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On-Line APPENDIX B

Identification Conditions

B.1 Independent Component Analysis

Let us consider the independent component model:

Y = Pe, (b.1)

where the observed vector Y is of dimension n and the components €4, ..., €, are indepen-
dent.
Proposition B.1. [Eriksson, Koivunen (2004), Th. 3, and Comon (1994), Th 11]
Under the following conditions:
i) P is invertible,
ii) the components €y, ..., €, are independent and at most one of them has a Gaussian
distribution,
the matrix P is identifiable up to the post multiplication by D@, where @) is a permutation

matrix and D a diagonal matrix with non-zero diagonal elements.

The matrix P is identifiable up to a permutation of indexes and to signed scaling
¢, — +oie; ,with o; > 0, ¢ = 1,....,n. The only local identification issue is the positive

scaling and can only be solved by introducing identifying restrictions.
Proposition B.2. [Hyvarinen et al. (2001)]

Under the assumptions of Proposition B.1. the local identification issue is solved if P

is an orthogonal matrix: P'P = Id.

B.2 Two-Sided Multivariate Moving Averages
Proposition B.1 has been extended by Chan, Ho (2004), Chan, Ho, Tong (2006) to

two sided moving averages. We give a version of their result for structural mixed models:

Y= ®Yi o+ B, + Pug

Proposition B.3
Let us assume that:

i) The roots of det(/d — &2 — - -- — ®,2P) = 0 are not on the unit circle,
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ii) Matrix P is invertible,

iii) (uy) is i.i.d. with independent components,

iv) Each component admits a finite even moment of order k larger than 3, and at least
one non-zero cumulant of order larger than 3.
Then i) ®4, ...., P, are identifiable, ii) P is identifiable up to the identification issues given

in Proposition B.1.

This result corresponds to Condition 4 in Chan, Ho, Tong (2006). Assumption iv) implies
that all distributions of the components are non-Gaussian.

The conditions of Proposition B.2. are sufficient for identification. Other sufficient
conditions based on the cross-moments of 3rd and 4th order have been considered in the
literature to weaken the assumption of cross-sectional independence [see. e.g. Velasco
(2022)].
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On-Line Appendix C: Predictive Density Estimation

This Appendix describes the kernel-based estimation of the predictive density given

in Proposition 1 from the following time series:

G=Y,— 0V, — = OV, t=1,..,T,

. ~ Y,

2.t < )/t—l ) 9 9 3
The above time series are used to approximate the density g of ¢ and density ly of Zy,
as follows:
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where hy, he are bandwidths and K,,, K,,, are multivariate kernels of dimensions m and

no respectively. Then, the estimated predictive density is:
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This formula is easily extended to bandwidths adjusted for each component, by re-

placing for example himK (6 et) by H;n 1 hl K <6J s t), where K is a univariate kernel.

Such an adjustment can account for different component variances.

Ir(ylY 7) = | det Jo| gr(y — 1Yy — -+ — QY7 p01),

Let us consider the example of a bivariate VAR(1) process with one noncausal com-
ponent and a scalar noncausal eigenvalue Ay (see Section 6). The estimated coefficients

of the inverse of A are denoted by
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The predictive density depends on unknown scalar parameters i, Ao and functional

parameters Iy, g that can be estimated. The marginal density l;[A?y] can be approximated

by a kernel estimator:

T
. 11 a? (y1 — y1e) + a**(y2 — yau)
o r(A%y) = = — E K : ’
2,T( y) T hy ( Ry ) ’

while the density l5[A2Y7], can be approximated by a kernel estimator:

N 11 &21 . + &22 _
lar(yr) = Th Z K < (Y10 — Y1) . (Yo7 y27t)) |
t=

where hy is a bandwidth. The joint density g(y — ®yr) can be approximated by

T A A
A 2 1 1 Y1 — QLY — P12Y2 — €14 <y2—¢21le—¢22y2T—€2t)
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where €, ; and €, are residuals € = y; — (iDyt_l and hyy, hio are two bandwidths adjusted

for the variation of € and €;, respectively. We get:
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