
Supplementary Material to

Structural Modelling of Dynamic Networks and

Identifying Maximum Likelihood

Gourieroux∗, C. and J. Jasiak†

∗University of Toronto, Toulouse School of Economics and CREST,
e-mail:Christian.Gourieroux@ENSAE.fr.
†York University, e-mail: jasiakj@yorku.ca.



On-line Appendix 1

Comparison of the Decompositions

1.1 The NMF

After the transformation the new NMF is :

A = β̃1γ̃
′
1 + β̃2γ̃

′
2,

with β̃1 = β1 + q21β2 = q12β1 + β2,

γ̃1 =
1

1− q12q21
(γ1 − q12γ2), γ̃2 =

1

1− q12q21
(−q21γ1 + γ2).

It is easily checked that A = β1γ
′
1 + β2γ

′
2.

1.2 The decomposition (2.13).

To get the new decomposition (2.13) :

A = a(π̃β̃∗1 γ̃
∗′
1 + (1− π̃)β̃∗2 γ̃

∗′
2 ],

the new factorial directions have to be normalized with the components that sum up

to one. We get :

β̃∗1 = (β1 + q21β2)/(β
′
1e+ q21β

′
2e),

β̃∗2 = (q12β1 + β2)/(q12β
′
1e+ β′2e),

γ̃∗1 = (γ1 − q12γ2)/(γ′1e− q12γ′2e),

γ̃∗2 = (−q21γ1 + γ2)/(−q21γ′1e+ γ′2e),

π̃/(1− π̃) = (β′1e+ q21β
′
2e)(γ

′
1e− q12γ′2e)/[(q12β′1e+ β′2e)[−q21γ′1e+ γ′2e)].
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On-line Appendix 2

Additional Assumptions for Asymptotic Results

2.1 Consistency

We provide below a set of additional assumptions a.1 to get the consistency. They

require some uniform convergence of the objective function on the setA∗ of all possible

α on which the optimization is performed.

Assumption a.1 :

i) The set A∗ is compact.

ii) log l(yt|yt−1;α) is integrable for all α ∈ A∗.
iii) A0 ⊂ A∗.
iv) Uniform convergence of the objective function :

supα∈A∗ |
1

T

T∑
t=1

log l(yt|yt−1;α)− E0 log l(yt|yt−1;α)|

= 0P (1/
√
T ),

where E0 is the expectation with respect to the true stationary distribution of (Yt−1, Yt).

v) limp→∞
1

T

T∑
t=1

log l(yt|yt−1; α̂T (α0, p)) = max
α∈A∗

1

T

T∑
t=1

log l(yt|yt−1;α).

The three first conditions are standard and used to prove the convergence to A0

of the set of solutions of the finite sample optimisations. They imply condition C1

on Chernozhukov et al. (2007) for instance (See also this reference for a proof, in

which, in our framework, the objective function is the log-likelihood function instead

of a moment criterion function). This is the convergence result in Proposition 3.

Proposition 4 follows since this convergence of sets is uniform.

The last condition iv) is usually not introduced. It concerns the algorithm used to

approximate the solutions of the finite sample optimisations. This condition explains

why in Assumption A.4 we have introduced stronger conditions on the concavity of

the log-likelihood function with respect to A.

By construction the domain for π, β∗k , γ
∗
k, k = 1, . . . , K is compact and its bounds
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as πk = 0, for some k, or βk = 0, for some k cannot be reached due to the rank

condition, i.e. Assumptions A.2 and A.3. Therefore assumption a.1 i) concerns

mainly scalar parameter a.

2.2 Asymptotic Normality

When T tends to infinity, the estimator (α̂T , q̂T = q(α̂T )) will tend to (α∗0, 0). Let

us assume :

Assumption a.2 :

i) The true set A0 has a non-empty interior and α∗0 is in the interior of the true

set A0.

ii) 0 is in the interior of the set Q(α∗0) of admissible values of q constructed from

α∗0.

iii) The log-likelihood function is twice continuously differentiable with respect to

α.

iv) The additional objective function g̃ is continuously differentiable with respect

to q and continuously cross differentiable with respect to q and α.

v) The function q(.) exists and is continuously differentiable.

vi) The score
∂ log l

∂α
(yt|yt−1;α) has finite second-order moments.

vii) The Hessian
∂2 log l

∂α∂α′
(yt|yt−1;α) has finite first-order moments.

viii) The matrix (Id− P )J0 has rank dimα− dim q − 1− 2K.

Let us discuss these additional assumptions. Condition a.2 i) eliminates the case

K = 1, when the NMF is point-identified and the standard asymptotic theory applies.

This is assumption (4∗) in Shi, Shum (2015), Theorem 2.1. Then, the rank condition

in their assumption (4) is automatically satisfied in our framework by assumptions

A-2-A.3 and a.2 viii). Their condition (***) in Theorem 3.1 is automatically satisfied

in our framework of maximum likelihood estimation.
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On-line Appendix 3

Additional Estimation Results

3.1 The Limiting Identifying Criterion

i) The concentration measure

The concentration measure can be applied to the true parameter values A0. This

leads to the objective function:

g0(q12, q21) = −{π(q12, q21, A0) log π(q12, q21, A0) + [(1− π(q12, q21, A0) log(1− π(q12, q21, A0)]} ,

to be maximized to get the least concentrated heterogeneity distributiion. It is easily

checked that π(q12, q21, A0) = 1
12

(2+3q21)(3−q12)
1−q12q21 is symmetric in q12, q21. We show in

Figure 3 this function for the values of −0.5 ≤ q12 ≤ 0.5, −0.5 ≤ q21 ≤ 0.5.
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Figure 1: The Concentration Criterion
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Since the true heterogeneity distribution π = {0.5, 0.5} is the maximizer of the

concentration function, the maximum is reached if and only if π(q12, q21, A0) = 0.5,

or equivalently if:

(2 + 3q21)(3− q12) = 6(1− q12q21) ⇐⇒ q12 = q21.

As shown in Figure 3, the optimum is reached for the 45 degree line with respect

to q12, q21. This means that the concentration measure as an additional optimization

criterion allows us to reduce the dimension of the identified set to one, but it does

not suffice to select a single point in the identified set. This is due to the uniform

distribution of heterogeneity.

ii) The additional collinearity measure

Let us now consider the collinearity measure computed for B∗(q). The pattern of

this measure is illustrated in Figure 4. Then, for optimization, we add to the concen-

tration criterion, a collinearity measure of the normalized B∗. This new maximization

criterion becomes:

g(q12, q21) = g0(q12, q21) + λ|det(B∗′B∗|,

where λ is a positive tuning parameter. Figure 5 shows the extended objective func-

tion for λ = 5. We see that the maximum will be reached on the boundary for

q1,2, q2,1.

6



q_12

−0.4

−0.2

0.0

0.2

0.4q_21

−0.4

−0.2

0.0

0.2

0.4

0.01

0.02

0.03

0.04

0.05

0.06

Figure 2: The Determinant Criterion
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Figure 3: The Identifying Criterion with Determinant

iii) The repulsion criterion

In order to get the maximum in the interior of the identified set, we add the repul-

sion term
∑

i

∑
j(ln(β∗i,j) + ln(γ∗i,j)) with coefficient 1.7 in the combined identifying

criterion in Figure 6:
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Figure 4: The Combined Identifying Criterion
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3.2 Seemingly Unrelated Regressions

The multivariate Poisson model (6.l1) implies:

E(Yt|Yt−1) = AYt + µ

Therefore in the case of low dimension n = 4, the matrix A can be estimated by

the (unconstrained) OLS. This approach is not efficient since it does not account

for i) the reduced rank assumption, ii) the Poisson assumption and the conditional

heteroscedasticity, in particular. However, it provides us information on the impact

of the log-difference of the first two singular values on the accuracy of the estimation

procedure. In this simulation, the relative accuracy will be measured by the weighted

distance between the estimate ÂT and the true value A0, defined as:

dist =

(
1

16

4∑
i=1

4∑
j=1

(
âi,j,T − a0,i,j

a0,i,j
)2

)1/2

.

We use the same simulated series as in Section 6.1 and show the estimated matrix

ÂT and distance measure for different numbers of observations T = 200, 500, 1000.

T=200:

d̂ist = 2.0748 and

Â100 =


0.0597 −0.0256 0.1077 −0.0320
0.0917 0.0786 0.1589 0.0291
0.0715 0.0612 0.0111 0.1314
0.0850 0.1113 −0.0643 0.0408


T=500:

d̂ist = 1.6912 and

Â500 =


0.0076 −0.0200 0.0252 −0.0303
0.0224 0.0417 0.0413 0.0515
0.0964 0.0069 −0.0130 0.1543
0.0634 0.0488 −0.0380 0.0872


T=1000:

d̂ist = 1.2691 and

Â1000 =


−0.0076 0.0217 0.0172 0.0127
0.0478 0.0522 0.0225 0.0700
0.0753 0.0509 0.0806 0.1116
0.0326 −0.0017 −0.0258 0.0605


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Although the unconstrained OLS approach is consistent and the estimated relative

accuracy increases with the number of observations, the unconstrained OLS is not

sufficiently accurate and should be avoided. In particular, it can produce negative

values that are at odds with the assumption of a Poisson autoregressive model.

3.3 AML Estimates

To focus on the NMF estimation of A, we consider 1) the log-likelihood function

(6.6) concentrated with respect to the intercept. This concentration is done by us-

ing 1) the OLS estimated intercept, and 2) the log-likelihood function in which the

intercept is replaced by its true value. The AML algorithm provides the values of

matrix ÂT for T=200, 500 and T=1000 estimated from the two likelihood functions

described above.

1) Likelihood with estimated intercept

The results are as follows:

T=200

B̂200 =


0.1209 0.0203
0.2273 0.1571
0.0906 0.2927
0.0375 0.2648



Ĉ200 =


0.2536 0.2117
0.1645 0.2459
0.2954 0.0465
0.1229 0.2362


estimated A

Â200 =


0.0350 0.0249 0.0367 0.0197
0.0909 0.0760 0.0745 0.0650
0.0850 0.0869 0.0404 0.0803
0.0656 0.0713 0.0234 0.0671


d̂ist = 1.4315, π̂ = 0.4227.

T=500

B̂500 =


0.0242 0.0001
0.0997 0.0981
0.0988 0.2886
0.0456 0.2372


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Ĉ500 =


0.2325 0.1914
0.1600 0.1579
0.1864 0.0014
0.2204 0.3326


estimated A

Â500 =


0.0057 0.0039 0.0045 0.0054
0.0420 0.0314 0.0187 0.0546
0.0782 0.0614 0.0188 0.1178
0.0560 0.0448 0.0088 0.0890


d̂ist = 1.2513, π̂ = 0.3346.

T=1000

B̂1000 =


0.0363 0.0475
0.1493 0.1974
0.3161 0.2351
0.1179 0.0398



Ĉ1000 =


0.0353 0.2682
0.0506 0.1763
0.1468 0.0662
0.3510 0.0395


estimated A

Â1000 =


0.0140 0.0102 0.0085 0.0146
0.0582 0.0423 0.0350 0.0602
0.0742 0.0574 0.0620 0.1202
0.0148 0.0130 0.0199 0.0430


d̂ist = 1.1696, π̂ = 0.5584.

2) Likelihood with known intercept

T=200

B̂200 =


0.0480 0.1375
0.1332 0.2438
0.0022 0.3079
0.0735 0.3779



Ĉ200 =


0.1032 0.1112
0.0751 0.1639
0.1268 0.0060
0.0289 0.1107


12



estimated A

Â200 =


0.0202 0.0261 0.0069 0.0166
0.0408 0.0500 0.0183 0.0308
0.0345 0.0506 0.0021 0.0341
0.0496 0.0675 0.0116 0.0439


d̂ist = 0.6750 , π̂ = 0.1704.

T=500

B̂500 =


0.0192 0.1146
0.0319 0.0881
0.1328 0.0036
0.1156 0.0300



Ĉ500 =


0.1645 0.4003
0.1783 0.3013
0.2152 0.2266
0.4697 0.1237


estimated A

Â500 =


0.0490 0.0379 0.0301 0.0232
0.0405 0.0322 0.0268 0.0259
0.0233 0.0248 0.0294 0.0628
0.0310 0.0297 0.0317 0.0580


d̂ist = 0.5136, π̂ = 0.5532.

T=1000

B̂1000 =


0.0504 0.0609
0.0654 0.0649
0.1380 0.0006
0.1234 0.0217



Ĉ1000 =


0.1720 0.3674
0.1312 0.3290
0.1835 0.1713
0.4967 0.1718


estimated A

Â1000 =


0.0310 0.0266 0.0197 0.0355
0.0351 0.0299 0.0231 0.0436
0.0240 0.0183 0.0254 0.0687
0.0292 0.0233 0.0264 0.0650


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d̂ist = 0.4119, π̂ = 0.7068.

We observe:

a) A significant decrease of relative accuracy of AML estimators in comparison

with the relative accuracy of OLS estimators. The accuracy also significantly de-

creases when the intercept is given.

b) The strict positivity of the estimates of B and C.

c) Sometimes a large fluctuation of the AML estimates B̂T (e.g. compare the

second column of B̂T for T=200 and T=1000 and known intercept), whereas these

fluctuations are smaller in ÂT . This is due to the identification issue of B and C,

while A is identifiable and consistently estimated.

On-line Appendix 4

Identifying Maximum Likelihood and Singular Value Decomposition

Singular Value Decomposition (SVD) is a factorization technique for decomposing

matrix A into a product of matrices A = BC ′ with Rk(A) = Rk(B) = Rk(C). It

can be applied to any matrix A, not necessarily with positive elements. Matrices B

and C do not necessarily have positive elements either. The SVD is obtained from

a joint spectral decomposition of matrices AA′ and A′A, or equivalently from a se-

quence of optimizations. For example, the first eigenvalue λ1 and the first eigenvector

v1 are obtained from the optimization: Maxvv
′AA′v, subject to v′v = 1. Then, the

second eigenvalue λ2 and the second eigenvector v2 are obtained from the optimiza-

tion Maxvv
′AA′v, subject to v′v1 = 0 and v′v = 1, and so on. The IML method

can be implemented by applying the above sequence of SVD optimizations at each

step of the AML algorithm. This allows us to derive the pointwise convergence and

asymptotic normality of the IML/SVD estimator under the assumption of a given

rank Rk(A) = K. The asymptotic variance-covariance matrix of this estimator can

be derived along the lines of Sections 4.3.3-4.3.4, by taking into account the K con-

secutive SVD optimisations instead of a single optimization for the NMF. It is out

of the scope of this paper to derive the complicated closed-form expression of this

variance-covariance matrix. The results in Sections 4.3.3-4.3.4 show that this compli-

cated expression is greatly simplified if matrix A0 has non-negative elements and is

such that Rk(A) = Rk+(A) = K, since the sequence of optimizations leading to the

14



SVD that identifies a specific factorization can be replaced by a single optimization

providing an alternative factorization.
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