√
T (θ̂T − θ0) ∼ N [0,Ω(θ0)−1],

where Ω(θ0) =
∑H

h=1[∂vecΓ(h,θ0)′

∂θ
[Γ(0; θ0)−1 ⊗ Γ(0; θ0)−1]∂vecΓ(h,θ0)

∂θ′
].

The rank condition ensures that the H first autocovariances are locally fully informative
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about θ0. It implies the invertibility of Ω(θ0) and is a local identification condition.

Proposition 3 is in particular valid for K = 1.

Corollary 1: In the univariate framework with K = 1, we get:
√
T (θ̂T − θ0) ∼ N

{
0, γ(0; θ0)2[

∑H
h=1

∂γ(h;θ0)
∂θ

∂γ(h;θ0)
∂θ′

]−1
}
.

The simplification in the sandwich formula due to matrix I(θ0) being proportional to J(θ0)

with the proportionality factor given in the proof in Appendix A.2.3, reveals the semi-

parametric efficiency of the GCov estimator and justifies the term ”Generalized”. This

semi-parametric efficiency is reached by the GCov estimator in a single optimization and is

a consequence of the adequate choice of weights Γ̂(0)−1 in the objective function [see the

asymptotic behavior of Γ̂(h)−1 in Appendix 1 and the discussion in Section 4.3.1]. More

precisely, it would have been possible to define the weighted autocovariance estimators, Cov

estimators, say, obtained by minimizing the objective function such as:

[vecΓ̂(1, θ), ...., vecΓ̂(h, θ)]′W [vecΓ̂(1, θ)′, ...., vecΓ̂(h, θ)′]′,

where W is a symmetric positive semi-definite weighting matrix. The GCov estimator has

the smallest asymptotic variance-covariance matrix in the class of such Cov estimators.

4.3 Comparison with GMM Approaches

4.3.1 Computational Issues

The GCov estimator is a continuously updating estimator based on central moments:

V ecΓ̂(h), h = 1, ...H,

since the vectors
√
TVecΓ̂(h), h = 1, ...H are asymptotically independent with the same

asymptotic variance-covariance matrix Γ(0)⊗Γ(0) , where ⊗ denotes the Kronecker product

of matrices (see Appendix 1).

Let us now compare the GCov generic approach to the generic Continuously Updating

GMM (CUGMM). To clarify the differences between these two approaches, let us consider
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the following model:

yt = a(yt−1; θ) + b(yt−1; θ)ut,

where errors ut, t = 1, ..., T are i.i.d.. The parameter θ is assumed to characterize the serial

dependence. Under this specification, the errors are non-central and not standardized.

This dynamic model can be rewritten as:

yt = a(yt−1; θ) +mb(yt−1; θ) + σb(yt−1; θ)vt, (12)

where errors vt, t = 1, ..., T are now i.i.d. with E(vt) = 0, V ar(vt) = 1. In the above

specification (12), additional parameters m,σ have been introduced in order to formulate the

non-central moment conditions.

Let us now consider some transformations of ut such as ut and u2
t , say. Then, the central mo-

ments in the GCov estimator of the first specification are: cov(ut, ut−h), cov(u2
t , ut−h), cov(ut, u

2
t−h),

cov(u2
t , u

2
t−h) for h = 1, ..., H. These moments involve the following non-central moments of

errors vt: E(vt), E(v2
t ), E(vtvt−h), E(v2

t vt−h), E(vtv
2
t−h), E(v2

t v
2
t−h).

The generic CUGMM estimator depends on the semi-parametric specification, the set of

selected moments, and the selected estimator of the optimal weighting matrix. In our frame-

work, it is natural to apply it to the semiparametric model (12) with the extended parameter

vector β = (m,σ, θ′)′, the non-central moments φ(ỹt; β) with ỹt = (yt, yt−1) corresponding to

the 6 moments in vt given above, where vt is replaced by vt(β):

vt(β) =
yt − a(yt−1; θ)−mb(yt−1; θ)

σb(yt−1; θ)
.

Hence, the CUGMM estimator is the minimizer of:

[ 1
T

∑T
t=1 φ(ỹt; β)]′[V̂ ar(β)]−1[ 1

T

∑T
t=1 φ(ỹt; β)],

where V̂ ar(β) is a consistent estimator of the asymptotic variance of [ 1√
T

∑T
t=1 φ(ỹt; β)].

In brief, the differences between the generic GCov and CUGMM estimators are the following:
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a) The GCov estimator is based on central moments instead of non-central moments.

b) The GCov estimator focuses on the subset of parameters characterizing the (nonlinear)

serial dependence, whereas additional parameters have to be introduced before applying an

associated CUGMM estimator.

c) The objective function of GCov requires the inversion of matrix Γ(0) of dimension

(p× p), where p is the number of nonlinear transformations of ut (p=2 in our example). In

comparison, the objective function of CUGMM requires the inversion of a matrix of dimension

p+Hp(p+ 1) (the first p for the marginal expectations and p(p+1) for the cross-expectation

at lag h, h=1,...,H). For example, for p=4, H=5, the GCov requires inverting a (4 × 4)

matrix, while the CUGMM requires estimating and inverting a (104 × 104) matrix, which is

quite large and may yield imprecise results [Altonji, Segal (1996)].

A common feature of the GCOV and CUGMM is that both estimators are invariant

to bijective reparametrization. In the special case of linear dynamic models, Velasco and

Lobato (2018) (VL) introduce a two-step minimum distance approach, which is a two-step

GMM-type estimator based on the third and fourth cumulant spectral density for univariate

models. Their moment estimator is not optimally weighted in the first step and its asymptotic

variance has a sandwich formula [see e.g. Theorem 3 in VL (2018)]. The semi-parametric

efficiency is reached in the second-step when the optimal weights are estimated. In the first

step, this estimator requires a computation of an objective function with multiple large sums

[see e.g. eq. 12 in VL (2018) and the definition of
∑T−1

j=1 , page 564]. The second step involves

the inversion of a large matrix, especially in a multivariate case [see Theorem 4 and eq. 23 in

VL (2018)]. An extension introduced in Velasco (2022) is based on the notion of generalized

spectral densities [Hong (1999)] and developed in a univariate linear dynamic framework.

The asymptotic variance of the first step estimator given in Theorems 2 and 5 shows that the

semi-parametric efficiency is not achieved. In general, the finite sample properties of such

two-step estimators tend to be very sensitive to the choice of estimated optimal weights used

in the second step. Also, unlike the GCov and CUGMM, this estimator is not invariant to
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bijective reparametrization.

By focusing on serial dependence parameters and using central moments in each trans-

formation, we gain a significant simplification of the expression of the objective function. We

also obtain estimates which require the inversion of matrices of smaller dimension than in

the CUGMM estimator. It is also important to clarify that the GCov estimator of θ is not

a CUGMM estimator concentrated with respect to m,σ.

4.3.2 Instrumental Variables

Another difference between the generic GMM and GCov estimators is the choice of instru-

ments. In the generic GMM approach based on the conditional moments, the instrumental

variables are observed. In our framework of Section 4.3.1, the underlying instruments are

lagged vt(β0)′s, which are unobserved and depend on the unknown parameter values. These

instruments are estimated jointly with the parameters of the model by the GCov estimator.

Can we always find observable instrumental variables for the dynamic models used in

practice? To find out, let us consider the mixed causal-noncausal models for macroeconomic

applications (Lanne and Saikkonen (2011) report that mixed causal and noncausal dynamics

were evidenced in 242 out of 343 macroeconomic and financial time series). No standard

method of moments with observed instruments is available in the literature on mixed causal-

noncausal models. The reason is that error ut in model (7) cannot be interpreted as an

innovation (either causal, or noncausal) of the observed process (yt) [see Gourieroux, Jasiak

(2022) for innovations and impulse response functions in a mixed VAR model]. Therefore,

there does not exist a known function of the observed trajectory of (yt) that could be used

as an instrumental variable. Hence, there is no possibility of applying the standard GMM

estimator based on the conditional moments (as shown in Lanne, Saikkonen (2011) the use

of lagged values of yt as instruments in this framework leads to inconsistent GMM and

2SLS estimators). This explains why these models have been commonly estimated by the

maximum likelihood in a parametric framework under the risk of misspecification, or by a
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covariance-based approaches in a semi-parametric framework [see Gourieroux, Jasiak (2017)

for mixed multivariate causal-noncausal models], or in the frequency domain by calibration

based on cumulant spectral density [Velasco, Lobato (2018), Velasco (2022)].

5 Residual-Based Multivariate Portmanteau Statistic

The asymptotic expansions in Section 4 can be used to derive the asymptotic properties of

the residual-based multivariate portmanteau test statistic when θ is replaced by the GCov

estimator. The test statistic is:

ξ̂T (H) = TLT (θ̂T ).

Let us consider the second-order expansion of LT (θ0), when θ0 is close to θ̂T . As dLT (θ̂T )
dθ

= 0,

we get:

LT (θ0) = LT (θ̂T ) +
1

2
(θ̂T − θ0)′

d2LT (θ̂T )

dθdθ′
(θ̂T − θ0) + op(1),

and

TLT (θ̂T ) = TLT (θ0)− 1

2

√
T (θ̂T − θ0)′

d2L∞(θ0)

dθdθ′

√
T (θ̂T − θ0) + op(1).

The closed-form expansions of TLT (θ0) and TLT (θ̂T ) are derived in Appendix 3 (Supplemen-

tal Material). We have:

TLT (θ̂T ) = vec [
√
T Γ̂(1; θ0)′]′Π vec [

√
T Γ̂(1; θ0)′] + op(1),

where the expression of Π is given in Appendix 3, eq. (a.12). As matrix Π is positive definite,

we can apply R.201 in Gourieroux, Monfort (1995). It follows that if ΠVasy[
√
TvecΓ̂(1; θ0)′]Π =

Π, then statistic TLT (θ̂) follows asymptotically a χ2 distribution with the degrees of freedom

equal to K2H − dimθ. We check the validity of this condition in Appendix 3. as well as the

rank of matrix Π. We get the following result:
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Proposition 4: Under the Assumptions of Proposition 3, the statistic TLT (θ̂T ) follows

asymptotically the chi-square distribution: χ2(K2H − dimθ).

To clarify the proof in Appendix 3, let us describe more precisely the case K = 1 and any

H. The expansion of TLT (θ̂T ) becomes:

TLT (θ̂T ) ∼ [
√
T γ̂(θ0)]′

Id− P
γ(0, θ0)2

[
√
T γ̂(θ0)],

with γ̂(θ0) = [γ̂(1; θ0), ..., γ̂(H; θ0)]′ and P = Z(Z ′Z)−1Z ′, where Z = ∂γ(θ0)/∂θ′. As matrix

P is an orthogonal projector and V [
√
T γ̂(θ0)] = γ(0; θ0)2Id ≡ Σ, we find that: ΠΣΠ = Π.

Therefore, we obtain the following corollary:

Corollary 2: For K = 1, the residual-based portmanteau statistic asymptotically follows a

chi-square distribution with the degrees of freedom equal to H less the rank of the matrix:

∂γ(θ0)′

∂θ
=

[
∂γ(1;θ0)
∂θ

, ...., ∂γ(H;θ0)
∂θ

]
When the Jacobian is of full column rank: rk ∂γ(θ0)

∂θ′
= dimθ, the adjustment is equal to

the number of estimated parameters. This case arises when θ is identifiable by the CGov

approach. This has been implicitly assumed when writing the inverse of matrix J(θ0).

The result in Proposition 4 is well-established for the unconstrained (causal) VAR model,

when the autoregressive parameters are estimated by the (unconstrained) OLS [see Chitturi

(1974), Hosking (1980), Li, McLeod (1981) for the multivariate framework]. We have ex-

tended this result to a larger class of nonlinear causal/ noncausal dynamic models. It is a

consequence of the appropriate choice of the objective function and estimation method as

well as, indirectly, the semi-parametric efficiency of the GCov estimator discussed in Section

4.

i) If model (7) is causal and the GCov estimator of θ is replaced by another estimator such

as a quasi-maximum likelihood (QML) estimator based on the (pseudo) student distribution

of errors ut or a nonlinear least squares estimator, the sandwich formula will not simplify

and the associated residual-based portmanteau statistic will not be asymptotically chi-square
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distributed. For example, it may follow a mixture of chi-square distributions [see, Francq,

Roy, Zakoian( 2005), Theorem 3, for a special case].

ii) Some modifications of the objective function LT (θ) have been proposed in the litera-

ture. However, the estimators obtained by maximizing these modified objective functions are

not semi-parametrically efficient. For example, for a univariate yt, Pena, Rodriguez (2002),

(2006), Lin, McLeod (2006) replace
∑H

h=1 Tr [R̂2(h)] =
∑H

h=1 ρ̂
2(h), by the log-determinant

of the Toeplitz matrix:

log det



1 ρ̂(1) · · · ρ̂(H)

ρ̂(1)
. . .

...

...

ρ̂(1)

ρ̂(H) ρ̂(1) 1


.

An extension to a multivariate framework has been considered in Mahdi, McLeod (2012)

[see also Fisher, Gallagher (2012)]. By changing the objective function LT (θ), one can

change the asymptotic distribution of the residual-based portmanteau statistic. This is

also true for objective functions such as
∑H

h=1 Tr [Γ(h)Γ(h)′] [see Lam, Yao (2012)], and∑H
h=1 Tr[[diag γ(0)]−1Γ(h)[diag γ(0)]−1Γ(h)′],

where diag γ(0) is the diagonal matrix with terms γjj(0) on the main diagonal [see, Gourier-

oux, Jasiak (2017), Forrester, Zhang (2020)].

iii) By selecting an appropriate GCov estimator, we also avoid the adjustment of the

portmanteau statistic by recursive projections of estimated autocorrelations that can be

numerically demanding in the multivariate framework [see, Velasco, Wang (2015) in a special

case of univariate framework].
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6 Serially and Cross-Sectionally Independent Errors

This Section discusses the GCov estimator applied to model (7) under an additional assump-

tion of cross-sectional independence of errors.

6.1 Model with Cross-Sectionally Independent Errors

Let us consider model (7) with cross-sectionally independent errors:

gj(Ỹt; θ) = uj,t, j = 1, ..., J, (13)

where errors uj,t, t = 1, ..., T are serially independent and (uj,t), j = 1, ..., J are independent

of each other. Model (13) is a more structural version of model (7) due to the additional

cross-sectional independence.

Example 3: Structural VAR (SVAR) Model

Model (13) can represent a causal VAR model written as:

g(Ỹt; Φ0, ...,Φp) = Φ0Yt − Φ1Yt−1 − · · · − ΦpYt−p = ut,

with independent uj,t, i.e. by including the simultaneity characteristics on the right hand side

of the system. We assume that Φ0 is invertible and the roots of det(Φ0 − Φ1z..− Φpz
p) = 0

are not on the unit circle.

If the error vector is Gaussian, parameters Φi, i = 0, ..., p are not identifiable or, more

precisely, are identifiable up to a unitary matrix. This leads to additional structural identify-

ing restrictions, such as long-run restrictions, zero restrictions, or sign restrictions proposed

in the growing literature. However, this identification problem is entirely solved without ad-

ditional restrictions if at most one component (uj,t) is Gaussian [Comon (1994), Gourieroux,

Monfort, Renne (2017) and the references therein].

While a Gaussian QML estimator cannot be used to estimate consistently all the parame-

ters due to the lack of identification under Gaussianity, the covariance-based approaches can

be implemented by exploiting the cross-sectional independence [see e.g. Gourieroux, Monfort,
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Renne (2017), (2020), Lanne, Luoto (2021)] and cross-moments of nonlinear transformations

of the components uj,t.

6.2 The GCov Estimator under Serial and Cross-Sectional Inde-

pendence

Let the matrix of sample covariances between gi(Ỹt; θ) and gj(Ỹt−1; θ) be denoted by Γ̂ij(h θ).

Then, the GCov estimator can be defined as:

θ̂T (H) = Argminθ
∑
i

∑
j

H∑
h=0

Tr[R̂2
ij(h; θ)], (14)

where

R̂2
ij(h; θ) = Γ̂ij(h; θ)Γ̂jj(0; θ)−1Γ̂ji(h; θ)′Γ̂ii(0; θ). (15)

The terms R̂2
ii(0, θ) need to be removed from the sum because R̂2

ii(0, θ) = Id does not depend

on θ.

Then, the results of the previous sections are easily extended, yielding the following

Proposition, which is the analogue of Proposition 3.

Proposition 5: Under the Assumptions of Proposition 3 and if processes (uj,t), j = 1, ..., J

are independent:

i) The GCov estimator θ̂T (H) defined in (14)-(15) is consistent of θ0.

ii)
√
T (θ̂T (H)− θ0) ∼ N [0,Ω(θ0)−1],

with Ω(θ0) =
∑

i

∑
j

∑H
h=0

∂vecΓij(h;θ0)′

∂θ
[Γii(0; θ0)−1 ⊗ Γjj(0; θ0)−1]

∂vecΓij(h;θ0)

∂θ′
.

iv) The estimator is semi-parametrically efficient.

In an application to a SVAR model, Gourieroux, Monfort and Renne (2017) use a weighted

covariance-based estimator with non-optimal weights. Indeed the first-order conditions of

the constrained Pseudo-Maximum Likelihood are covariance conditions (See Proposition 1 in

Gourieroux, Monfort, Renne (2017)). Also, Guay (2021) and Lanne, Luoto (2021) apply the
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moment methods based on the cross moments of second, third, and fourth orders without

centering these moments, which causes the computational issues mentioned in Section 4.3.1.

In contrast, the centering of moments is required for the GCov estimation.

Proposition 5 shows that the semi-parametric efficiency is reached with a closed-form

objective function. The objective function to be minimized can be decomposed into two

components. The first component includes the terms with h = 0, and focuses on the cross-

sectional dependence of errors. The second component includes the sum of terms with h =

1, ..., H and captures their serial dependence. That second component corresponds to the

objective function of Section 5 since, under the independence of processes (uj,t), Γ(0, θ) =

diag(Γii(0; θ)).

From the computational perspectives, the matrices to be inverted in the objective function

appearing in (14)-(15) are of the same dimensions as those in the model without cross-

sectional independence, and depend only on the number of transformations of each uj.

Example 3: (continued:)

In the application to SVAR models, there is no direct relationship between the second

component of the objective function evaluated at the solution of (14) and the residual-based

portmanteau statistic of Section 5. The identifiable subsets of parameters of the SVAR model

differ in these two optimizations, being Φ−1
0 Φ1, ...,Φ

−1
0 Φp in Section 5, and Φi, i = 0, ..., p

(up to scalar scale factors) in this Section.

7 Simulation Study and Application to Commodities

To illustrate the relevance and performance of the GCov estimator, we examine an applica-

tion to commodity prices. The trajectories of commodity prices feature local trends due to

speculative bubbles and may not display the global trends observed in other price processes.

Because a non-causal model can capture and reproduce the dynamics of bubbles, we esti-

mate a semi-parametric mixed causal-noncausal VAR representation of a bivariate series of
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commodity prices.

The first part of this Section reports simulation results for the causal-noncausal VAR

model estimated in the time domain by the GCov. The second part presents the estimation

results. Additional results are available in the Supplemental Material.

7.1 Mixed VAR(1) Model

We consider a bivariate causal-noncausal VAR(1) model Yt = Φ1Yt−1 + εt with gt(Ỹt, θ) =

Yt − ΦYt−1, and εt, t = 1, ..., T , an i.i.d. non-Gaussian bivariate process. We study the

distributional properties of the GCov estimators when matrix Φ has eigenvalues outside and

inside the unit circle. In this simulation study we address: 1) the effects of error distribution

by considering t-student distributed errors with the degrees of freedom parameter ν = 4 and

ν = 6 characterized by infinite and finite kurtosis respectively, and the Laplace and Uniform

distributions; 2) the effects of sample size, by examining the sample sizes T=200 and T=400;

3) the effects of the number of transformations in autocovariance conditions; 4) the effect of

lag H.

The matrix Φ has elements: φ1,1 = 0.9, φ1,2 = −0.3, φ2,1 = 0, φ2,2 = 1.2 with eigenvalues

equal to 0.9 and 1.2. The component Y1,t is a mixture of causal and noncausal dynamics,

while component Y2,t is pure noncausal. The simulation of the stationary mixed VAR(1)

process is performed according to the method outlined in Gourieroux and Jasiak (2016),

(2017). All results are based on 1000 replications and assume identity variance matrix of the

errors.

A sample of length 200 of this data generating process (DGP henceforth) with t(4) dis-

tributed errors, is displayed in Figure 1 (a path of 1000 realizations is given in Figure 1,

Section 3 of Supplemental Material). This DGP violates the assumption of the existence

of the 4th order moment but, when the errors follow a fat tailed distribution (e.g. a stable

distribution) it is still possible to derive the asymptotic properties of sample autocovariances

[Davis, Resnick (1986)] and show the consistency of the GCov estimator. Then, the speed
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of convergence and asymptotic distribution of the estimator are different than those given in

Proposition 3.

Table 1 summarizes the means and variances of GCov estimators computed from 1000

replications based on four power transformations with exponents 1,2,3 and 4 and H=10.

We observe that biases and variances of the GCov estimators diminish with the sample

size. To examine the effect of the number of transformations, we repeat the experiment

with two transformations. Table 2 summarizes the moments of GCov estimators computed

from 1000 replications based on power transformations with exponents 1 and 2, and H=10.

By comparing Tables 1 and 2, we observe a trade-off between the bias and variance as the

estimators based on 4 transformations have smaller biases, but slightly higher variances.

7.2 Application to wheat and corn futures

7.2.1 The series

We consider a bivariate series of 360 daily observations on CBOT closing prices of wheat and

corn futures in US Dollars recorded between October 18, 2016 and March 29, 2018 (Data

available on https://ca.finance.yahoo.com, wheat futures: ticker ZW=F and corn futures,

ticker ZC=F).

The dynamics of both series and their sample densities are displayed in Figure 2. The top

panel of Figure 2 shows the two series plotted over time. The series do not display a global

trend or other global and long-lasting explosive patterns. Instead, we observe local trends,

bubbles, and spikes. The series move in parallel and their spikes often occur simultaneously.

The most pronounced among them is a common bubble on July 17, 2017 when the wheat

futures exceeded 535 US Dollars. The absence of global explosive patterns associated with

the unit root dynamics suggests we can assume stationarity and explore the sample densities

of the series. The bottom panels of Figure 2 show the kernel-smoothed density estimators of

the wheat and corn series. The wheat futures have a peaked symmetric density with a long

right tail. The density of corn futures is asymmetric in the center and has short tails. The
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standard normality tests reject the null hypothesis of normality in both series. The wheat

and corn futures are contemporaneously correlated with the contemporaneous correlation of

0.7285. The basic statistics summarizing their marginal distributions are given in Table 1,

Section 4 of Supplemental Material.

We explore the fit of a VAR(1) model estimated by the GCov and OLS estimators to wheat

and corn futures. Recall that the GCov estimator can detect any type of autoregressive roots,

whereas an OLS estimator by construction provides roots outside the unit circle.

7.2.2 Estimation of VAR(1) Model

The VAR(1) model is fitted to the demeaned bivariate price series Yt = (corn,wheat)′,

t=1,...,360 with a 2 × 2 matrix Φ of autoregressive coefficients φij, i, j = 1, 2, and error εt

assumed to be a bivariate i.i.d. white noise. The parameters are estimated by the GCov

estimator using the sample autocovariances of residuals, squared residuals, and powers 3 and

4 of residuals with the lag length H=10. The choice of lag H and implementation of the

GCov estimator are illustrated in Section 4.2 (Figure 8) of Supplemental Material.

The parameter estimates along with their estimated standard errors computed from the

formula in Proposition 1 are given in the left panel of Table 3. The matrix Φ̂ estimated

by the GCov has eigenvalues 0.9063 and 1.1510 located inside and outside the unit circle,

respectively. We obtain a mixed (causal-noncausal) autoregressive model. The normalized

eigenvectors associated with these eigenvalues are [3.3049, 1] and [0.7441, 1]. The eigenvalue

larger than 1 is due to ”speculative” bubbles arising simultaneously in the two series. From

the second eigenvector, it follows that the portfolio, which is the least sensitive to bubbles,

contains the wheat and corn futures with allocations 1 and -0.7441, respectively.

Next, the matrix of autoregressive coefficients is estimated by the OLS, (right panel of

Table 3) producing a pure causal autoregressive matrix with close to 1 values of estimated co-

efficients φ11 and φ22 and high t-ratios, typical for unit roots. The statistically non-significant

and close to 0 values of φ̂12 and φ̂21 suggest an absence of feedback effects.
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These results are spurious and originate from the fact that the OLS estimator provides

estimates of Φ̂ restricted to causal dynamics only. Hence, standard inference results based on

the OLS estimators need to be interpreted with caution. In our example, the OLS estimators

are inconsistent, upper-bounded by 1 but ”attracted” by the noncausal eigenvalue, which

explains why φ̂11 and φ̂22 are close to 1. The eigenvalues of the OLS estimated matrix Φ̂ are

0.964 and 0.935.

Figure 3 displays the dynamics of residuals ε̂t of the mixed VAR(1) model estimated by

the GCov and their sample densities. The residual series are reasonably close to stationary,

except for an episode of increased variance in the middle of the sampling period. The residual

sample densities are uni-modal with long tails. The residual variance-covariance matrix is

Σ̂ =

 61.7948 27.4743

27.4743 24.5573

 and the contemporaneous correlation is 0.705. The joint sample

density of residuals is reported in Section 4.3 (Figure 10) of Supplemental Material, where the

model diagnostics are also discussed. The mixed VAR(1) model successfully accommodates

most of the serial dependence in the data, but there remain some significant residual auto-

correlations and cross-correlations. In order to eliminate that remaining serial dependence,

we extend the autoregressive order of the model and estimate the mixed VAR(3) model to

improve the fit (see, Section 4.4 of Supplemental Material).

8 Concluding Remarks

This paper introduces a semi-parametric estimation approach for a large class of multivariate

nonlinear dynamic models with i.i.d. errors. The GCov estimator, obtained by minimizing a

multivariate portmanteau criterion, has the property of semi-parametric efficiency, which is

achieved in a one-step procedure, and circumvents numerical issues involved in other GMM-

type estimators. We have shown that the associated residual-based portmanteau statistic

asymptotically follows a chi-square distribution with an adjusted degree of freedom.

Among further extensions are the following ones:
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1. The approach is based on the knowledge of the asymptotic behavior of sample au-

tocovariances, which may differ for errors without finite second-order moments. In such a

case, the speed of convergence and asymptotic distribution of sample autocovariances and

the GCov estimator are modified [see, Davis, Resnick (1986)]. The asymptotic distribution

of the (residual-based) portmanteau statistic is altered as well, likely becoming a function of

a stable limiting distribution [see e.g. Gourieroux, Zakoian (2017)].

2. A slightly modified GCov approach can also be applied to a model with nonfundamental

nonlinear moving average effects as :

g(Ỹt; θ) = c(ũt; β),

where ũt = (ut, ut−1, . . . , ut−q), say. This specification implies covariance conditions, such as

Cov[g(Ỹt; θ), g(Ỹt−h; θ)] = 0, for h ≥ q, which can be used to identify the parameter θ, as

well as orders L and q. This approach is analogous to the use of Yule-Walker equations for

identifying the orders of univariate ARMA processes. It was applied in the first step of the

estimation before focusing on parameter β in the second step by Gourieroux, Monfort, Renne

(2020).

3. From a theoretical point of view, it would be interesting to view the independence

condition as an infinite number of autocovariance conditions. For ease of exposition, let us

consider the pairwise independence underlying both the GCov estimator and the approach

based on cumulant spectral density [Velasco (2022)]. The condition of ut, uτ , t 6= τ is

equivalent to the condition Cov(a(ut), b(ut+h)) = 0 for any h and pair of square integrable

functions a(.), b(.). This infinity is more complex than any analogous condition considered in

the literature so far: in the univariate framework, Velasco, Lobato (2018) and Velasco (2022)

focus on the lag h dimension (or, equivalently on that frequency) with a finite number of

transformations a(.), b(.). The state discretization given in Section 3.3 and Appendix 4 is the

first step towards accommodating the multiplicity of a(.), b(.). To our knowledge, the joint

analysis of both types of infinity has not yet been done.
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Table 1. Effect of sample size and error distribution, 4 transforms

t(4), kurt =∞ t(6), kurt <∞

T=200 T=400 T=200 T=400

mean var mean var mean var mean var

φ̂11 0.927 0.006 0.923 0.003 0.941 0.008 0.934 0.004

φ̂12 -0.291 0.051 -0.270 0.021 -0.285 0.068 -0.264 0.029

φ̂21 0.047 0.009 0.025 0.004 0.063 0.010 0.040 0.005

φ̂22 1.239 0.042 1.200 0.031 1.292 0.084 1.209 0.037

Laplace(0,1) Uniform[-1,1]

T=200 T=400 T=200 T=400

mean var mean var mean var mean var

φ̂11 0.962 0.007 0.968 0.003 0.952 0.006 0.937 0.002

φ̂12 -0.295 0.058 -0.195 0.027 -0.306 0.0601 -0.230 0.024

φ̂21 0.090 0.009 0.076 0.004 0.091 0.009 0.045 0.003

φ̂11 1.324 0.073 1.245 0.036 1.308 0.069 1.207 0.027
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Table 2. Effect of sample size and error distribution, 2 transforms

t(4), kurt =∞ t(6), kurt <∞

T=200 T=400 T=200 T=400

mean var mean var mean var mean var

φ̂11 0.940 0.004 0.940 0.003 0.953 0.005 0.950 0.003

φ̂12 -0.251 0.021 -0.254 0.011 -0.243 0.025 -0.243 0.013

φ̂21 0.044 0.006 0.043 0.004 0.059 0.006 0.054 0.004

φ̂22 1.220 0.040 1.224 0.023 1.226 0.044 1.223 0.031

Laplace(0,1) Uniform[-1,1]

T=200 T=400 T=200 T=400

mean var mean var mean var mean var

φ̂11 0.971 0.005 0.968 0.003 0.968 0.005 0.964 0.0032

φ̂12 -0.213 0.026 -0.209 0.013 -0.219 0.027 -0.207 0.013

φ̂21 0.081 0.006 0.076 0.004 0.082 0.006 0.074 0.003

φ̂11 1.261 0.043 1.249 0.030 1.270 0.044 1.254 0.026

Table 3. Estimation of VAR(1) model

GCov OLS

parameter estimate st.err. t-ratio estimate st.err. t-ratio

φ11 0.8351 0.0583 14.3241 0.9750 0.0204 47.590

φ12 0.2356 0.1174 2.0068 -0.0326 0.0447 -0.731

φ21 -0.0958 0.0469 -2.0426 0.0127 0.0117 1.086

φ22 1.2230 0.0787 15.5400 0.9250 0.0255 36.219
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Figure 2: Daily future price series: dynamics and marginal sample densities
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Figure 3: Residuals: dynamics and marginal sample densities

REFERENCES

Altonji, J. and L. Segal (1996): ”Small Sample Bias in GMM Estimation of Covariance
Structures”, Journal of Business and Economic Statistics, 14, 353-366.
Anderson, T. (1999): ”Asymptotic Theory for Canonical Correlation Analysis”, Journal of

Multivariate Analysis, 70, 1-29.
Anderson, T. (2002): ”Canonical Correlation Analysis and Reduced Rank Regression in

Autoregressive Models”, Annals of Statistics, 30, 1134-1154.
Andrews, D. (1992): ”Generic Uniform Convergence”, Econometric Theory, 8, 241-257.
Bartlett, H. (1946): ”On the Theoretical Specifications and Sampling Properties of Autocor-

related Time Series”, Supplement to JRSS, 8, 27-41.
Box, G. and D. Pierce (1970): ”Distribution of Residual Autocorrelations in Autoregressive-

Integrated Moving Average Time Series Models”, JASA, 65, 1509-1526.
Chitturi, R. (1974): ”Distribution of Residual Autocorrelations in Multiple Autoregressive

Schemes”, JASA, 69, 928-934.
Chitturi, R. (1976): ”Distribution of Multivariate White Noise Autocorrelations”, JASA, 71,

223-226.
Comon (1994): ”Independent Component Analysis: A New Concept?”, Signal Processing,

36, 287-314.
Davis, R. and S. Resnick (1986): ”Limit Theory for the Sample Covariance and Correlation

Functions of Moving Averages”, Annals of Statistics, 14, 533-558.

34



Davis, R. and L. Song (2020): ”Noncausal Vector AR Processes with Application to Economic
Time Series”, Journal of Econometrics, 216, 246-267.

Fisher, T. and C. Gallagher (2012): ”New Weighted Portmanteau Statistic for Time Series
Goodness of Fit Testing”, JASA, 107, 777-787.

Forrester, P. and J. Zhang (2020): ”Parametrizing Correlation Matrices”, Journal of Multi-
variate Analysis, 178, 104619.

Francq, C., Roy, R. and J.M. Zakoian (2005): ”Diagnostic Checking in ARMA Models with
Uncorrelated Errors”, JASA, 100, 532-544.

Gourieroux, C. and J. Jasiak (2005): ”Nonlinear Innovations and Impulse Responses with
Application to VaR Sensitivity”, Annals of Economics and Statistics, 78, 1-31.

Gourieroux, C. and J. Jasiak (2016): ”Filtering, Prediction and Simulation Methods for
Noncausal Processes”, Journal of Time Series Analysis, 37, 405-430.

Gourieroux, C. and J. Jasiak (2017): ”Noncausal Vector Autoregressive Process: Repre-
sentation, Identification and Semi-Parametric Estimation”, Journal of Econometrics, 200,
118-134.

Gourieroux, C., and J., Jasiak (2022) : ”Nonlinear Forecasts and Impulse Responses for
Causal-Noncausal (S)VAR Models”, ArXiv 2205.09922.

Gourieroux, C. and A. Monfort (1995): ” Statistics and Econometric Models”, Vol 2, Cam-
bridge Univ. Press.

Gourieroux, C., Monfort, A. and J.P. Renne (2017): ”Statistical Inference for Independent
Component Analysis: Application to Structural VAR Models”, Journal of Econometrics,
196, 111-126.

Gourieroux, C., Monfort, A. and J.P. Renne (2020): ”Identification and Estimation in Non-
Fundamental Structural VARMA Models”, Review of Economic Studies, 87, 1915-1953.

Gourieroux, C. and J.M. Zakoian (2017): ”Local Explosion Modelling by Non-Causal Pro-
cess”, JRSS B, 79, 737-756.

Guay, A. (2021): ”Identification of Structural Vector Autoregressions Through Higher Un-
conditional Moments:, Journal of Econometrics, 225, 27-46.

Hansen, L., Heaton , J. and A. Yaron (1996): ”Finite Sample Properties of Some Alternative
GMM Estimators”, Journal of Business and Economic Statistics, 14, 262-280.

Hecq, A., Lieb, L. and S. Telg (2016): ”Identification of Mixed Causal-Noncausal Models in
Finite Samples”, Annals of Economics and Statistics, 123/124, 307-331.

Hoga, Y. (2021): ”Testing for Serial Extreme Dependence in Time Series Residuals”, D.P.
University of Duisburg-Essen.

Hong, Y. (1999): ”Hypothesis Testing in Time Series via the Empirical Characteristic Func-
tion: A Generalized Spectral Density Approach”, JASA, 94, 1201-1220.

Hosking, J. (1980): ”The Multivariate Portmanteau Statistic”, JASA, 75, 602-608.
Hotelling, H. (1936) : ”Relation Between Two Sets of Variants”, Biometrika, 28, 321-377.
Lam, C. and Q. Yao (2012): ”Factor Modelling for High Dimensional Time Series”, Biometrika,

98, 901-918.
Lanne, M., and J. Luoto (2021): ”GMM Estimation of Non-Gaussian Structural Vector

Autoregressions”, Journal of Business and Economic Statistics, 39, 69-81.
Lanne, M., and P. Saikkonen (2010): ”Noncausal Autoregressions for Economic Time Series”,

Journal of Time Series Econometrics, 3, 1-39.

35



Lanne, M., and P. Saikkonen (2011): ”GMM Estimators with Non-Causal Instruments”,
Oxford Bulletin of Economics and Statistics, 71, 581-591.

Lanne, M., and P. Saikkonen (2013): ” Noncausal Vector Autoregression”, Econometric
Theory, 29, 447-481.

Li, W. and A. McLeod (1981): ”Distribution of the Residual Autocorrelations in Multivariate
ARMA Time Series Models”, JRSS B, 43, 231-233.

Li, W. and T. Mak (1994): ”On the Squared Residual Autocorrelations in Nonlinear Time
Series with Conditional Heteroscedasticity”, JTSA, 15, 627-639.

Lin, J. and A. McLeod (2006): ”Improved Pena-Rodriguez Portmanteau Test”, Computa-
tional Statistics and Data Analysis, 51, 1731-1738.

Ling, S. (2004): ”Estimation and Testing Stationarity for Double-Autoregressive Models”,
J.R.S.S., Series B, 66, 63-78.

Mahdi, E. and I. McLeod (2012): ”Improved Multivariate Portmanteau Test”, Journal of
Time Series Analysis”, 23, 211-222.

Mann, H. and A. Wald (1943): ”On the Statistical Treatment of Linear Stochastic Difference
Equations”, Econometrica, 11, 173-220.

Nelson, D. (1990): ”ARCH Models as Diffusion Approximations”, Journal of Econometrics,
45, 7-38.

Pena, D. and J. Rodriguez (2002): ”A Powerful Portmanteau Test of Lack of Fit for Time
Series”, JASA, 97, 601-610.

Pena, D. and J. Rodriguez (2006): ”The Log of the Determinant of the Autocorrelation
Matrix for Testing Goodness of Fit in Time Series”, Journal of Statistical Planning and
Inference, 136, 2706-2718.

Robinson, P. (1973): ” Generalized Canonical Analysis for Time Series”, Journal of Multi-
variate Analysis, 3, 141-160.

Sims, C. (2021): ”SVAR Identification through Heteroscedasticity with Misspecified Regimes”,
Princeton, DP.

Velasco, C. (2020) : ”Identification and Estimation of Structural VARMA Models Using
Higher Order Dynamics”, arXiv : 2009.04428v.

Velasco, C. (2022): ”Estimation of Time Series Models Using Residual Dependence Mea-
sures”, Annals of Statistics, forthcoming.

Velasco, C., and C., Lobato (2018) : ”Frequency Domain Minimum Distance Inference for
Possibly Noninvertible and Noncausal ARMA Models”, Annals of Statistics, 46, 555-579.

Velasco, C., and X. Wang (2015): ”A Joint Portmanteau Test for Conditional Mean and
Variance Models”, Journal of Time Series Analysis, 36, 39-60.

Wooldridge, J. (1991): ”On the Application of Robust Regression-Based Diagnostics to Mod-
els of Conditional Means and Conditional Variances”, Journal of Econometrics, 47, 5-46.

36


	Introduction
	The Portmanteau Statistic
	The Generic GCov Approach
	Semi-Parametric Model
	The GCov Estimator
	Discretization of the State Space

	Asymptotic Properties of the GCov Estimator
	Consistency and Identification
	Asymptotic Normality and Semi-Parametric Efficiency
	Comparison with GMM Approaches 
	Computational Issues
	Instrumental Variables


	Residual-Based Multivariate Portmanteau Statistic
	Serially and Cross-Sectionally Independent Errors
	Model with Cross-Sectionally Independent Errors
	The GCov Estimator under Serial and Cross-Sectional Independence

	Simulation Study and Application to Commodities
	Mixed VAR(1) Model
	Application to wheat and corn futures
	The series
	Estimation of VAR(1) Model


	Concluding Remarks

