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A Stochastic Tree with Application to Bubble Modelling and Pricing
Abstract

We introduce a new stochastic tree representation of a stationary sub-
martingale process for modelling and pricing speculative bubbles on com-
modity and cryptocurrency markets. The model is compared to other trees
proposed in the literature on bubble modelling and stochastic volatility ap-
proximation. We show that the proposed model is an extension of the well-
known Blanchard-Watson bubble. The model provides (quasi) closed-form
pricing formulas for the derivatives and variance swaps, which are derived
and illustrated.

Keywords : Stochastic Tree, Stationary Submartingale, Speculative Bub-
ble, Stochastic Intensity, Derivative Pricing, Variance Swap.
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1 Introduction

The price processes of many financial assets display spikes and local ex-
plosions that can be interpreted as speculative bubbles. Such features are
displayed by the time series of market indexes [Bates (2008), Phillips, Wu,
Yu (2015), Gourieroux, Zakoian (2017)], commodity prices [Phillips, Yu
(2011)], and exchange rates of cryptocurrencies such as the bitcoin/dollar
rate [Gourieroux, Hencic (2015)]. The bubble phenomena in price processes
have been studied in the literature on Periodically Collapsing Bubble (PCB)
[see e.g. Taylor, Peel (1998)] and in recent articles on asymmetric cycles [see
e.g. Gourieroux, Jasiak, Monfort (2016)]. Among the martingale models
of price processes, the family of stationary (sub)martingales is of special in-
terest, as these can accommodate price dynamics with recurrent speculative
bubbles. Moreover, positive submartingale processes appear in the recent
literature on present value as the asset price components, which are added
to the so-called fundamental or forward solution with a smooth pattern [see
e.g. Gourieroux, Jasiak, Monfort (2016)].

This paper introduces a new family of stationary submartingale processes.
The proposed approach is suitable for financial applications, as i) the model
is semi-parametric, hence flexible; ii) the asset price dynamics is represented
as a binomial tree with stochastic intensities on the branches, which makes
it comparable with other trees that approximates stochastic volatility in the
literature on derivative pricing, for example; iii) the model leads to (quasi)
closed-form formulas for nonlinear predictions at any horizon, allowing for
option pricing; iv) its continuous time counterpart is a jump process with a
stochastic drift, stochastic intensity and stochastic jump size. In this respect,
the model arises as an alternative to the standard stochastic volatility models,
for which the (quasi) closed-form formulas of derivative prices have been
derived for some specific affine models 3.

This paper is organized as follows. The dynamic model is introduced
in Section 2, where we discuss the property of stationary submartingale and
compare the model with the literature on stochastic trees. Section 3 provides
the quasi-closed form formulas of the term structure of nonlinear predictions
and presents the pricing of bubble’s derivatives. Next, the continuous time
analogue of this stochastic tree is provided. Section 4 concludes. Proofs are

3See Fouque et al. (2000) for the attempt to find analytical formulas for option prices
under stochastic volatility.
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gathered in Appendices.

2 The dynamic model

The model is a stochastic parameter autoregressive process with two states
of persistence determined by an indicator variable Zt. When Zt = 0, there
is no persistence, and, when Zt = 1, the persistence appears and leads to
a local explosion. Therefore the trajectory of this process displays bubbles,
but no global trend.

2.1 Stationary solution and moving average represen-
tation

Let us consider a strictly stationary process satisfying the autoregressive
equation :

Yt =
η

1− a
+

1

apt
(Yt−1 −

η

1− a
)Zt +

η

a(1− pt)
(1− Zt), (2.1)

where a, η are two scalar parameters a ∈ (0, 1), η > 0, and (pt), (Zt) are two
processes such that :
• (pt) is a strictly stationary process with values in (0, 1),
• (Zt) is a strictly stationary process such that the variables Z ′ts are

independent conditional on (pt), with Zt ∼ B(1, pt).
It follows that the bivariate process (pt, Zt) is jointly stationary.
Among the solutions of recursive equation (2.1), we focus on process (Yt),

that is measurable with respect to the filtration It generated by pt, Zt, pt−1, Zt−1, . . ..
To do that, we solve recursively equation (2.1) to write Yt as a function

of Yt−H and processes (pt) and (Zt) between t−H + 1 and t, where H ≥ 1.
We get :

Yt =
η

1− a
+
η

a

H−1∑
h=0

[
1

ah
1

(1− pt−h)Πh−1
k=0pt−k

(1− Zt−h)Πh−1
k=0Zt−k

]
+

1

aH
1

ΠH−1
k=0 pt−k

ΠH−1
k=0 Zt−k(Yt−H −

η

1− a
). (2.2)

This process has an infinite moving average representation given below,
and it is strongly stationary under the following assumption :
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Assumption A.1 : At any date t, the sum
H∑
k=0

log pt−k tends a.s to −∞,

when H tends to ∞.

When the state intensity process (pt) is ergodic,
1

H

H∑
k=0

log pt−k tends a.s.

to the expectation E log pt computed under its stationary distribution. If pt
is not equal to 1 a.s., ∀t = 1, . . . , this expectation is negative and possibly
equal to −∞; then Assumption A.1 is satisfied.

Proposition 1 : Under Assumption A.1, there exists a unique strictly sta-
tionary solution to recursive equation (2.1). This solution admits the follow-
ing (nonlinear) one-sided infinite moving average [MA (∞)] representation :

Yt =
η

1− a
+
η

a

∞∑
h=0

[
1

ah
1

(1− pt−h)Πh−1
k=0pt−k

(1− Zt−h)Πh−1
k=0Zt−k

]
. (2.3)

Proof : See Appendix 1.1

The moving average representation (2.3) implies the following restriction
on the domain of the stationary distribution of (Yt).

Corollary 1 : The stationary process (2.1) is such that Yt ≥
η

1− a
.

Alternatively, the existence of a stationary solution of model (2.1) can be
shown as follows. Model (2.1) can be rewritten as a linear affine autoregres-
sion with stochastic parameters :

Yt −
η

1− a
= ξ1t

(
Yt−1 −

η

1− a

)
+ ξ2t, (2.4)

where ξ1t =
1

a

Zt
pt

is the stochastic autoregressive parameter and the stochastic

drift is ξ2t =
η

a

1− Zt
1− pt

.

In this stochastic linear autoregression, the coefficient process ξt = (ξ1t, ξ2t)
′

is strictly stationary. For a strictly stationary and ergodic (ξt), Brandt (1986)
derived sufficient conditions for the existence and uniqueness of a stationary
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solution to dynamic equation (2.4). It is easy to check that the sufficient
conditions given in Brandt (1986) are satisfied by model (2.1) as well.

2.2 A stationary submartingale

Process (Yt) is an example of a stationary positive submartingale with respect
to the filtration It, which includes (Yt) = (Yt, Yt−1, . . .). Process (Yt) satisfies
the submartingale condition given below :

Proposition 2 : The process (Yt) is such that :

E(Yt|It−1) =
1

a
Yt−1.

Proof : See Appendix 1.2.

Remark 1 : Proposition 2 holds also when the information set is enlarged
and includes not only Yt, but also the current and lagged values of process
(pt), that is when It =

(
Yt, pt

)
. Such an enlarged information set is used for

pricing purpose when the investor is assumed to be more informed than the
econometrician.

It follows that the submartingale process (Yt) explodes in the conditional
mean, when H tends to infinity :

lim
H→∞

E(Yt+H |It) =
1

aH
Yt → +∞,

so that the process remains stationarity while displaying local short-lived
explosions . Moreover Yt is not integrable, i.e. its marginal mean does not
exist [see Gourieroux, Jasiak, Monfort (2016)] :

Proposition 3 : The positive process (Yt) is not integrable : EYt = +∞.

Proof : See Appendix 1.3.

The positive stationary submartingale can be interpreted as an extension
of the bubble process given in Blanchard, Watson (1982). More specifically,
the latter process is a special case of (Yt) with constant intensity process
pt = p and η = 0. In this special case Assumption A.1 is clearly satisfied:
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H∑
h=0

log pt−h = (H + 1) log p tends to −∞, if p < 1.

Remark 2 : Positive submartingales with E(Yt|Yt−1) =
1

a
Yt−1,

for 0 < a < 1 considered in the literature have either trajectories that tend
to +∞ when t tends to infinity, or to zero [see e.g. Kamihigashi (2011) for
the discussion of the so-called explosive and implosive bubbles]. The process
(Yt) in (2.1) is neither explosive, nor implosive, and has no global trend. Its
trajectories feature periodically collapsing bubbles (PCB) as shown in the
simulations below. So far, only two PCB models were used in the economic
literature on rational expectation [see e.g. Charemza, Deadman (1995), Tay-
lor, Peel (1998), Psaradakis et al. (2001), Phillips, Wu, Yu (2011)]. The first
PCB model is the bubble introduced by Blanchard, Watson (1982). The
second PCB model has been introduced by Evans (1991), as an extension
of the Blanchard, Watson model. As it cannot be interpreted as a tree, its
application to derivative pricing is limited. In addition, its stationarity con-
ditions are unknown and there exists no (quasi) closed-form formula of the
term structure of nonlinear predictions for that model.

Remark 3 : The process (Yt) is undefined in the special case a = 1
corresponding to a (stationary) martingale. It can be transformed into a
martingale (Y ∗t ) by considering Y ∗t = atYt, for a < 1. However martingale
(Y ∗t ) is not stationary and tends to zero when t tends to infinity.

Let us now illustrate the patterns of trajectories of process (Yt). In this
illustration, the stochastic intensity is defined by pt = Φ(Xt), where Φ is the
cumulative distribution function of the standard normal and (Xt) is a latent
stationary Gaussian autoregressive process such that :

Xt = µ+ ρ(Xt−1 − µ) + σ
√

1− ρ2ut,

where the errors u′ts are i.i.d. standard normal, σ is positive and ρ strictly
between −1 and 1. In particular, when µ = 0 and σ = 1, the stationary
distribution of Xt is standard normal and pt is the theoretical Gaussian rank
of Xt value. Let us choose an initial value X0 = µ, and set the parameters
equal to : µ = −1, η = 1, a = 0.95. The two remaining parameters are
allowed to vary and take the following four sets of values : σ = 4, ρ = 0.7;
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σ = 6, ρ = 0.7, σ = 4, ρ = 0.5;σ = 2, ρ = 0.5. By increasing the value of ρ,
we increase the persistence4 of pt and create more extreme values of pt in the
sense that pt is approaching 1. This in turn creates an explosive stochastic
drift ξ2t. Figure 1 shows the dynamics of (Yt) with the above four sets of
parameter values.

Figure 1 : Simulated Paths of Process Y
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4This is an intensity clustering effect analogous to the volatility clustering.
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The values of a and µ are used to generate high values of the stochastic

autoregressive coefficient
1

a

Zt
pt

in the growth phase of a bubble. The ρ coeffi-

cient manages the persistence in the growth phase, whereas the σ parameter
has a direct effect on the frequency of bubbles.

2.3 Comparison with the literature on stochastic trees.

The model (2.1) can be interpreted as a binomial tree in discrete time that
has stochastic branches instead of deterministic branches as in the tree in-
troduced by Cox, Ross, Rubinstein (1979). Let us describe the branching
that starts at time t and stems from Yt−1. The first branch, Zt = 1, appears
with (stochastic) intensity pt so that the next value of the process on that
branch is Yt = Yt−1/(apt). On this branch Yt follows an autoregression with
an explosive(stochastic) autoregressive coefficient ξ1t. The second branch :
Zt = 0, is generated with (stochastic) intensity 1 − pt and the process be-

comes Yt =
η

1− a
+

η

a(1− pt)
, which is independent of Yt−1. The standard

interpretation of branches in terms of up/down movements as in the Cox,
Ross, Rubinstein tree does not apply directly. The first branch is an up
branch, since Yt = Yt−1/(apt) > Yt−1 with a positive increment. The second
branch creates either an up, or a down movement. More precisely, an up

movement is observed if and only if
η

a(1− pt)
> Yt−1 −

η

1− a
. This arises in

two situations : i) when Yt−1 is close to η/(1− a), which is a reflection of Yt
from the lower bound, and ii) for large Yt−1 and pt close to 1, it accelerates
the bubble growth. This dynamics can be related to the ”volatility induced
mean reversion” when very small (or very large) values of Yt make the process
bounce off the lower bound.

In the literature, stochastic trees provide tractable approximations of con-
tinuous time diffusion models by discretizing both time and space. Among
the examples are the Cox, Ross, Rubinstein binomial tree that approximates
the Black, Scholes diffusion [Cox, Ross, Rubinstein (1979)], the extension
considered by Nelson, Ramaswamy (1990) to approximate a more general dif-
fusion dYt = µ(Yt)dt+ σ(Yt)dWt, which consists in preliminary transforming
the process into a diffusion process with constant volatility. The stochastic
tree (2.1) is of a different type as it depends on two latent random processes
(pt) and (Zt), respectively. It is comparable to trees that approximate con-
tinuous time stochastic volatility models [see e.g. Gruber, Schweizer (2006),
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Florescu, Viens (2005), (2008), Akyldirim, Dolinsky, Mete Soner (2014)].
The difference is in the stochastic volatility being replaced by the stochastic
intensity. Note that stochastic tree (2.1) is based on two dependent state
variables either (pt, Zt), or (ξ1t, ξ2t) [see e.g. Hilliard, Schwartz (1996) for
such correlated state variables in the stochastic volatility framework].

To facilitate the comparison with the literature on trees with finite state
space conditional on the past, we study a special case of (Yt) that arises
when the intensity process (pt) in (2.1) is a Markov chain with two states

p̄0, p̄1, say, and a transition matrix

(
π00 π01
π10 π11

)
. Then, for lagged intensity

pt−1 = p̄0, we get a tree with four branches (quadrinomial tree) as in the
scheme below :

Scheme : A quadrinomial tree

branch pt Zt probability future value
of the branch

0, 1 p̄0 1 π00p̄0 η/(1− a) + (1/ap̄0)[Yt−1 − η/(1− a)]
0, 0 p̄0 0 π00(1− p̄0) η/(1− a) + η/[a(1− p̄0)]
1, 1 p̄1 1 π01p̄1 η/(1− a) + (1/ap̄1)[Yt−1 − η/(1− a)]
1, 0 p̄1 0 π01(1− p̄1) η/(1− a) + η/[a(1− p̄1)]

For a different value of lagged intensity pt−1 = p̄1, the same future values
can occur with different probabilities. The lower bound for the trajectories
of (Yt) is : η/(1−a)+min{η/[a(1− p̄0)], η/[(1− p̄1)]}, which is strictly larger
than η/(1− a).

3 Nonlinear prediction

This section presents closed-form nonlinear prediction formulas for Yt+H , H ≥
1. Next, these prediction formulas are used to obtain new (quasi) closed-
form pricing formulas for derivatives written on the bubble component of Yt
when the dynamics is considered under a risk-neutral probability. Under a
constant (continuously compounded) riskfree rate r, the absence of arbitrage
opportunity implies that the price of the underlying asset Yt satisfies the
condition :

Yt−1 = exp(−r)Et−1Yt, (3.1)
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under a risk-neutral probability. This condition is equivalent to the sub-
martingale condition in Proposition 2 with a = exp(−r), and r > 0, as the
discount factor.

The pricing formula (3.1) can be compared with the pricing formulas de-
rived from the Hull, White stochastic volatility model [Hull, White (1987),
Ball, Roma (1994)], for instance. In a discrete time model, the market is
incomplete and the submartingale condition (3.1) provides no information
on the historical dynamics of the price process. However in the limiting
case when the risk-neutral and historical distributions coincide, the histor-
ical dynamics (2.1) features PCB and we price the effects of these PCBs
on the derivative payoffs. More general results are obtained in the same
semi-parametric family of dynamic models with different parameters [η, a,
distribution of (pt)] for the historical and risk-neutral distributions. Then,
under the absence of arbitrage opportunity, these distributions have the same
support in the two worlds (see Appendix 1.1 for the form of the support).

3.1 Term structure of nonlinear predictions

The autoregressive representation (2.1) allows us to derive nonlinear predic-
tions of the process at any horizon H ≥ 1. This is done by means of the

conditional moment generating function of the positive process Yt −
η

1− a
,

or equivalently by means of the conditional real Laplace transform of the

process log(Yt −
η

1− a
). All these computations are performed conditional

on the enlarged information set It = (Yt, pt), which is the information set of
the investor (see Remark 1).

Proposition 4 : The Laplace transform is :

Et

[(
Yt+H −

η

1− a

)α]

=
H−1∑
h=0

{
ηα

aα(h+1)
Et

([
(1− pt+H−h)Πh−1

k=0pt+H−k
]1−α)

+
1

aαH

(
Yt −

η

1− a

)α
Et

[(
ΠH−1
k=0 pt+H−k

)1−α]
,
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where Et denotes the expectation conditional on information It = (Yt, pt)
and α is any nonnegative scalar such that the conditional expectations :

Et[(1− pt+H−h)1−α(Πh−1
k=0pt+H−k)

1−α] exist for h = 0, . . . , H − 1,

as well as :Et[(Π
H−1
k=0 pt+H−k)

1−α].

Proof : See Appendix 1.4.

Thus, the conditional prediction of

(
Yt+H −

η

1− a

)α
is a linear affine func-

tion of

(
Yt −

η

1− a

)α
, with coefficients depending on the current and lagged

values of the process (pt) of stochastic intensities, since (Yt) does not Granger
cause (pt). The prediction formulas are given below for various intensity pro-
cesses (pt).

a) i.i.d. stochastic intensities

The nonlinear prediction formula is greatly simplified, when the stochastic
intensities pt are independent and identically distributed (i.i.d.).

Corollary 2 : Let us assume that the stochastic intensities (pt) are i.i.d..
Then,

Et

[(
Yt+H −

η

1− a

)α]

= c(α)
ηα

aα

1− [ψ(1− α)]H

aαH

1− ψ(1− α)

aα

+

[
ψ(1− α)

aα

]H (
Yt −

η

1− a

)α
,

where :

c(α) = E[(1− pt)1−α], ψ(α) = E(pαt ),

and α is such that c(α) and ψ(1− α) exist. 5

5The existence is insured for α between 0 and 1.
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In the framework of i.i.d. stochastic intensities, we get a term structure
of nonlinear predictions of the type :

Et

[(
Yt+H −

η

1− a

)α]
= d0(H,α) + d1(H,α)

(
Yt −

η

1− a

)α
,∀H,

where coefficients d0, d1 are deterministic functions of term H. Thus, the
long run behavior of the term structure of predictions depends on the choice
of the common distribution of stochastic intensities (pt) and on the power
coefficient α.

Corollary 3 : Under the i.i.d. stochastic intensities(pt), the long run pre-

diction limH→∞Et

[(
Yt+H −

η

1− a

)α]
exists (and is independent of Yt) if

ψ(1− α)/aα < 1. Otherwise, that limit is infinite.

As mentioned earlier, if α = 1, then ψ(1−α)/aα = 1/a > 1 and hence the

expectation

(
Yt −

η

1− a

)α
is explosive. However, for α sufficiently small,

we can expect the marginal expectation

(
Yt −

η

1− a

)α
to be finite.

Let us now illustrate these results by examples.

Example 1 : Constant intensities

If pt = p is constant, we get c(α) = (1− p)1−α, and ψ(1−α) = p1−α. The
condition for the convergence of the series in Corollary 2 is : p1−α/aα < 1,
which is equivalent to α < log p/ log(ap). Since log p/ log(ap) = log p/(log a+
log p) < 1, we see that Yt is non integrable whereas the conditional expecta-

tion of

(
Yt −

η

1− a

)α
exists and is finite for any α sufficiently small.

Example 2 : Uniform stochastic intensities

When the stochastic intensities (pt) follow a uniform distribution on (0,1),

we get : c(α) = E[(1−pt)1−α] = E(p1−αt ) = ψ(1−α) =
1

2− α
. Therefore the

conditional expectation of

(
Yt −

η

1− α

)α
exists for α < 2. For α < 2, the
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condition for convergence of the long run prediction becomes ψ(1−α)/aα =
1

(2− α)aα
< 1.

Example 3 : Stochastic intensities with log-gamma distributions

Let us now assume that − log pt follows a gamma distribution γ(ν) with
degree of freedom ν. We get :

ψ(1− α) = E(p1−αt ) = E(exp[(− log pt)(α− 1)])

=

∫ ∞
0

exp[(α− 1)z]
exp(−z)zν−1

Γ(ν)
dz

=

∫ ∞
0

exp[−(2− α)z]
zν−1

Γ(ν)
dz =

1

(2− α)ν
,

which exists for α < 2.

The condition of convergence of long run predictions becomes
1

(2− α)νaα
< 1.

As a limiting case, this example includes the uniform stochastic intensities
of Example 2 for ν = 1.

Example 4 : Beta stochastic intensities

When the intensities (pt) follow a beta (β, γ) distribution with probability

density function (p.d.f.) : f(p) =
Γ(β + γ)

Γ(β)Γ(γ)
pβ−1(1−p)γ−1, with β > 0, γ > 0,

we get :

ψ(1− α) = E(p1−α) =
Γ(β + γ)

Γ(β + γ − α + 1)

Γ(β − α + 1)

Γ(β)
,

and c(α) = E[(1− p)1−α] =
Γ(β + γ)

Γ(β + γ − α + 1)

Γ(γ − α + 1)

Γ(γ)
.

The conditional expectation of

(
Yt −

η

1− a

)α
exists, if α < min(β, γ)+1.

b) Compound Autoregressive log-intensity process
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Let us now assume that the (negative) log-intensity process (log pt) is
a compound autoregressive (CaR) process6 [Darolles, Gourieroux, Jasiak
(2006)]. This process is a Markov process with a conditional Laplace trans-
form which is an exponential affine function of the conditioning value :

E[exp(u log pt+1)|pt] = exp[a(u) log pt + b(u)], say, (3.2)

where the argument u is nonnegative. Then the affine property of the log-
Laplace transform is satisfied at any horizon h and it also holds for the
cumulated process, that is,

E[expu[log pt+1 + . . .+ log pt+h]|pt] ≡ exp[A(h, u) log pt +B(h, u)], (3.3)

where functions A(h, u), B(h, u) are easily derived recursively. For such a
process, the conditional expectation in the prediction formula of Proposition
4 can be simplified. For horizons h < H, we get :

Et[(1− pt+H−h)1−α(Πh−1
k=0pt+H−k)

1−α)]

= Et{(1− pt+H−h)1−αpA(h,1−α)t+H−h } expB(h, 1− α),

and for h = H, we have:

Et[(Π
H−1
k=0 pt+H−k)

1−α] = p
A(H,1−α)
t expB(H, 1− α).

The prediction formulas for h < H involve only one-dimensional integrals
and are easy to compute, while the above prediction formula for h = H has
a closed form.

Example 5 : Autoregressive Gamma process

This process is the time discretized Cox, Ingersoll, Ross process [Cox,
Ingersoll, Ross (1985)]. The short-term conditional Laplace transform is
[Gourieroux, Jasiak (2006)] :

Et[exp(u log pt+1)] = exp

[
u

1 + u
log pt − δ log(1 + u)

]
,

6The CaR processes are the discrete time analogues of affine processes considered in
continuous time [Duffie, Filipovic, Schachermayer (2005)].
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where δ is a parameter, a(u) =
u

1 + u
, and b(u) = −δ log(1 + u). This

provides closed-form prediction formulas.

3.2 Derivative pricing

Let us now consider derivatives written on a bubble 7(asset)Yt, Yt > 0.
Under the absence of arbitrage opportunity and the assumption of con-
stant(continuously compounded) riskfree rate r, r > 0, there exists a risk-
neutral distribution Q such that :

EQ
t (Yt+1) = exp(r)Yt. (3.4)

This is a submartingale condition with a = exp(−r) < 1. Then, we can
consider the derivative pricing formula when the price process (Yt) is station-
ary and has risk-neutral dynamics (2.1). The price at date t of a European

derivative paying

(
Yt+H −

η

1− a

)α
at date t + H is equal to exp(−rH)Et[(

Yt+H −
η

1− a

)α]
= aHEt

(
Yt+H −

η

1− a

)α
, and this price follows di-

rectly from Proposition 4.
The risk-neutral dynamics of (Yt) cannot be chosen arbitrarily, as the cur-

rent price of the underlying asset needs to exist and be finite. For instance
in the case of α = 1, the price has to exist (see the remark after Corollary
3). When the conditional expectation does not exist, some derivative payoffs
cannot be traded on the derivative market, because they are too expensive
and/or too costly to hedge. Therefore they are non-insurable. This is espe-
cially important given that we are interested in the pricing/hedging of rare
and extreme spikes associated with periodically collapsing speculative bub-
bles. As another example, let us consider variance swaps for α = 2. If such
variance swaps are traded with an underlying asset value featuring bubbles,
the models in Examples 2-3 cannot be used for pricing, whereas models in
Examples 1 and 4 can, with min(β, γ) > 1 in the latter case.

Example 6 : Variance Swaps Let us consider i.i.d. stochastic prob-
abilities with finite conditional expectation for α = 2 (see e.g. Example 4).

7A bubble is an asset whose price can significantly differ from its fundamental value
[see, Tirole (1985)].
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From Corollary 2 and the submartingale condition, it follows that the price
of a historical volatility8 paying Y 2

t+H at date t+H is :

V (Yt, H) ≡ 2
η

1− a
Yt−

η2aH

(1− a)2
+c(2)η2aH−2

1− ψ(−1)H

a2H

1− ψ(−1)

a2

+
ψ(−1)H

aH

(
Yt −

η

1− a

)2

.

(3.5)
This formula can be compared with the price of historical variance derived
from the Black-Scholes formula with volatility parameter σ and continuous
compounding parameter a = exp(−r). We get :

V BS(Yt, H) =
exp(σ2H)

aH
Y 2
t . (3.6)

The proposed formula (3.5) for V (t,H) appears more complex and also
more flexible than the Black-Scholes formula, as it involves a ”scale” param-
eter η, and two stochastic intensity parameters: parameter ψ(−1), which is
larger or equal to 1, and parameter c(2), which is also larger or equal to
1. Moreover it depends on the past and current values through an affine
combination of Yt and Y 2

t instead of Y 2
t only as in V BS(Yt, H).

For a large current value of Yt, the two formulas are equivalent when
ψ(−1) = exp(σ2). Thus, the term structures of variance prices are equivalent
at infrequent times when the bubble takes extreme values (see Figure 1).
Otherwise, the formulas differ necessarily, as the Black-Scholes model does
not account for the possibility of extreme bubble patterns.

By analogy with the standard practice of computing Black-Scholes im-
plied volatility, we can compute the quantity :

σBS(Yt, H) =

√
1

H
log

[
V (Yt, H)aH

Y 2
t

]
, (3.7)

obtained by inverting the Black-Scholes formula for historical variance (3.6)
with the value of the bubble derivative substituted for V BS(Yt, H). Figure
2 provides the Black-Scholes implied volatility surfaces for H and Yt = y
varying, and the parameters η, a, c(2), ψ(−1) held fixed at constant values.

8Such historical volatility is the key component of a variance swap.
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Figure 2 : Implied BS Volatility Surfaces
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The parameters c(2) = E[1/(1−p)] and ψ(−1) = E(1/p) are constrained

by the inequality given below. For instance, since
1

1− p
= 1 +

1

1/p− 1
, it

follows from the Jensen’s inequality that :

c(2) = E[1/(1− p)] = 1 + E[1/(
1

p
− 1)] ≥ 1 +

1

E(1/p)− 1
=

ψ(−1)

ψ(−1)− 1
.
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Similarly, we could derive an upper bound for c(2) for a given ψ(−1).
To satisfy such inequality constraints, we consider beta stochastic intensities
(see Example 4). We get :

c(2) = (β + γ − 1)/(γ − 1), ψ(−1) = (β + γ − 1)/(β − 1),

where β and γ are larger than 1 to satisfy the condition of existence of the
conditional expectation.

The values of the parameters take these constraints into account. The
values of η = 0.01 and a = 0.99 are fixed that implies a lower bound equal
to 1 for process (Yt). The selected pairs for [c(2), ψ(−1)] (or equivalently for
(β, γ)) are :

β = 2, γ = 5 yielding c(2) = 1.5, ψ(−1) = 6;
β = 2, γ = 11 yielding c(2) = 1.2, ψ(−1) = 12;
β = 5, γ = 2 yielding c(2) = 6, ψ(−1) = 1.5;
β = 11, γ = 5 yielding c(2) = 12, ψ(−1) = 1.2.

The two first (resp. second) scenarios correspond to infrequent bubbles
with large rates of explosion (resp. frequent bubbles with small rates of
explosion).

Figure 2 shows that for small and medium values y, the price of volatility
swap is higher than the limiting Black-Scholes price. Thus, the model may
adjust for miss-pricing observed on the option markets, in practice. As noted
in Coval, Shumway (2001), Bakshi, Kapadia (2003), the current market is
”generating surprising large returns from selling crash insurance via out-of-
the money put options”.

3.3 Continuous time analogue

The literature on derivative pricing examines the relationship between the
discrete and continuous time models to find out if a sequence of discrete
time models at increasing frequencies tends to a well-defined continuous
time model [see e.g. Stroock, Varadhan (1979)]. For a Markov process
(Yt), this can be done by considering the infinitesimal generator : Gf(y) =

limdt→0
1

dt
E[f(Yt+dt) − f(Yt)|Yt = y]. Since the intensity process has exoge-
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nous dynamics, the infinitesimal generator is derived conditional on the in-
tensity process (pt).

In Appendix 2 we find that the limiting continuous time dynamics of (Yt)
can be written as :

dYt = (α + πt)(Yt −
η

α
)dt+ [η(

1

α
+

1

πt
)− Yt]dNt (3.8)

= αYtdt+ [η(
1

α
+

1

πt
)− Yt](dNt − πtdt), (3.9)

where (Nt) is a counting process with stochastic intensity πt, πt > 0. Param-
eters α, η and process (πt) are the infinitesimal analogues of parameters a, η
and of the process of probabilities (pt). Thus, conditional on the exogenous
process of stochastic intensities, (Yt) is a jump process with a predetermined
drift and jump magnitude, both functions of yt and πt. Model (3.8)-(3.9)
needs to be completed by a specification for the exogenous dynamics of
stochastic intensity (πt). For example, when (πt) follows a Cox, Ingersoll,
Ross diffusion a continuous time analogue of Example 5 is obtained :

dπt = (b− cπt)dt+ σdWt, (3.10)

where (Wt) is a Brownian motion, and parameters are such that b > 0, c >
0, σ > 0, and 2b/σ2 < 1 to ensure the existence and stationarity of process
(πt).

The limiting jump dynamics of process (Yt) was easy to anticipate. Note,
however that model (3.8)-(3.9) differs from the model introduced in Bates
(2008) for crash risk. More specifically, the model of Bates(2008) is :

dYt ≡ µdt+ σdWt + γdNt, (3.11)

where (Wt) is a Brownian motion, while (Nt) is a Poisson process with con-
stant intensity λ, and µ, σ, γ are constant parameters. Like the Bates’ model,
model (3.8)-(3.9) is a two-factor model. It depends on more parameters,
however. More specifically, the Bates’ model has 3 parameters, while model
(3.8)-(3.9) has 5 parameters. As mentioned earlier in the text, these addi-
tional parameters determine the frequency of the bubbles and the persistence
of bubble during its growth.
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The continuous time model (3.8)-(3.9) inherits some properties of the
stochastic tree (2.1), such as the local drift, which is linear in Yt and is a
property of a positive submartingale.

4 Concluding Remarks

This paper introduces a new model for the dynamics of price processes with
bubbles and a new approach for pricing of derivatives written on assets with
bubble price processes. The new model has a tree representation, which
makes it comparable to other trees for derivative pricing that exist in the
literature. The model provides (quasi) closed-form pricing formulas that
arise as alternatives to the Black-Scholes forlulas. Therefore, the proposed
specification is a relevant addition to bubble models that include noncausal
stationary processes [see, e.g. Gourieroux, Lu (2019) for bubble pricing based
on noncausal processes].

For further research, there remains a question, if in practice, one can dis-
entangle the local trends due to stationary bubbles, from the global trends
due to nonstationary processes with random walk components? The answer
to that question would clarify the need for pricing formulas that accommo-
date each of these patterns,as the prediction and pricing formulas need to be
adjusted to the asset price dynamics. That also concerns the validity of test
procedures for unit roots and martingales [see e.g. Phillips, Wu, Yu (2011),
Phillips, Yu (2011), Gourieroux, Jasiak (2019) for discussion].
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Appendix 1

1.1 Proof of Proposition 1

i) Under Assumption A.1, we have :

P [ΠH−1
k=0 Zt−k = 1|(pt)] = ΠH−1

k=0 pt−k, which tends a.s to zero.

Since ΠH−1
k=0 Zt−k takes only values 0 and 1, it follows that ΠH−1

k=0 Zt−k is
decreasing and tends a.s. to zero. Moreover, as (Yt) is stationary, the last
term in (2.2) tends a.s. to zero as well, when H tends to infinity. Therefore,
a stationary solution of (2.1), if it exists, has the nonlinear moving average
(MA) representation (2.3). In particular, it is unique.

ii) The MA (∞) representation (2.3) implies that, conditional on any
given path of (pt), Yt follows a discrete distribution and the values of Yt :

η

1− a
+
η

a

1

ah
1

(1− pt−h)Πh−1
k=0pt−k

,

have probabilities (1− pt−h)Πh−1
k=0pt−k, h = 0, . . . ,∞. Indeed, under Assump-

tion A.1, we can define the sum of these probabilities :
∞∑
h=0

((1− pt−h)Πh−1
k=0pt−k), which is equal to 1. Therefore, the conditional dis-

tribution of Yt given It−1 exists and is independent of time t, which implies a
homogeneous transition. Since the process (pt) is strongly stationary and this
transition is homogeneous, we deduce that the process (Yt) itself is strictly
stationary.

1.2 Proof of Proposition 2

From (2.1) we get :
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E(Yt|Yt−1, pt) =
η

1− a
+

1

apt
(Yt−1 −

η

1− a
)E(Zt|Yt−1, pt) +

η

a(1− pt)
[1− E(Zt|Yt−1, pt)]

=
η

1− a
+

1

a
(Yt−1 −

η

1− a
) +

η

a

=
1

a
Yt−1 +

η

1− a
− 1

a

η

1− a
+
η

a

=
1

a
Yt−1.

1.3 Proof of Proposition 3

We have :

EYt = EE[Yt|pt, pt−1, . . .] = E

(
η

1− a
+
η

a

∞∑
h=0

1

ah

)
(by (2.3))

= +∞,

since the geometric series
∞∑
k=0

1

ah
diverges for a ∈ (0, 1).

1.4 Proof of Proposition 4

It follows from (2.2) that :

(Yt+H −
η

1− a
)α =

ηα

aα

H−1∑
h=0

{
1

aαh
1

[(1− pt+H−h)Πh−1
k=0pt+H−k]

α
(1− Zt+H−h)

Πh−1
k=0(1− Zt+H−k)

}
+

1

aαH
1

(ΠH−1
k=0 pt+H−k)

α
(ΠH−1

k=0 Zt+H−k)(Yt −
η

1− a
)α,

by using the interpretation of the Z ′ts as indicator variables that implies
Zα
t = Zt, (1− Zt)α = 1− Zt .
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The result follows by noting that :

Et

[(
Yt+H −

η

1− a

)α]

= E

[(
Yt+H −

η

1− a

)α
|It
]

= E

{
E

[(
Yt+H −

η

1− a

)α
|It, pt+H

]
|It
}
, by iterated expectations.

Appendix 2

Infinitesimal Generator

Let us consider the behavior of process Y at a small time step δ. The
recursive equation (2.1), indexed by δ, becomes :

Yt+δ =
ηδ

1− aδ
+

1

aδpδt
(Yt −

ηδ
1− aδ

)Zδt +
ηδ

aδ(1− pδt)
(1− Zδt), (a.1)

where Zδt ∼ B(1, pδt) and t is a multiple of δ. We assume that parameters
and intensity process depend on δ as follows :

ηδ = ηδ, aδ = exp(−αδ), pδt = exp(−πtδ), (a.2)

where η > 0, α > 0, and (πt) is a positive process. πt can be interpreted as
the infinitesimal intensity on the branch without an autoregressive effect of
Yt−1. Then we have :

ηδ
1− aδ

∼ ηδ

αδ − α2
δ2

2

=
η

α(1− α

2
δ)

=
η

α
(1 +

α

2
δ) =

η

α
+
η

2
δ,

1

aδ
∼ 1 + αδ,

ηδ
aδ
∼ ηδ.

Therefore equation (a.1) becomes :
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Yt+δ ∼
η

α
+
ηδ

2
+ (1 + αδ)[Yt − (

η

α
+
ηδ

2
)]
Zδt
pδt

+ ηδ
1− Zδt
1− pδt

, (a.3)

where Zδt is Bernoulli distributed B(1, pδt).
Since the process is nonnegative, its transition conditional on πt is char-

acterized by its conditional Laplace transform given below and written for a
nonnegative argument u :

ψt,δ(u) = E[exp(−uYt+δ)|Yt, πt]

∼ exp[−u(
η

α
+
η

2
δ)]{pδt exp{−u [1 + αδ]

pδt
[Yt − (

η

α
+
η

2
δ)]}

+ (1− pδt) exp(− uηδ

1− pδt
)}

∼ exp(−uη/α) exp(−uηδ
2

)[(1− πtδ) exp{−u[1 + (α + πt)δ](Yt −
η

α
− η

2
δ)]

+ πtδ exp(
−uη
πt

)}

∼ exp(−uYt)(1−
uηδ

2
)(1− πtδ)[1− uδ(α + πt)(Yt −

η

α
) +

uηδ

2
]

+ πtδ exp[−uη(
1

α
+

1

πt
)]

∼ exp(−uYt)[1 + δ(−πt − u(α + πt)(Yt −
η

α
)] + πtδ exp[−uη(

1

α
+

1

πt
)].

It follows that :

1

δ
[ψt,δ(u)− ψt,0(u)]

=
1

δ
E[exp(−uYt+δ)− exp(−uYt)|Yt, πt]

∼ − exp(−uYt)[πt + u[(α + πt)(Yt −
η

α
)]] + exp[−uη(

1

α
+

1

πt
)]πt.
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(a.4)

This formula provides the differential form of the infinitesimal generator
for exponential transformations f(y) = exp(−uy),∀u. It also holds for any
differentiable function f derived from these exponential transformations by
linear combination and closure.

Thus, the necessary form of the infinitesimal generator of the Markov
process (Yt) conditional on process (πt) is :

Gf(y) = π[−f(y) + f(η(
1

α
+

1

π
))] +

df(y)

dy
[(α + π)(y − η

α
)].

This form is interpreted in terms of jump processes in Section 3.3.
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