
Optimization of the Generalized Covariance Estimator
in Noncausal Processes

Gianluca Cubaddaa, Francesco Giancaterini†b, Alain Hecqb, Joann Jasiakc
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Abstract

This paper investigates the performance of the Generalized Covariance estima-
tor (GCov) in estimating mixed causal and noncausal Vector Autoregressive
(VAR) models. The GCov estimator is a semi-parametric method that mini-
mizes an objective function without making any assumptions about the error
distribution and is based on nonlinear autocovariances to identify the causal
and noncausal orders of the mixed VAR. When the number and type of non-
linear autocovariances included in the objective function of a GCov estimator
is insufficient/inadequate, or the error density is too close to the Gaussian,
identification issues can arise. These issues result in local minima in the objec-
tive function, which correspond to parameter values associated with incorrect
causal and noncausal orders. Then, depending on the starting point and the
optimization algorithm employed, it is possible for the algorithm to converge
to a local minimum, resulting in inaccurate estimates. In this regard, the pa-
per proposes the use of the Simulated Annealing (SA) optimization algorithm
as an alternative to conventional numerical optimization methods. The results
demonstrate that SA performs effectively when applied to multivariate mixed
VAR models, successfully eliminating the effects of local minima. Finally, the
effectiveness of the proposed approach is demonstrated through an empirical
application involving two bivariate commodity price series.

Keywords: Multivariate causal and noncausal models, Generalized covariance
estimator, Simulated Annealing, Optimization, Commodity prices.
JEL: C32

1. Introduction

The causal vector autoregressive model (VAR) was introduced by Sims (Sims
(1980)) as an alternative to the simultaneous equation models for macroeco-
nomic variables. The VAR model explains the current value of a vector of
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macroeconomic variables as a function of their past values and is commonly
used by the NBER, central banks, and European institutions.

Let us consider an extension of Sim’s model to a n-dimensional strictly sta-
tionary VAR of order p, denoted VAR(p):

Yt = Θ1Yt−1 + · · ·+ΘpYt−p + ut, (1)

where Yt = (y1,t, . . . , yn,t)
′ is a (n×1) vector, Θi are (n×n) coefficient matrices,

and ut is a vector (n× 1) of i.i.d. error terms with a non-Gaussian distribution,
mean of zero and V ar(ut) = Σu. Whenever the process in (1) is characterized
by roots outside the unit circle, that is detΘ(z) ̸= 0 for |z| ≤ 1, where Θ(z) =
In −

∑p
j=1 Θjz

j , then, there exists a strictly stationary purely causal solution
to equation (1) with the following one-sided moving average representation:

Yt = Ψ(L)ut =

∞∑
j=0

Ψjut−j , (2)

where Ψ0 = In, and Ψj converge to zero at a geometric rate as j → ∞. In
this case, the error term ut is defined as Yt-fundamental since it only depends
on the present and past values of Yt (Alessi et al. (2008)). When some of the
roots of detΘ(z) = 0 are inside the unit circle, the VAR stated in (1) is defined
as noncausal (Lanne and Saikkonen (2011)). According to Alessi et al. (2008),
this may occur because the model developed from the econometric theory is,
by definition, nonfundamental or because the econometricians do not observe
some relevant variables and thus not included in the analysis (Blanchard and
Quah (1988), Lippi and Reichlin (1993), Fernández-Villaverde et al. (2007)). In
the presence of a noncausal component, the moving average polynomial Ψ(L) of
order infinity in the lag operator L involves both positive and negative powers of
L, implying the dependence of Yt also on future errors (see Alessi et al. (2008),
and Lanne and Saikkonen (2013)). Then, the assumption of a non-Gaussian
distribution of serially i.i.d. errors is crucial for the identification of the model
dynamics because it allows for distinguishing between the roots which are in-
side or outside the unit circle: detΘ(z) ̸= 0 for |z| = 1 of the mixed causal
and noncausal VAR process. In practice, the VAR process (1) with noncausal
components exhibits nonlinear dynamics, such as local trends (bubbles) and con-
ditional heteroscedasticity observed in the time series of commodity (oil) prices
and cryptocurrency rates, for example. Moreover, when the roots inside the unit
circle are considered, the matrix polynomial on the right-hand side of equation
(1) no longer represents the conditional expectation of the linear model. Indeed,
in the context of noncausality, the error term ut is not orthogonal to the lags of
Yt (see Lanne and Saikkonen (2013), Hecq et al. (2016), Cubadda et al. (2019),
and Gourieroux and Jasiak (2017) Gourieroux and Jasiak (2022b)).

Two strategies have been developed to estimate multivariate mixed causal
and noncausal models expressed as in (1) with roots inside and/or outside the
unit circle: the Approximate Maximum Likelihood Estimator (MLE) (see Davis
and Song (2020)) and the Generalized Covariance estimator (see Gourieroux and
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Jasiak (2017) and Gourieroux and Jasiak (2022a)). This paper focuses on the
Generalized Covariance estimator (GCov), which is a semi-parametric estimator
designed to minimize an objective function without requiring distributional as-
sumptions on the error term (see Gourieroux and Jasiak (2017) and Gourieroux
and Jasiak (2022a)). The objective function involves the nonlinear autocovari-
ances, i.e., the autocovariances of nonlinear functions of model errors.

Our study shows that local minima can appear in the objective function
of the GCov estimator when identification issues arise. In particular, we show
that these issues may arise due to a difficulty in distinguishing the causal and
noncausal dynamics because either the number of nonlinear autocovariances is
insufficient or the nonlinear transformations are inadequate, or the error density
is too close to the Gaussian distribution. These identification problems lead to
local minima, to which the maximization algorithm can converge, depending
on the starting point and optimization algorithm. This can occur in the ap-
plication of the GCov estimator to either univariate or multivariate noncausal
processes (however, the main focus of this paper is on the multivariate frame-
work). Therefore, selecting a suitable optimization algorithm and appropriate
initial values is crucial to ensure successful convergence. It is worth noting that
this problem also arises when alternative parametric estimators are employed to
estimate noncausal processes (see respectively Bec et al. (2020) and Hecq and
Velasquez-Gaviria (2022) for the MLE and the spectral identification of univari-
ate models).

This paper, to effectively address the issues related to local minima, proposes
combining the GCov estimator with the Simulated Annealing (SA) optimiza-
tion algorithm. SA is a powerful metaheuristic method designed specifically
to capture the global minimum when the objective function contains numerous
local minima. Initially proposed by Kirkpatrick et al. (1983), SA draws in-
spiration from the annealing process of solids to tackle optimization problems.
Over the years, SA has demonstrated remarkable success in solving complex
optimization problems in various fields, including computer (VLSI) design, im-
age processing, molecular physics, and chemistry (see, for instance, Wong et al.
(2012), Carnevali et al. (1987), Jones (1991), and Pannetier et al. (1990)). By
integrating SA with the GCov estimator, this paper presents a significant im-
provement in the performance of the GCov estimator within the framework of
mixed causal and noncausal models.

The rest of the paper is organized as follows. Section 2 discusses the mixed
(causal-noncausal) VAR model. Section 3 introduces the GCov estimator. Sec-
tion 4 shows that its objective function can admit local minima under some
conditions. Section 5 suggests the use SA to overcome the issue of local minima
and optimize the choice of initial values. Section 6 investigates some commodity
price series. Section 7 concludes.

2. Model representation

This section reviews the univariate and multivariate mixed causal-noncausal
models that have been considered in the literature. In particular, it aims at
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providing an overview of their key characteristics and alternative specifications.
Univariate mixed causal and noncausal models for a strictly stationary series

yt, t = 1, ...T were introduced by Breidt et al. (1991) as autoregressive models
with the feature of having their roots both inside and outside the unit circle:

ϕ+(L)ϕ−(L)yt = ηt, (3)

where ηt is serially i.i.d. and non-Gaussian. In particular, ϕ+(L) = 1−ϕ+
1 L · · ·−

ϕ+
r L

r, also called the causal polynomial, is characterized by r roots outside the
unit circle, and ϕ−(L) = 1 − ϕ−

1 L · · · − ϕ−
s L

s, denoted as the noncausal poly-
nomial, by s roots inside the unit circle (with r + s = p). We assume that yt
has zero mean to simplify the notation. Although representation (3) leads to
locally explosive behaviors, the series does not globally diverge because of the
correlation between the error term ηt and the noncausal polynomial’s explana-
tory variable, yt+s (see Breid et al. (1991), and Lanne and Saikkonen (2011)).

Lanne and Saikkonen (2011) write the noncausal polynomial as a lead poly-
nomial, resulting in an alternative representation of univariate mixed causal and
noncausal models, known as MAR(r,s), such that:

ϕ+(L)φ(L−1)yt = εt, (4)

where ε is i.i.d. and non-Gaussian, and φ(L) = 1−φ1L
−1−· · ·−φsL

−s represents
the noncausal component. This alternative representation has the advantage
that both backward and forward polynomials are now characterized by roots
outside the unit circle (see Hecq et al. (2016), Gourieroux and Jasiak (2016),
Gourieroux and Jasiak (2018), Hecq and Voisin (2021), Giancaterini and Hecq
(2022)):

ϕ+(z) ̸= 0 and φ(z) ̸= 0, for |z| ≤ 1.

Note that when ϕ1 = · · · = ϕr = 0 the process in (4) is defined as purely
noncausal (MAR(0,s)); on the other hand, when φ1 = · · · = φs = 0 it is purely
causal (MAR(r,0)).

Lanne and Saikkonen (2013) propose the multivariate VMAR(r,s)

Φ(L)Π(L−1)Yt = ϵt, (5)

where Φ(L) and Π(L−1) are matrix polynomials of order r and s respectively.
Both polynomials are characterized by roots outside the unit circle:

detΦ(z) ̸= 0 and detΠ(z) ̸= 0, for |z| ≤ 1, (6)

and ϵt is a sequence of i.i.d. random non-Gaussian (n × 1) vectors. However,
unlike the univariate case, the model representation displayed in (5) presents
two main differences. The first one is that the matrix multiplication is not
commutative, and hence Π̄(L−1)Φ̄(L)Yt = ϵ̄t which is observationally equiva-
lent, provides different coefficient matrices than (5). The second point about
the multivariate noncausal representation (5) is that, unlike the univariate case,
they cannot always be represented by the product of lead and lag polynomials
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(see Lanne and Saikkonen (2013), Davis and Song (2020), and Gourieroux and
Jasiak (2017).

These two issues have motivated Davis and Song (2020), Gourieroux and
Jasiak (2017), Gourieroux and Jasiak (2022a), and Gourieroux and Jasiak (2022b)
to consider a VAR(p) expressed as in (1). In this representation, a process is
classified as purely causal if the eigenvalues of the companion-form matrix of the
process (1), with dimensions of n× p, lie inside the unit circle. Similarly, if the
roots of the characteristic equation |In−Θ1z−· · ·−Θpz

p| = 0 in (1) are located
outside the unit circle, it indicates a purely causal process. On the other hand,
if the eigenvalues lie outside the unit circle or the roots of the characteristic
equation are inside the unit circle, the process is considered purely noncausal.
Finally, it is identified as mixed causal and noncausal when the roots, or eigen-
values, lie both inside and outside the unit circle.

Starting from Section 3, we use the notation VAR(n1, n2, p) to represent a
mixed VAR(p) model with n1 roots outside and n2 roots inside the unit circle.
Additionally, we define purely causal and non-causal processes as VAR(n1, 0, p)
and VAR(0, n2, p), respectively.

3. Generalized covariance estimator

This section describes the two versions of the GCov estimator introduced re-
spectively in Gourieroux and Jasiak (2017) and Gourieroux and Jasiak (2022a).
Let us consider a mixed strictly stationary n − dimensional VAR(n1, n2, 1)
process:

Yt = ΘYt−1 + ut, (7)

where the error term ut is a sequence of i.i.d. non-Gaussian random vectors of
dimension n×1. We also assume that ut are square-integrable, with E(ut) = 0,
and a variance-covariance matrix V (ut) = Σ. The existence of a strictly sta-
tionary solution of (7), as well as the two-sided moving average representation
of Y , is provided in Gourieroux and Jasiak (2017).

Representation theorem ( Gourieroux and Jasiak (2017)): When a n-
dimensional VAR(n1, n2, 1) is considered, there exists an invertible (n×n) real
matrix A, and two square real matrices: J1 of dimension (n1 × n1) and J2 of
dimension (n2 × n2) such that all eigenvalues of J1 (resp. J2) are those of Θ
with a modulus strictly less (resp. larger) than 1, and such that:

Yt = A1Y
∗
1,t +A2Y

∗
2,t (8)

Y ∗
1,t = J1Y

∗
1,t−1 + u∗

1,t, Y ∗
2,t = J−1

2 Y ∗
2,t+1 − J−1

2 u∗
2,t+1 (9)

Y ∗
1,t = A1Yt, Y ∗

2,t = A2Yt (10)

u∗
1,t = A1ut, Y ∗

2,t = A2ut (11)

where [A1, A2] = A and [A1′ , A2′ ]′ = A−1.
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From equation (9), we can see that Y ∗
1,t and Y ∗

2,t are, respectively, purely
causal and purely noncausal processes. Hence, these two components can be
interpreted as the causal and noncausal components of the process Yt.

In addition, Gourieroux and Jasiak (2017) show that:

Γ∗
12 = Cov(Y ∗

1,t, Y
∗
2,t−h) = 0 for h ≤ 0. (12)

Exploiting the moment condition (12) may yield a suitable VAR(n1, n2, p) es-
timator. However, distinguishing between mixed models (n1, n− n1) and (n−
n1, n1) based solely on linear second-order moments of the component series
of Yt is not possible (Gourieroux and Jasiak (2017)). In this regard, nonlinear
covariance-based conditions can be used to identify the model, as long as the
error terms ut are serially independent (Chan et al. (2006)). This led to the
development of the Gcov17 and Gcov22 estimators by Gourieroux and Jasiak
(2017) and Gourieroux and Jasiak (2022a), respectively. In particular, the esti-
mator Gcov22 aims to minimize

Θ̂ = argmin
Θ

H∑
h=1

Tr
[
Γ̂(h)Γ̂(0)−1Γ̂(h)′Γ̂(0)−1

]
, (13)

where H is the highest selected lag, Γ̂(h) is the sample autocovariance between
aj(Yt − ΘYt−1) and ak(Yt−h − ΘYt−h−1), and ak, j, k = 1 . . . ,K are a set of
the element by element functions which depends on the series of interest. In
particular, ak are linear and nonlinear transformations of the error term, and
they have to be twice continuously differentiable with respect to Θ. For the
asymptotic normality of GCov22, finite fourth moments of a(ut) are needed
(see Gourieroux and Jasiak (2022a)).

The matrix in (13) is diagonalizable, with a trace equal to the sum of its
eigenvalues, which are the squares of the canonical correlations between aj(Yt−
ΘYt−1) and ak(Yt −ΘYt−1).

On the other hand, the estimate provided by Gcov17 minimizes:

Θ̂ = argmin
Θ

H∑
h=1

Tr
[
Γ̂(h)diag(γ̂(0))−1Γ̂(h)′diag(γ̂(0))−1

]
, (14)

where diag(γ̂(0)) is the matrix with only the diagonal elements of Γ̂(0). The
objective functions (13) and (14) are multivariate portmanteau tests statistics,
examined in Cubadda and Hecq (2011).

Note that for V AR(n1, n2, p) processes with p ≥ 2, we can use the compan-
ion matrix to rewrite the process as V AR(n1, n2, 1) so that the estimators (13)
and (14) can easily be applied to the new representation of the model.

The GCov estimator (13) is consistent, and asymptotically normally dis-
tributed when the 4th-order moments of a(ut) are finite. It is also semi-

paremetrically efficient because of the optimal choice of weights Γ̂(0)−1 in the
objective function (13). Its semi-parametric efficiency is achieved by an appro-

priate choice of weights Γ̂(0)−1 in the objective functions (13). Moreover, it is
a one-step estimator.
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The GCov estimator (14) has similar properties except for semi-parametric
efficiency. Its advantage is in application to high dimensional matrices when
K and n are large, because the objective functions (14) does not require the
inversion of Γ̂(0) matrices.

4. Finite sample performances of Gcov22

In this section, we investigate the behavior of the objective function associ-
ated with theGCov estimator when applied to a 2-dimensional mixed VAR(n1, n2, 1)
model as described in (7). The underlying assumption is that the population
matrix Θ0 has one eigenvalue (j1) inside the unit circle and another eigenvalue
(j2) outside it. The error term ut = (u1,t, u2,t)

′ are serially i.i.d. and follows
a multivariate Student’s-t distribution with ν = 4 degrees of freedom, and a
variance-covariance matrix Σ = ν/(ν − 2)I2. We focus on reporting results for
the Gcov22 estimator, as both Gcov22 and Gcov17 perform similarly when Σ is
diagonal. However, it is worth noting that Gcov22 exhibits greater effectiveness
than Gcov17 when the assumption of a diagonal covariance matrix is relaxed,
as it considers Γ(0) as a whole.

Our analysis consists of two cases. In Case 1, in addition to considering
a diagonal variance-covariance matrix Σ (i.e., errors contemporaneously cross-
sectionally independent), we also take into account a diagonal autoregressive
matrix Θ0 in (7). This setup allows us to evaluate the estimator’s performance
in both univariate and multivariate scenarios. By examining the objective func-
tion of Gcov22 with respect to θ11 (while keeping the other elements of the
matrix constant at their true values), we can analyze its behavior when applied
to the purely causal univariate process y1,t = θ11y1,t−1+ut. Similarly, studying
the objective function of Gcov22 with respect to θ22 (while holding the other
elements constant at their true values) provides valuable insights into its perfor-
mance with the purely noncausal process y2. On the other hand, to assess the
estimator’s performance in the multivariate setting, we conduct Monte Carlo
experiments and calculate the empirical density function of matrix Θ, consider-
ing various initial values for the optimization problem.

In Case 2, while we maintain the assumption of contemporaneously cross-
sectionally independent errors, we relax the assumption of a diagonal population
matrix Θ0. We proceed with a similar analysis to explore the implications of
this relaxation.

Finally, for each case, we consider two DGPs. In one DGP, the eigenvalues of
the population matrix for the causal and noncausal components are significantly
smaller and larger than the modulus of 1, respectively. In the other DGP, the
eigenvalues are slightly smaller and larger than the modulus of 1.

4.1. Case 1: Analysis of a 2-dimensional process with independent
variables

4.1.1. Presence of Bimodality Issue

We examine a 2 − dimensional mixed VAR(1,1,1) process, denoted as (7),
where the cleaned Yt components y1,t and y2,t are purely causal and noncausal
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processes, respectively. Specifically, the autoregressive matrix exhibits a Jordan
decomposition with the following coefficient matrices:

Θ0 = AJA−1

=

[
2.1 0
0 1.5

] [
0.5 0
0 2

] [
2.1 0
0 1.5

]−1

=

[
0.5 0
0 2

]
.

(15)

It is important to emphasize, based on Proposition 4 in Gourieroux and Jasiak
(2017), that distinguishing the true bivariate mixed process from either the
purely causal process (with eigenvalues j1 and j−1

2 ) or the purely noncausal
process (with eigenvalues j−1

1 and j2) solely based on the linear autocovariance
function becomes impossible when both Σ and Θ0 are diagonal. We denote
the matrix with eigenvalues j1 and j−1

2 as the causal counterpart of Θ and
the matrix with eigenvalues j−1

1 and j2 as the noncausal counterpart of the
population matrix. Furthermore, as previously stated, the diagonality of the two
matrices allows us to investigate how the estimator performs in the univariate
framework, i.e. when expressed as a function of θ11 (or θ22). Figure 1 shows
the one−dimensional Gcov22’s objective function with T = 1000 observations,
H = 10 in (13) and using the following nonlinear transformations (ak):

• T1: a1(u)=u1, a2(u)=u2, a3(u)=u2
1, a4(u)=u2

2, a5(u)=u3
1, a6(u)=u3

2, a7(u)=u4
1,

a8(u)=u4
2;

• T2: a1(u)=u1, a2(u)=u2, a3(u)=log(u2
1), a4(u)=log(u2

2)

• T3: a1(u)=sign(u1), a2(u)=sign(u2), a3(u)=u2
1, a4(u)=u2

2,

• T4: a1(u)=sign(u1), a2(u)=sign(u2), a3(u)=log(u2
1), a4(u)=log(u2

2).

Our findings indicate that the objective function of Gcov22 displays local min-
ima when applied to the univariate framework. Specifically, we observe that
for the causal process y1, the objective function exhibits a local minimum that
corresponds to its noncausal counterpart j−1

1 (or θ−1
11 ), while for the noncausal

process y2, the objective function has a local minimum that corresponds to its
causal counterpart j−1

2 (or θ−1
22 ). The reason behind this is that, as mentioned in

Section 3, also in the univariate framework, it is not possible to distinguish be-
tween a pure causal representation and a pure noncausal representation based
solely on knowledge of the linear second-order moment of Y . To accurately
determine the correct specification, it is necessary to consider nonlinear second-
order moments. The GCov estimator effectively leverages this characteristic.
However, it is crucial to note that if the number of nonlinear autocovariances
considered is insufficient or if the chosen nonlinearities are inadequate, it may
result in the presence of local minima during the estimation process. Finally,
Figure 1 shows that T1 is the nonlinear transformation that better performs in
amplifying the difference between the global and local minima, improving the
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estimator accuracy in identifying the process.
To gain insights into the performance of the estimator in the multivariate

setting, we conduct three Monte Carlo experiments. In each experiment, we
compute the empirical density function of Θ (Θ̂) using a different initial point
for the optimization problem. We consider T = 1000 observations andN = 1000
replications. Furthermore, we discard the initial and final 10% of observations
from each simulated time series and set H = 10 in equation (13). Finally, we
employ the Broyden Fletcher Goldfarb Shanno (BFGS) numerical optimization
algorithm. The BFGS algorithm is a well-known deterministic optimization
method that approximates the inverse gradient of the objective function to lo-
cate the minimum. The algorithm starts with an initial minimum estimate and
gradually improves this estimation using gradient information and an approxi-
mation of the inverse Hessian matrix. We also implemented other conventional
numerical optimization algorithms in our simulation studies, such as the Nelder-
Mead, conjugate gradient method, and limited-memory BFGS. However, since
they provide similar results, they are available only upon request.

Figure 2 shows the density function of Θ̂ when the causal counterpart of Θ0

(ΘC) is used as the initial point for the optimization problem, with:

ΘC =

[
j1 0.1
0.1 j−1

2

]
=

[
0.5 0
0 0.5

]
. (16)

Figure 3 shows the estimator’s performance when Θ0 is selected as the starting
point. Figure 4 shows the density function of Θ̂ when the noncausal counterpart
of Θ0 (ΘNC) is used as the initial point:

ΘNC =

[
j−1
1 0
0 j2

]
=

[
2 0
0 2

]
. (17)

Our findings reveal that when ΘC is selected as the initial point, the em-
pirical density function of Θ̂ shows two peaks (Figure 2). The shorter peak
corresponds to the population matrix Θ0, while the higher peak corresponds to
its causal counterpart ΘC . Therefore, the process is often identified as purely
causal in this framework (see Table 1). On the other hand, selecting ΘNC as the
initial point also yields two peaks in the empirical density function of Θ̂. The
smaller one remains associated with Θ0, but the higher peak is now associated
with ΘNC . As a result, Table 1 indicates that the process is often identified as
purely noncausal under these conditions. Finally, selecting Θ0 as the starting
point for the optimization problem leads to a significant improvement in the
estimator’s performance. The numerical algorithm BFGS can now capture the
global minimum, resulting in the disappearance of any local minimum.

The findings reveal that the objective function domain of the Gcov22 es-
timator consists of three sets, characterized by the matrices yielding specific
roots:

• Set 1: Matrices satisfying detΘ(z) ̸= 0 for |z1| ≤ 1 and |z2| ≤ 1;

• Set 2: Matrices satisfying detΘ(z) ̸= 0 for |z1| ≥ 1 and |z2| ≥ 1;
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• Set 3: Matrices satisfying detΘ(z) ̸= 0 for |z1| ≤ 1 and |z2| ≥ 1, or |z1| ≥ 1
and |z2| ≤ 1.

Each set contains a matrix that minimizes the objective function when consid-
ering linear transformations of the autocovariance, that is, ΘC , Θ0, and ΘNC .
However, when nonlinear transformations of the autocovariance of the error
term are considered in (13), only Θ0 represents the global minimum, while the
causal and noncausal counterparts of Θ0 act as local minima. Indeed, Figures
2-4 show that in the Gcov22’s domain set where detΘ(z) ̸= 0 for |z1| ≤ 1 and
|z2| ≤ 1, the local minimum is associated with ΘC . On the other hand, in the
set where detΘ(z) ̸= 0 for |z1| ≥ 1 and |z2| ≥ 1, the local minimum is associ-
ated with ΘNC . These findings show the GCov estimator’s ability to capture
matrices (ΘC and ΘNC) that produce the same autocovariance function as the
underlying process. This remains true despite the estimator taking into account
both linear and nonlinear transformations of the autocovariance of the error
term. Consequently, local minima corresponding to these matrices arise.

In conclusion, if the optimization problem starts within a set where a local
minimum occurs, it is likely that the numerical optimization algorithm will get
trapped in that set and converge to the local minimum instead of the global
one.

Figure 1: Univarite Gcov22’s objective function
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The Gcov22’s objective function is shown when expressed as a function of θ11 and θ22 while
holding the other elements of the same matrix constant and equal to the population matrix Θ0,
expressed as in (15). The black, red, and green dashed vertical lines represent the coefficients
of matrices Θ0, ΘC , and ΘNC , respectively. Case 1 is considered.
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Figure 2: Empirical density function of Θ with ΘC as starting point
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Empirical density function of Θ obtained when ΘC is selected as the starting point, and the
population matrix Θ0 is expressed as in (15). The black vertical lines in the figure represent
the true values of the matrix Θ0, while the red dashed lines correspond to the elements of the
matrix ΘC . Case 1 is considered.

Figure 3: Empirical density function of Θ with Θ0 as starting point
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Empirical density function of Θ when the population matrix Θ0, expressed as in (15), is
considered. The initial value in the optimization problem is also set to Θ0. The black vertical
lines in the figure represent the true values of the matrix Θ0.
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Figure 4: Empirical density function of Θ with ΘNC as starting point
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Empirical density function of Θ obtained when ΘNC is selected as the starting point, and the
population matrix Θ0 is expressed as in (15). The black vertical lines in the figure represent
the true values of the matrix Θ0, while the green dashed lines correspond to the elements of
the matrix ΘNC . Case 1 is considered.

4.1.2. The Absence of Bimodality Issue

We proceed to investigate whether any local minima vanish when the eigen-
values of the population matrix for the causal and noncausal components are
slightly smaller and larger than 1, respectively, while assuming cross-sectionally
independent errors. As Figure 1 suggests, this scenario may reduce the global
and local minima gap, prompting us to analyze if any local minima disappear.
To achieve this goal, we will focus on the following population matrix:

Θ∗
0 =

[
θ∗11 θ∗12
θ∗21 θ∗22,

]
=

[
0.85 0
0 1.2

]
. (18)

Even in this case, we derive the one-dimensional Gcov22’s objective function
expressed as a function of θ∗11 and θ∗22, respectively, while holding the other
elements of the same matrix constant and equal to Θ∗

0 (Figure 5). Finally, we
conduct a new Monte Carlo experiment with the same inputs as the previous
simulation studies and compute the empirical density function of Θ∗, when its
causal counterpart (Θ∗

C) is considered as the starting point for the optimization
problem:

Θ∗
C =

[
0.85 0
0 (1.2)−1

]
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Figures 5 and 6 show the results. Furthermore, Table 1 displays the frequency
with which the correct model is identified in the Monte Carlo experiment.2

Our findings suggest that under this new DGP, the distance between the
global and local minimums is not significant enough to give rise to the conver-
gence of the algorithm to local minima. In other words, the reduced distance
between the global and local minima facilitates the numerical algorithm in iden-
tifying the global minimum, even if initiated within a set where a local minimum
occurs. This is true regardless of the nonlinear transformation ak employed.

Figure 5: Univarite Gcov22’s objective function
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The Gcov22’s objective function is shown when expressed as a function of θ∗11 and θ∗22 while
holding the other elements of the same matrix constant and equal to the population matrix Θ∗

0,
expressed as in (18). The black, red, and green dashed vertical lines represent the coefficients
of matrices Θ∗

0, Θ
∗
C , and Θ∗

NC , respectively. Case 1 is considered.

2In the alternative case where the noncausal counterpart of Θ∗
0 is selected as the initial

point for the optimization problem, similar results are obtained and are available upon request.
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Figure 6: Empirical density function of Θ∗ with Θ∗
C as starting point
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Empirical density function of Θ∗ obtained when Θ∗
C is selected as the starting point, and the

population matrix Θ∗
0 is expressed as in (18). The black vertical lines in the figure represent

the true values of the matrix Θ∗
0, while the red dashed lines correspond to the elements of the

matrix Θ∗
C . Case 1 is considered.

Table 1: Dynamic captured by Gcov22; Case 1

PM Initial value V AR(2, 0, 1) V AR(1, 1, 1) V AR(0, 2, 1)

Θ0 ΘC 87.6% 12% 0.4%

Θ0 Θ0 0.3% 99.3% 0.4%

Θ0 ΘNC 0% 9,8% 90.2%

Θ∗
0 Θ∗

C 8.8% 78.2% 13.0%

The table illustrates the performance of Gcov22 in estimating the dynamic of a 2-dimensional
VAR(1,1,1). ’PM’ denotes the population matrix. Case 1 is considered.

4.2. Case 2

4.2.1. Presence of Bimodality Issue

We now relax the assumption of independence between y1,t and y2,t, and
maintain the assumption of cross-sectional independent error term. Specifically,
we consider the following non-diagonal autoregressive population matrix:

Θ0 = AJA−1 =

[
0.3 0.7
0.4 −1

] [
0.4 0
0 2

] [
0.3 0.7
0.4 −1

]−1

=

[
1.17 −0.58
−1.10 1.23.

]
(19)

This relaxation allows us now to leverage the second-order moment of the process
to differentiate the true mixed process from its causal and noncausal counter-
part (see Gourieroux and Jasiak (2017)).

14



In contrast to Section 4.1, analyzing the objective function in terms of θ11
and θ22 does not provide information about the univariate case due to the lack
of independence between y1 and y2. Therefore, we directly perform three new
Monte Carlo experiments and compute the empirical density functions of Θ for
different initial points in the optimization problem. We set T = 1000 observa-
tions and N = 1000 replications, discard the first and last 10% of observations
in each simulated time series, and set H = 10 in (13). Finally, we consider
the nonlinear transformation of the error term T1. The results are presented in
Figures 7-9 and Table 2.

Figure 7 displays the results obtained using the OLS estimate of the pro-
cess Y as the initial point. It has been shown in Gourieroux and Jasiak (2017)
that the OLS estimator is not capable of capturing the noncausal component
of the process, and it estimates a matrix with eigenvalues j1 and j−1

2 . This is
because the OLS estimator assumes Gaussian errors, in which case the causal
and noncausal dynamics cannot be distinguished, and the model is not identifi-
able. Therefore, the OLS estimate of Θ (ΘOLS) provides the causal counterpart
of the matrix (19). Figure 8 shows the density function of Θ̂ when the non-
causal counterpart of Θ is selected as the initial point. To obtain this matrix,
it is necessary to estimate a VMAR(0,1) process by OLS and invert the esti-

mated matrix. We denote this matrix as Θ̃ , which is characterized by j−1
1 and

j2 as eigenvalues. Finally, Figure 9 presents the results when the initial value
is ΘMIX , a randomly selected matrix that lies in the same set as the global
minimum (one root inside and one root outside the unit circle):

ΘMIX = AJA−1 =

[
−0.8 0.75
0.46 −1

] [
0.8 0
0 1.2

] [
−0.8 0.75
0.46 −1

]−1

=

[
0.50 −0.53
0.40 1.50.

] (20)

The results reveal that when the optimization process starts at the parameter
values corresponding to the reciprocals of the true eigenvalues of the autore-
gressive matrix, the maximization algorithm becomes stuck at a local minimum.
Consequently, in practical applications, identification issues may emerge, and
local minima manifest at parameter values associated with incorrect orders.
Therefore, depending on the initial starting point, the GCov optimization algo-
rithm might converge towards a local minimum. Indeed, similar to Case 1, the
results show that when the optimization is initiated within the domain set of
Gcov22 where detΘ(z) ̸= 0 for |z1| ≤ 1 and |z2| ≤ 1, the algorithm converges
towards a local minimum associated with the matrix having eigenvalues j1 and
j−1
2 (ΘOLS). In contrast, when the numerical optimization algorithm is initial-
ized in the set where detΘ(z) ̸= 0 for |z1| ≥ 1 and |z2| ≥ 1, the local minimum

is associated with a matrix having eigenvalues j−1
1 and j2 (Θ̃). Finally, the

elimination of convergence to local minima is observed when ΘMIX is chosen as
the initial point. This finding emphasizes the importance of selecting a matrix
that belongs to the same set as the population matrix. Table 2 further confirms
these results.
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Figure 7: Empirical density function of Θ with ΘOLS as starting point
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Empirical density function of Θ obtained when ΘC is selected as the starting point, and the
population matrix Θ0 is expressed as in (19). The black vertical lines in the figure represent
the true values of the matrix Θ0, while the red dashed lines correspond to the elements of the
matrix ΘOLS . Case 2 is considered.

Figure 8: Empirical density function of Θ with Θ̃ as starting point
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Empirical density function of Θ obtained when Θ̃ is selected as the starting point, and the
population matrix Θ0 is expressed as in (19). The black vertical lines in the figure represent
the true values of the matrix Θ0, while the green dashed lines correspond to the elements of
the matrix Θ̃. Case 2 is considered.
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Figure 9: Empirical density function of Θ with ΘMIX as starting point
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Empirical density function of Θ obtained when ΘMIX is selected as the starting point, and the
population matrix Θ0 is expressed as in (19). The black vertical lines in the figure represent
the true values of the matrix Θ0.

4.2.2. The Absence of Bimodality Issue

We proceed to examine whether local minima vanish when the causal and
noncausal eigenvalues are marginally smaller and larger than one, respectively,
even when the processes y1,t and y2,t are not independent. Furthermore, we
maintain the assumption of cross-sectional independent errors. To this end, we
consider the following autoregressive matrix:

Θ∗
0 = AJA−1 =

[
0.3 0.7
0.4 −1

] [
0.85 0
0 1.2

] [
0.3 0.7
0.4 −1

]−1

=

[
1.02 −0.13
−0.24 1.03,

]
(21)

and implement a Monte Carlo simulation study considering the OLS estimate of
Θ∗ (Θ∗

OLS) as the initial value (see Figure 10 and Table 2). The results highlight

that the density function of Θ̂∗ is well-shaped around the true population matrix.
In the alternative scenario where a matrix with both eigenvalues outside the unit
circle is selected as the starting point, similar results are obtained and available
upon request. Therefore, as also shown in Section 4.1, we conclude that in some
cases, the distance between the global and local minima is insufficient to give
rise to convergence to local minima. In other words, the small gap between the
global and local minima makes it easier for the numerical algorithm to locate the
global minimum, even if initiated within a set where a local minimum occurs.
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Figure 10: Empirical density function of Θ∗ with Θ∗
OLS as starting point
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Empirical density function of Θ∗ obtained when Θ∗
OLS is selected as the starting point, and the

population matrix Θ∗
0 is expressed as in (21). The black vertical lines in the figure represent

the true values of the matrix Θ∗
0. Case 2 is considered.

Table 2: Dynamic captured by Gcov22; Case 2

PM Initial value V AR(2, 0, 1) V AR(1, 1, 1) V AR(0, 2, 1)

Θ0 ΘOLS 34.2% 65.4% 0.4%

Θ0 Θ̃ 0.2% 15.3% 84.5%

Θ0 ΘMIX 0.1% 91.7% 8.2%

Θ∗
0 Θ∗

OLS 6.6% 90.2% 3.2%

The table illustrates the performance of Gcov22 in estimating the dynamic of a 2-dimensional
VAR(1,1,1). ’PM’ denotes the population matrix. Case 2 is considered.

5. Simulated Annealing algorithm

In the previous section, we stressed the importance of selecting an initial
point that belongs to the same set as the global minimum. Specifically, selecting
an initial matrix with the same n1 and n2 as the population matrix is crucial for
achieving successful convergence of the BFGS optimization algorithm. However,
in practical applications, determining the number of roots that lie within and
outside the unit circle of the population matrix can be challenging. Therefore,
in this section, we use SA (Kirkpatrick et al. (1983), Černỳ (1985), and Goffe
et al. (1994)) to investigate whether it can find an initial point in the same set
where the global minimum lies. If successful, this approach would allow the
BFGS optimization algorithm to converge successfully.
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SA is an optimization method that was inspired by the annealing process
used in metallurgy. In metallurgy, materials are cooled gradually to eliminate
any imperfections and achieve a more stable state. The algorithm starts at
a high temperature (T o) and gradually cools down over time to reduce the
likelihood of getting stuck in a local minimum. Hence, in optimization problems,
T o is a parameter that controls the search space exploration during optimization.
When T o is high, the algorithm is more likely to accept worse solutions than
the current one, enabling it to escape local optima and explore new areas of the
search space. As T o decreases, the algorithm is less likely to accept suboptimal
solutions and converge toward the global optimum. However, if the cooling rate
is too high, the algorithm may not be able to escape local minima (see Corana
et al. (1987), Goffe et al. (1992), Goffe et al. (1994), and Goffe (1996)).

Let us now explain how the SA algorithm works when applied to the GCov
estimator. We consider a VAR(n1, n2, 1 ) as (7), and we use f to denote the
objective function of either GCov17 or GCov22. It is not necessary to specify
which GCov is being employed for the purposes of illustrating how the algorithm
works. SA aims to select the matrix Θ close to the global optimum. We assume
that the (i, j)-th element of matrix Θ (denoted as θi,j , for i, j = 1 . . . n) lies
within the interval [θMIN , θMAX ]. This step helps us to restrict the domain,
Rn×n, of our objective function and hence narrow the search area. Additionally,
we denote the maximum and minimum temperature values of T o as T o

MAX and
T o
MIN , respectively.
To begin the optimization process, a random initial state of Θ, denoted

as ΘS , is selected, and its corresponding function value, f(ΘS), is computed.
Specifically, each element of the matrix ΘS is randomly chosen from θMIN to
θMAX . Subsequently, a new value of Θ, represented by Θ′, is generated. We
implement the following computation to derive the ij-th element of matrix Θ′:

θ′ij = θSij +mij ∀i, j = 1, . . . , n, (22)

where mij is the ij-th element of an (n× n) matrix M and is chosen randomly
from the interval [−θSij−θMIN ,−θSij+θMAX ]. We choose this interval to ensure
that θ′ij remains within the range [θMIN , θMAX ].

The function f(Θ′) is then computed and compared with f(ΘS). If f(Θ′) <
f(ΘS), Θ′ is accepted and the algorithm progresses downhill. In the opposite
case, f(Θ′) > f(ΘS), the eventual acceptance of Θ′ is based on the Metropolis
criterion. According to this criterion, we compute the variable po such that

po = e−
(f(Θ′)−f(ΘS))

To , (23)

to compare it with p∗, a number selected randomly from 0 to 1. If po < p∗, Θ′

is rejected, and the algorithm remains on the same point of the function. On
the other hand, if po > po,′, we accept Θ′ and move uphill. The acceptance
probability in simulated annealing is determined by Equation (23), which is
controlled by the parameter T o. To find the optimal solution, the procedure is
repeated M times for each T o, starting from T o

MAX and gradually reducing it
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at a rate of r, for a total of Q times, until it reaches T o
MIN .

The SA method presents two main drawbacks. First, it requires exploring
a large number of candidate solutions, especially for large values of n and p.
To mitigate this challenge, setting boundaries, θMIN and θMAX , to restrict the
search area can be helpful. By limiting the number of candidate solutions that
need to be evaluated, we can reduce the computational time required to find
the global minimum using the SA method. Secondly, the parameters associated
with the SA method, such as θMIN , θMAX , T o

MAX , r, Q, and M , are typically
treated as black-box functions and are contingent upon the objective function
to be minimized. Goffe et al. (1994) provides some tips on how to set these
parameters, but, in general, their choice requires experimentation.

In empirical studies, a common approach to investigate whether the global
minimum has been found is to repeat the algorithm with a different initial state
ΘS . If the same global minimum is reached, it can be concluded with high con-
fidence that convergence has been achieved. In cases where a different result is
obtained, it may be necessary to modify one or more of the parameters involved
in the simulated annealing algorithm.

We now conduct a Monte Carlo experiment to evaluate the effectiveness of
SA on the GCov estimator. The experiment uses the same DGP described in
Section 4, which is known to produce local minima. Specifically, we employ the
population matrix Θ0 displayed in (19). As Σ is diagonal in this case, we ob-
tained similar results when applying SA to either Gcov22 or Gcov17. However,
to make a more accurate comparison with the findings of the previous section,
we only present the results obtained by Gcov22, while the results from Gcov17
are available upon request.

Given the time needed to run the Gcov22 estimator with SA, we reduced the
number of observations to T = 250 observations. We keep N = 1000 replica-
tions. The initial temperature T o is set to T o

MAX = 1600, and we let it decreases
at a rate of r = 0.85 for Q = 200 iterations until it reaches T 0

MIN .3 In order to
efficiently explore the search area, our experiments suggest setting M = 1000 for
each T o. Setting M too high may result in inefficiencies in terms of time. Con-
versely, setting M too low may restrict the ability of the algorithm to explore
the search area thoroughly. It’s worth noting that in some replications of our
experiment, the objective function may require higher values of either Q, M , or
both. However, for practical reasons, we set the values of Q and M to be the
same for all replications. We set θMIN and θMAX to -3.5 and 3.5, respectively.
As previously mentioned, these parameters are typically problem-dependent,
and their selection requires experimentation. The matrix Θ obtained through
the SA technique is then used as the initial point for our optimization prob-
lem, which is then solved using the BFGS algorithm. The aim of the Monte
Carlo experiment is to investigate which strategy for capturing the initial val-
ues, namely SA, ΘOLS , and Θ̃ gets us closer to the global minimum. Figures

3The final temperature, T o
MIN , is a function of T o

MAX , r, and Q since it is obtained after
Q− th reductions, at rate r, from T o

MAX . It is defined as T o
MIN = T 0

MIN (T 0
MAX , r, Q).
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11 and Table 3 show the results.
The SA algorithm significantly improves the results compared to the pre-

vious section despite the fact that the sample size considered in this section is
significantly smaller. Bimodality issues disappear, and the Gcov22 estimator
accurately identifies the process dynamics with a success rate of approximately
78 percent. In the previous section, when the same DGP is considered, the
correct dynamics were identified with success rates of 65.4% and 15.3% when
using ΘOLS and Θ̃ as initial values, respectively, and T = 1000 observations.

Figure 11: Empirical density function of Θ with SA
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The empirical density function of Θ̂ is obtained using Gcov22 when the SA strategy is imple-
mented to select the starting values. We assume that Θ0, as defined in (19), represents the
population matrix. The vertical lines in the plot indicate the corresponding population values.

Table 3: Dynamic captured by Gcov22

PM Initial value V AR(2, 0, 1) V AR(1, 1, 1) V AR(0, 2, 1)

Θ0 SA 8.8% 78.2% 13.0%

Estimated dynamics captured by the estimator Gcov22 when the SA is implemented to capture
the initial values. Θ0, as expressed in (19), is selected as the population matrix (PM). Case
2 is considered.

6. Empirical investigations

This section describes two empirical investigations of bivariate processes.
The first investigation examines the wheat and corn futures from October 18,
2016, to March 29, 2018. The second one examines soybean and wheat futures

21



using the same time period as the previous process.4 The demeaned data is
presented in Figures 12-13. The primary objective of this study is to evaluate
the performance of the Gcov22 estimator when applied to real-world data and
to investigate whether any eventual local minima arise.

The series does not exhibit global trends or other widespread and persistent
explosive patterns; instead, they display localized trends, bubbles, and spikes.
Therefore, we assume that the series is strictly stationary.

Since the standard normality tests reject the null hypothesis of normality
in all the considered time series, we can apply Gcov22 to our demeaned data.
In this regard, we use both the OLS estimate (ΘOLS) and the results obtained
by the SA method as starting points for the optimization problems. Table 4
shows the results. Gcov22 identifies the process related to wheat and corn as
mixed causal and noncausal (VAR(1, 1, 1)). In particular, the same estimated
matrix is found regardless of the strategy employed to capture the initial guess,
and eigenvalues ĵ1 = 0.94 and ĵ2 = 1.12 are found. This result confirms the
findings of Section 4: there are no local minima when the causal and noncausal
eigenvalues are respectively slightly smaller and larger than 1.

When analyzing the bivariate process of soybean and wheat, we find that
the results depend on the starting point chosen for the optimization problem. In
particular, when the OLS strategy is used to capture the initial value, Gcov22
identifies the process as purely causal (VAR(4,0,2)). On the other hand, when
the SA method is used, a lower function value is achieved, and the bivariate
process is identified as VAR(3,1,2), with eigenvalues j1 = 0.972, j2 = 0.88,
j3 = 0.604, and j4 = −4.355. Even in this case, the empirical investigation
confirms our previous findings. Specifically, local minima arise when either the
causal or the noncausal or both eigenvalues are significantly smaller and larger
than 1.

4Data obtained from https://ca.finance.yahoo.com (wheat futures: ticker ZW=F, corn
futures: ticker ZC=F, and soybean futures: ticker ZS=F)
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Figure 12: Bivariate process of wheat and corn futures
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The graph shows the demeaned prices of wheat (black line) and corn (green line) futures from
October 18, 2016, to March 29, 2018

Figure 13: Bivariate process of wheat and soybean futures
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The graph shows the demeaned prices of wheat (black line) and soybean (red line) futures
from October 18, 2016, to March 29, 2018

23



Table 4: Estimated coefficients of our empirical analysis

Wheat and Corn

SV Φ̂1 Φ̂2

ϕj,1 ϕj,2 ϕj,1 ϕj,2 f.v. Model
ΘOLS ϕ1,j 0.84 0.30 / / 3.09 VAR(1,1,1)

ϕ2,j -0.09 1.22 / /
SA ϕ1,j 0.84 0.30 / / 3.09 VAR(1,1,1)

ϕ2,j -0.09 1.22 / /

Soybean and Wheat

SV Φ̂1 Φ̂2

ϕj,1 ϕj,2 ϕj,1 ϕj,2 f.v. Model
ΘOLS ϕ1,j 1.16 0.24 -0.29 -0.29 2.00 VAR(4,0,2)

ϕ2,j 0.06 1.05 -0.04 -0.09
SA ϕ1,j 0.44 1.23 0.52 -1.21 1.50 VAR(3,1,2)

ϕ2,j 3.31 -2.34 -3.19 3.10
The column ”SV” and ”f.v.” display the strategy adopted to capture the starting values and
the value of the function at the estimated values.

7. Conclusions

In this paper, we have investigated the performance of the GCov in es-
timating mixed causal and noncausal models. The GCov estimator, being a
semi-parametric method, offers the advantage of not assuming any specific er-
ror distribution. By utilizing a portmanteau-type criterion based on nonlinear
autocovariances, it ensures consistent estimates and consequently allows for the
identification of the causal and noncausal orders of the mixed VAR.

Our findings highlight the importance of considering an adequate number
and type of nonlinear autocovariances in the objective function of the GCov
estimator. When these autocovariances are insufficient or inadequate, or when
the error density closely resembles the Gaussian distribution, identification is-
sues can arise. This manifests in the presence of local minima in the objective
function, occurring at parameter values associated with incorrect causal and
noncausal orders. Consequently, the optimization algorithm may converge to a
local minimum, leading to inaccurate estimates.

To overcome the problem of local minima and improve the estimation accu-
racy of mixed VAR models, we propose the use of the SA optimization algorithm
as an alternative to conventional numerical optimization methods. The SA al-
gorithm effectively manages the identification issues caused by local minima,
successfully eliminating their effects. By exploring the parameter space in a
more robust and flexible manner, SA provides a reliable solution for obtaining
more accurate estimates of the causal and noncausal orders.

Finally, the paper applies the Gcov22 method to two bivariate commodity
price series and assesses its performance by employing various initial points for
the optimization problem. The results highlight the existence of local minima
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in one of the bivariate processes, emphasizing the importance of carefully select-
ing suitable initial values to obtain accurate estimates when utilizing the GCov
estimator.
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