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On-Line APPENDIX B

Identification Conditions

B.1 Independent Component Analysis

Let us consider the independent component model:

Y = Pε, (b.1)

where the observed vector Y is of dimension n and the components ε1, ..., εn are indepen-

dent.

Proposition B.1. [Eriksson, Koivunen (2004), Th. 3, and Comon (1994), Th 11]

Under the following conditions:

i) P is invertible,

ii) the components ε1, ..., εn are independent and at most one of them has a Gaussian

distribution,

the matrix P is identifiable up to the post multiplication by DQ, where Q is a permutation

matrix and D a diagonal matrix with non-zero diagonal elements.

The matrix P is identifiable up to a permutation of indexes and to signed scaling

εi → ±σiεi ,with σi > 0, i = 1, ..., n. The only local identification issue is the positive

scaling and can only be solved by introducing identifying restrictions.

Proposition B.2. [Hyvarinen et al. (2001)]

Under the assumptions of Proposition B.1. the local identification issue is solved if P

is an orthogonal matrix: P ′P = Id.

B.2 Two-Sided Multivariate Moving Averages

Proposition B.1 has been extended by Chan, Ho (2004), Chan, Ho, Tong (2006) to

two sided moving averages. We give a version of their result for structural mixed models:

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p + Put.

Proposition B.3

Let us assume that:

i) The roots of det(Id− Φ1z − · · · − Φpz
p) = 0 are not on the unit circle,
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ii) Matrix P is invertible,

iii) (ut) is i.i.d. with independent components,

iv) Each component admits a finite even moment of order k larger than 3, and at least

one non-zero cumulant of order larger than 3.

Then i) Φ1, ....,Φp are identifiable, ii) P is identifiable up to the identification issues given

in Proposition B.1.

This result corresponds to Condition 4 in Chan, Ho, Tong (2006). Assumption iv) implies

that all distributions of the components are non-Gaussian.

The conditions of Proposition B.2. are sufficient for identification. Other sufficient

conditions based on the cross-moments of 3rd and 4th order have been considered in the

literature to weaken the assumption of cross-sectional independence [see. e.g. Velasco

(2022)].
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On-Line Appendix C: Predictive Density Estimation

This Appendix describes the kernel-based estimation of the predictive density given

in Proposition 1 from the following time series:

ε̂t = Yt − Φ̂1Yt−1 − · · · − Φ̂pYt−p+1, t = 1, ..., T,

Ẑ2,t = Â2

(
Yt
Ỹt−1

)
, t = 1, ..., T.

The above time series are used to approximate the density g of εt and density l2 of Z2,t

as follows:

ĝT (ε) =
1

T

1

hm

T∑
t=1

Km

(
ε− ε̂t
h

)
,

and

l̂2,T (z2) =
1

T

1

hn2

T∑
t=1

Kn2

(
z2 − Ẑ2,t

h

)
,

where h1, h2 are bandwidths and Km, Kn2 are multivariate kernels of dimensions m and

n2 respectively. Then, the estimated predictive density is:

l̂T (y|Y T ) =

l̂2,T

[
Â2

(
y

ỸT

)]
l̂2,T

[
Â2

(
YT
ỸT−1

)] | det Ĵ2| ĝT (y − Φ̂1YT − · · · − Φ̂pYT−p+1),

This formula is easily extended to bandwidths adjusted for each component, by re-

placing for example 1
hm
Km

(
ε−ε̂t
h

)
by
∏m

j=1
1
hj
K
(
εj−ε̂j,t
hj

)
, where K is a univariate kernel.

Such an adjustment can account for different component variances.

Let us consider the example of a bivariate VAR(1) process with one noncausal com-

ponent and a scalar noncausal eigenvalue λ2 (see Section 6). The estimated coefficients

of the inverse of A are denoted by

Â−1 =

(
â11 â12

â21 â22

)
.
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The predictive density depends on unknown scalar parameters λ1, λ2 and functional

parameters l2, g that can be estimated. The marginal density l2[A
2y] can be approximated

by a kernel estimator:

l̂2,T (Â2y) =
1

T

1

h2

T∑
t=1

K

(
â21(y1 − y1,t) + â22(y2 − y2,t)

h2

)
,

while the density l2[A
2YT ], can be approximated by a kernel estimator:

l̂2,T (yT ) =
1

T

1

h2

T∑
t=1

K

(
â21(y1,T − y1,t) + â22(y2,T − y2,t)

h2

)
,

where h2 is a bandwidth. The joint density g(y − ΦyT ) can be approximated by

ĝT (y−Φ̂yT ) =
1

T

1

h11h12

T∑
t=1

K

(
y1 − φ̂1,1y1,T − φ̂1,2y2,T − ε̂1,t

h11

)
K

(
y2 − φ2,1y1,T − φ2,2y2,T − ε̂2,t

h12

)
.

where ε̂1,t and ε̂2,t are residuals ε̂t = yt − Φ̂yt−1 and h11, h12 are two bandwidths adjusted

for the variation of ε̂1,t and ε̂2,t, respectively. We get:

l̂T (y1, y2|YT ) =

1
T

1
h2

∑T
t=1K

(
â21(y1−y1,t)+â22(y2−y2,t)

h2

)
1
T

1
h2

∑T
t=1K

(
â21(y1,T−y1,t)+â22(y2,T−y2,t)

h2

)
|λ̂2|

1

T

1

h11h12

T∑
t=1

K

(
y1 − φ̂1,1y1,T − φ̂1,2y2,T − ε̂1,t)

h11

)

K

(
y2 − φ̂2,1y1,T − φ̂2,2y2,T − ε̂2,t)

h12

)


