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1 Introduction

This paper develops statistical inference methods for a class of partially identified models,

where the errors are known functions of the observations and the parameters satisfy either

serial or/and cross-sectional independence conditions. This class of models contains the

independent component analysis (ICA) models, Structural Vector Autoregressive (SVAR)

models, multivariate mixed causal-noncausal models and nonlinear dynamic models with

predictable drift and volatility 1.

We introduce the notions of a true identified set and an implied identified set. Our ap-

proach consists in considering serial and cross-sectional dependence measures based on the

multivariate objective function of the Generalized Covariance (GCov) estimator and a port-

manteau test statistic for testing the independence hypothesis. Next, we build the confidence

sets for the identified sets of parameters by inverting the tests of the independence hypothesis

based on the residual-based portmanteau statistic. This statistic involves nonlinear covari-

ance restrictions that are satisfied under the independence condition. We discuss the choice

of covariance restrictions and their impact on the dimension and accuracy of the confidence

set.

The identification problems are particularly important in macroeconomic applications,

where the theoretical structural vector autoregressive (SVAR) processes with cross-sectionally

independent errors have more parameters than the estimable statistical VAR models because

of simultaneity effects. Various restrictions, including zero coefficient restrictions and sign

restriction have been proposed to eliminate this identification problem[see e.g. Granziera,

Moon, Schorfheide (2018)]. The recent macroeconomic literature considers an alternative

approach for the SVAR model under the assumption of non-Gaussian errors [Guay (2021),

Gourieroux, Monfort, Renne (2020)]. Then, as long as at most one of the errors is Gaussian,

the independent component analysis (ICA) can be used to identify the parameters and the

cross-sectionally independent latent sources. However, if the non-Gaussianity condition does

not hold and if more than one error has a Gaussian or close to a Gaussian distribution, the

parameters of the orthogonal rotation matrix become non-identifiable.

We show that despite of the lack of identification, asymptotically valid CI can be provided.

When they are empty, they are informative in the sense of signaling that the estimation results

may be spurious. The approach is based on a dependence measure with a known limiting

distribution, and involves the nonlinear autocovariances, i.e. autocovariances of nonlinear

1The class of models considered differs from the class of models in which the identified set is character-
ized by a finite number of moment inequalities, used commonly for micro-econometric applications [see e.g.
Chernozhukov, Hong, Tamer (2007), Canay, Shaikh (2017)]
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functions of errors. It can be compared with other statistics based on the covariance distance,

considered for example by Davis, Wan (2022) and Chu (2023). The advantage of the proposed

dependence measure is that its limiting distribution is known, while the covariance distance

based measures require respectively the use of bootstrap and approximations in practice.

The paper is organized as follows. Section 2 describes the semi-parametric models with

independence restrictions on the error terms and introduces dependence measures based on

the (auto) covariances of transformed errors. Section 3 considers the identification, estimation

and testing. It shows how to estimate the implied identified sets pointwise and from the

asymptotic confidence sets. Section 4 defines the overidentification problems that arise in

the partial identification framework and develops statistical methods for overidentification

analysis. Section 5 provides a simulation study that illustrates the performance of the method

in application to independent component analysis. It also contains an application of the

proposed method to financial return series. Section 6 concludes. Proofs are given in the

Appendices.

2 Semi-Parametric Models and Error Dependence Mea-

sures

This Section describes the semi-parametric models with errors satisfying either serial and/or

cross-sectional independence assumptions. We consider the static Independent Component

Analysis models [Comon (1994), Eriksson, Koivunen (2004)] and multivariate dynamic mod-

els including the nonlinear Markov models and mixed causal-noncausal models [Gourieroux,

Zakoian (2017), Gourieroux, Jasiak (2017)]. Other dynamic models in which the identifica-

tion problem may arise are also discussed, especially the Structural VAR (SVAR) models.

For each of these models, we design dependence measures based on the covariances between

nonlinear error transformations.

2.1 Independent Component Analysis

Consider a static model defined by the following system of equations:

CYi = ui, i = 1, ..., n, (2.1)

where Yi, i = 1, ..., n are of dimension K, the errors ui, i = 1, ..., n are assumed to be serially

independent and identically distributed, and their components uki, k = 1, ..., K, are cross-

sectionally independent. We denote f = (fk, k = 1, . . . , K) the set of densities fk of the
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uki, k = 1, . . . , K. The matrix C is an invertible matrix K × K of parameters with the

diagonal elements, which are set equal to 1, without loss of generality.

The system (2.1) can be rewritten as:

Yi = C−1ui, i = 1, ..., n, (2.2)

The identification and estimation of matrix C is a multivariate deconvolution problem, as

the distribution of any component Yji is a convoluate of distributions of the error components

(called sources) uki, k = 1, ..., K. The mixing matrix C−1 and the sources ui are not always

identifiable. For example, if the components uki, k = 1, ..., K are standard normal, i.e. N(0,1)

variables, we can identify C−1(C−1)′, but not the mixing matrix itself. However, if at most

one component uki follows a Gaussian distribution, then the matrix C−1, the sources ui and

their distributions are identifiable [Comon (1994), Eriksson, Koivunen (2004)]. There can

also arise intermediate situations with partial identification, when several components are

Gaussian and the others are non-Gaussian [ Guay (2021)].

Let us now introduce an error dependence measure. First, the system is rewritten equation

by equation as:

c′kYi = uki, k = 1, ..., K, i = 1, ..., n, (2.3)

where c′k is the kth row of matrix C. Next, we apply to (2.3), a set of L nonlinear transforms

a(.) satisfying Assumptions A.1 given in Section 3.1, to get:

a[c′kYi] = a[uki], k = 1, ..., K, i = 1, ..., n. (2.4)

Let θ = (c′1, ..., c
′
K)′ denote the vector of unknown parameters. The cross-sectional depen-

dence measure is defined as:2

ξ(θ) =
∑
k,l

∑
k>l

Tr[Γk,l(θ)Γl,l(θ)
−1Γl,k(θ)Γk,k(θ)

−1], (2.5)

with

Γk,l(θ) = Cov[a(c′kY ), a(c′lY )] = Γl,k(θ)
′, ∀k, l. (2.6)

The dependence measure is a multivariate portmanteau measure [Hosking (1980)] that in-

volves pairwise canonical correlations [Anderson (1999)]. If the model (2.1) is well-specified

with the true value θ0 of parameter θ and true densities fk0, k = 1, . . . , K of the sources,

2This measure depends on both θ and f and should be denoted ξ(θ, f). The dependence on f is omitted
to simplify the notation.
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this dependence measure is equal to 0. This measure depends on the number and type of

covariances appearing in (2.5), called the design later on. In this case, the design is

D = [a,K(K − 1)/2], (2.7)

where a is the set of transformations, K(K − 1)/2 is the number of terms in the double sum

and the total number of covariances is:

d = dimD = L2K(K − 1)/2. (2.8)

The dimension of the parameter is : dim θ = K(K − 1), because the diagonal elements of

C are equal to 1. It is also useful to evaluate how many covariances are informative about θ.

This can be locally measured by the rank of ∂γ(θ)/∂θ′,

r = Rk[
∂γ(θ)

∂θ′
], (2.9)

where γ is the vector representation of all covariances obtained by stacking the subvectors

γkl(θ) = vecΓkl(θ), k > l, into a column vector.

The nonlinear transformations need to possibly accommodate fat tails of the sources dis-

tributions. We know that the non-Gaussian Pseudo-Maximum Likelihood (PML) can provide

consistent estimates of the mixing matrix if the tails satisfy some regularity conditions, be-

cause the first-order conditions of PML optimization are zero covariance conditions on the

score [Gourieroux, Monfort, Renne (2017)]. For example, the transformation associated with

a Cauchy PML is :

a(y) = − ∂

∂m
log[1 + (y −m)2] = 2

y −m
1 + (y −m)2

.

This transformation ensures the existence of power moments of a(Y ) for the Cauchy,

whereas they do not exist for the variable Y itself.

Other transformations, such as the power transforms can be used. For example, let

us consider the ICA for a process Y of dimension 2. The components of the process are

denoted by Y1 and Y2. The source components, denoted by u1 and u2, have zero means

and unitary variances. The portmanteau statistic can be based on the power covariances:

Cov(Y j
1 , Y

k
2 ), j, k = 1, 2, 3. These covariances are not always informative about the mixing

matrix C. In particular, some covariances can be equal to zero for any matrix C and a

specific source distribution. These cases are described in Table 1 (see On-line Appendix 1

for the proof).
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Table 1: Conditions of Non-Informative Power Covariance

Covariance: Non-Informative when:
Cov(Y1, Y2) always non-informative
Cov(Y 2

1 , Y2), Cov(Y1, Y
2

2 ) Eu3
1 = Eu3

2 = 0
Cov(Y 2

1 , Y
2

2 ) E(u4
1) + E(u4

2)− 6 = 0
Cov(Y 3

1 , Y2), Cov(Y1, Y
3

2 ) E(u4
1) = E(u4

2) = 3
Cov(Y 2

1 , Y
3

2 ), Cov(Y 3
1 , Y

2
2 ) E(u3

1) = E(u5
1) = E(u3

2) = E(u5
2) = 0

Cov(Y 3
1 , Y

3
2 ) E(u3

1) = E(u3
2), E(u4

1) = E(u4
2), E(u6

1) = E(u6
2)

All power covariances are non-informative when u1 and u2 are Gaussian, which corre-

sponds to the lack of identification of the mixing matrix in Gaussian ICA. Nevertheless, if u1

is Gaussian and u2 follows a skewed distribution, or a distribution with fat tails, such that

the kurtosis is greater than 3, E(u4
2) > 3, then some power covariances become informative

and the mixing matrix can be identified.

2.2 Dynamic Model with Serial Independence

Let us consider the model:

g(Ỹt, θ) = ut, (2.10)

where the u′ts are i.i.d, of dimension K and have finite moments up to order 4, Ỹt = (Yt, Yt−1),

is observable, θ is an unknown parameter (that can be partially identifiable) and g a known

function.

Example 1: Model with predictable drift and volatility

Let us consider a univariate process (yt) with predictable drift, volatility and risk pre-

mium. The nonlinear dynamic model is:

yt = m(yt−1; θ1) + θ3σ(yt−1; θ2) + σ(yt−1; θ2)ut, (2.11)

where the errors ut, t = 1, ..., T are i.i.d. and function σ() is assumed positive. The model

contains the drift parameter θ1, volatility parameter θ2 and risk premium parameter θ3.

This model is a Markov equivalent of the ARCH-M model [Engle, Lilien, Robbins (1987)]

and extends the Double Autoregressive (DAR) model [Borkovec, Kluppelberg (2001), Ling

(2007)] by introducing a risk premium. It can be rewritten under the specification (2.10) for

the conditionally demeaned and standardized yt as:

g(ỹt; θ) = [yt −m(yt−1; θ1)− θ3σ(yt−1; θ2)]/σ(yt−1; θ2) = ut. (2.12)
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The parameters θ1, θ2, θ3 are not always identifiable. The identification depends on the

functional form of the drift and volatility functions and on the distribution of the errors.

In particular, it can be difficult to disentangle the regular part of the drift from the risk

premium.

Example 2: Stochastic Volatility Model

Let us consider the observations on an asset return yt and on implied volatility σt com-

puted from an at-the-money option written on this asset. A bivariate dynamic model for

observed variable (yt, σt) can be written as:

yt = θ1yt−1 + σtu1t,

log σt = θ2 + θ3 log σt−1 + u2t.

The condition of mutual independence of u1t and u2t is a condition of no leverage effect

[Black (1976)]. When the independence is satisfied, the error u2t can be interpreted as

a primitive volatility shock and used to derive the associated impulse response functions.

However, identification of the impulse response functions may become an issue if the errors

are cross-sectionally dependent, for example a linear mixture of independent sources.

Example 3: Causal SVAR(1) Model

The multivariate SVAR(1) model is:

Φ0Yt + Φ1Yt−1 = ut, (2.13)

where the u′ts are i.i.d, the diagonal elements of Φ0 are set equal to 1 and the eigenval-

ues of Φ−1
0 Φ1 are of modulus strictly less than 1. Then, the parameter vector is θ =

[(vecΦ0)′, (vecΦ1)′]′ of dimension dim θ = 2K2 − K. The partial identification issue comes

from the simultaneity that can be captured by the matrix Φ0 as well as by the cross sectional

dependence of the u′ts.

Example 4: Multivariate Mixed Causal-Noncausal Model

These models have been shown in the literature to reproduce the bubbles and local

trends observed in financial data, such as the commodity prices [Gourieroux, Zakoian (2017),

Gourieroux, Jasiak (2017)]. The mixed VAR(1) model has the form (2.13), but the eigen-

values of Φ−1
0 Φ1 are of modulus different from 1, not necessarily strictly less than 1. The

noncausal directions of eigenvectors associated with the eigenvalues outside the unit circle

generate local explosive patterns perceived as bubbles or local trends.
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In Section 2.1 we showed that a set of L transformations can be used to replace system

(2.9) by:

a[g(Ỹt; θ)] = a(ut). (2.14)

Let us next consider the measure of serial dependence:

ξ(θ) =
H∑
h=1

Tr[Γ(h; θ)Γ(0; θ)−1Γ(h; θ)′Γ(0; θ)−1], (2.15)

where Γ(h, θ) = Cov(a[g(Ỹt; θ)], a[g(Ỹt−h; θ)]) and Ỹt−h = (Y ′t−h, Y
′
t−h−1)′.

The above equation defines a portmanteau serial dependence measure applied to the trans-

formations a of the error term [see, Gourieroux, Jasiak (2022)]. The design is now:

D = [a,H],

where H is the number of terms in the portmanteau measure (2.14) and the total number of

covariances is:

d = dimD = L2H.

2.3 Dynamic Models with Serial and Cross-Sectional Indepen-
dence Restrictions

The serial and cross-sectional independence restrictions can be imposed on the model (2.10):

g(Ỹt; θ) = ut, t = 1, ..., T, (2.16)

where ut are i.i.d. variables and the components u1t, ...., uKt are independent. In particular,

these independence restrictions can be applied to a SVAR(1) model:

Φ0Yt + Φ1Yt−1 = ut ⇐⇒ Yt = ΨYt−1 +But,

with Ψ = Φ−1
0 Φ1 and B = Φ−1

0 .

This approach allows for distinguishing the errors εt = But in the above system of equations

from the primitive shocks u1t, ...., uKt assumed mutually independent [see e.g. Gourieroux,

Monfort, Renne (2017), Lanne, Meitz, Saikkonen (2017), Davis, Ng (2022) for a discussion

on the differences between the errors and the primitive shocks in structural models].

Then, the model can be written as a system of equations for each component:
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gk(Ỹt; θ) = uk,t, k = 1, ..., K, t = 1, ..., T. (2.17)

The associated dependence measure is:

ξ(θ) =
H∑
h=1

∑
k,l:

∑
k 6=l

Tr[Γkl(h; θ)Γll(0; θ)−1Γlk(h; θ)′Γkk(0; θ)−1], (2.18)

with

Γkl(h, θ) = Cov(a[gk(Ỹt; θ)], a[gl(Ỹt−h; θ)]). (2.19)

Then, the design is D = [a, HK(K − 1)/2] of dimension d = dimD = HL2K(K − 1)/2.

3 Identification, Estimation and Tests

The models of Section 2 and the associated dependence measures have a common structure

that can be used as a general representation for statistical inference. We start with discussing

the notion of an identified set. Next, we describe the pointwise estimation and confidence

set estimation methods.

3.1 Identification

Suppose that model (2.10) satisfies the following assumptions:

Assumption A.1:

i) The model is well-specified with θ0 the true value of parameter θ and f0 the true

probability density function (pdf) of error ut (that may satisfy the independence restrictions

on the components uk,t, k = 1, ..., K in the models of Sections 2.1, 2.3.). The components of

ut have finite fourth order moments.

ii) The process (Yt) is strictly stationary, geometrically mixing.

iii) The function g is invertible with respect to Yt and differentiable.

Under Assumption A.1 iii), the model can be rewritten as:

Yt = g−1(ut, Yt−1; θ0), ut ∼ f0, (3.1)

as a nonlinear autoregression that can be univariate or multivariate and includes the static

(i.i.d.) linear model of Section 2.1. There exist several solutions to the autoregressive model
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(3.1) and this multiplicity can be reduced by using the assumption A.ii) on the existence and

uniqueness of a strictly stationary solution. This implies a restriction on the true θ0, f0.

The differentiability condition in A.1 iii) allows for applying the Jacobian formula and

insures the existence of the true transition density of Yt given Yt−1 denoted by l(yt|yt−1; θ0, f0).

The transition density depends on both types of true parameters. Thus we have a semi-

parametric model in which we can define the true identified set for parameter θ.

Definition 1:

For a given error distribution f0, the identified set for θ0 is: Θ0(f0) = {θ, l(yt|yt−1; θ, f0) =

l(yt|yt−1; θ0, f0) almost everywhere in yt, yt−1}.

In general, this identified set depends on f0 and is not reduced to a singleton. Under the rank

regularity condition, the identified set is locally a manifold of dimension dimΘ0(f0) that is

strictly positive in the presence of partial identification . However there can exist models and

distributions f0 such that Θ0(f0) = {θ0} is a singleton corresponding to the identifiable true

value θ0. In this case the dimension of Θ0(f0) is equal to zero. We illustrate this case in the

example below.

Example 2 (follows) : Causal SVAR(1) model

Let us consider a SVAR(1) model:

Φ0Yt + Φ1Yt−1 = ut,

where the diagonal elements of Φ0 are equal to 1. This model can be rewritten as:

Yt = Φ−1
0 Φ1Yt−1 + Φ−1

0 ut.

i) If ut is Gaussian ut ∼ N(0,Σ) with Σ unknown, we can identify Φ−1
0 Φ1 and Φ−1

0 Σ(Φ−1
0 )′,

i.e. only the transformation Φ−1
0 Φ1 of the parameters of interest Φ0 and Φ1. The dimension

of the identified set is K(K − 1) equal to the number of parameters in matrix Φ0.

ii) If the components ukt’s of ut’s are independent, and, for example, t-distributed, possibly

with different degrees of freedom, then both Φ−1
0 Φ1 and Φ−1

0 are identifiable and the identified

set is reduced to a singleton.

iii) If these components are independent, with p Gaussian components, the other ones t-

distributed, Φ0,Φ1 are partly identified with a degree of underidentification depending on

p.

The true identified set depends on the entire conditional density, whereas the portmanteau

dependence measure is based on a finite number of (true) covariances that are not necessarily
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informative (see the discussion in Section 2.1). For example, let us consider the dependence

measure defined in Section 2.2:

ξ0(θ) =
H∑
h=1

Tr[Γ0(h; θ)Γ0(0; θ)−1Γ0(h; θ)′Γ0(0; θ)−1],

where the subscript 0 is used to point out that the above measure is evaluated at the true

values θ0, f0.

Definition 2: The implied identified set associated with ξ0(θ) is :

Θ∗0(f0) = {θ : ξ0(θ) = 0}.

By construction and Assumption A.1, we have:

θ0 ∈ Θ0(f0) ⊂ Θ∗0(f0). (3.2)

Θ∗0(f0) is another (sub)manifold of dim Θ∗0(f0) ≥ dim Θ0(f0).

If the set of covariances is sufficiently informative, we expect that:

θ0 ∈ Θ0(f0) = Θ∗0(f0).

If additionally θ0 is point identified, we have {θ0} = Θ0(f0) = Θ∗0(f0), although in general

this is not the case.

The portmanteau measure and the implied identified set depend on the design D. To

keep the exposition simple, this dependence has not been specified yet. It will be clarified

later in the discussion of ”overidentification” of Section 4.

3.2 Pointwise Estimation of the Implied Identified Set

The true identified set as well as the implied identified set depend on the true DGP and are

unknown. They can be estimated as follows:

i) In the first step, we replace the portmanteau dependence measure by a consistent estimator.

For example, ξ0(θ) defined in Section 2.2 will be replaced by:

ξ̂T (θ) =
H∑
h=1

Tr[Γ̂T (h; θ)Γ̂T (0; θ)−1Γ̂T (h; θ)′Γ̂T (0; θ)−1], (3.3)

where Γ̂T (h; θ) is the sample analogue of Γ0(h; θ) computed from the observations Yt, t =

1, .., T .
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ii) The estimated implied identified set is:

Θ̂∗T = {θ : θ = Argminθ∈Θ ξ̂T (θ)}. (3.4)

In practice, the estimated implied identified set is equivalently defined from the First-Order

Conditions (FOC) as:

Θ̂∗T = {∂ξ̂T (θ)/∂θ = 0, ∂2ξ̂T (θ)/∂θ∂θ′ >> 0},

where >> is the Loewner ordering on symmetric matrices.

Proposition 1: Under Assumption A.1 and additional assumptions AA given in On-

line Appendix 2, Θ̂∗T (f0) is a consistent estimator of Θ∗0(f0) in the sense that the Hausdorff

distance between these two sets tends to 0, when T tends to infinity.

The consistency of the estimated implied identified set in the sense of the convergence to

its theoretical counterpart follows from the results in Shi, Shum (2015) [see also Chernozhukov

et al. (2007) for similar arguments]. This convergence result does no imply the convergence

of the dimension dim Θ̂∗T (f0) to dimΘ∗0(f0) because the function dim(.) is not continuous.

Proposition 1 provides a result that is valid for partial identification. In particular, it

is valid if {θ0} = Θ0(f0) = Θ∗0(f0). In this special case, it can be written as follows [ see

Gourieroux, Jasiak (2022)]: ”There exists a solution θ̂T = Argminθ∈Θ ξ̂T (θ) that converges

to the true value θ0
′′
. This solution is called the Generalized Covariance (GCov) estimator

of θ0. In the general case, Θ̂∗T is the GCov estimator of the implied identified set.

The partial identification of parameter θ implies also the partial identification of the error

terms UT = (u1, ..., uT )′. A consistent estimator of the implied identified set of errors is

derived from the estimated residuals as:

Û∗T = {û(T ) : ût(T ) = g(Yt, Yt−1; θ), t = 1, ..., T with θ ∈ Θ̂∗T}.

Thus, the error terms are only partially recovered. This estimated residual set is doubly

stochastic with the direct effect of Yt, Yt−1 and the asymptotic uncertainty on Θ∗T . In partic-

ular, under the maintained hypothesis of i.i.d. error terms ut, we cannot expect to get the

independence with identical distribution of the sets {ûtT with ûT ∈ Û∗T}, t = 1, ..., T .

The same remark holds for other (stochastic) functions of parameter θ, such as the im-

pulse response functions [Rubio-Ramirez, Waggoner, Zha (2010), Moon, Schorfheide (2012),

Granziera, Moon, Schorfheide (2018), Gourieroux, Jasiak (2023)].
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3.3 Asymptotic Confidence Set of the Implied Identified Set

In the case of identifiable θ0 with Θ∗0(f0) = Θ0(f0) = {θ0}, we know that the minimized ξ̂T (θ)

is chi-square distributed and the portmanteau test statistic computed from the residuals is

such that:

T ξ̂T (θ̂T )
d→ χ2(dimD − dim θ), (3.5)

in which the degree of freedom is equal to the difference between the dimension of the

design and the dimension of the parameter. This requires a sufficiently large number of

auto-covariances, i.e. the order condition dimD ≥ dim θ.

This asymptotically valid result can be extended to partial identification as follows:

Proposition 2:

i) Consider ξ̂∗T = Minθ ξ̂T (θ). Then,

T ξ̂∗T
d→ χ2[dimD + dimΘ∗0 − dimθ], when T →∞, if dimD + dimΘ∗0 − dimθ ≥ 0,

ii) An asymptotically valid confidence set of the implied identified set at level 1− α is

CSΘ̂∗T = {θ : T ξ̂T (θ) ≤ χ2
1−α(dimD + dimΘ∗0 − dimθ)},

where χ2
1−α(.) denotes the (1 − α)-quantile of a chi-square distribution. This confidence set

is such that:

lim
T→∞

P0[CSΘ̂∗T ⊃ Θ∗0(fo)] = 1− α,

for any true distribution P0.

These distributional properties hold when the GCov estimator is used, as it is semi-

parametrically efficient. Similar results have been derived for the Generalized Method of

Moments (GMM) estimator 3 in Shi, Shum (2015)], but require a two-step estimation method

with an inverse of an optimal weighting matrix estimator of the non-centered moments of

interest in the second step. Since the number of non-centered moments is in general large,

this inversion is computationally cumbersome. This difficulty is circumvented when the

GCov estimator is used, as the GCov estimator is based on centered moments and the

inversion concerns a matrix of size (L,L) only, instead of size (dimD, dimD). Similarly, the

covariance distances used in Francq, Roy, Zakoian (2005), Davis, Wan (2022) and Davis, Ng

(2022) for the identified cases are not optimally weighted. As a consequence the asymptotic

distribution of the test statistic can be a non-centered chi-square, not distribution-free and

3See, e.g. Lanne, Luoto (2021) for GMM estimation of this type of models in the identified case.
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need to be approximated by bootstrap [see for example Davis, Wan (2022)]. Alternative

residual dependence measures written in the frequency domain and considering independence

beyond pairwise independence have also been introduced in Velasco, Lobato (2018), Velasco

(2022), Chu (2023).

3.4 Test of the Pairwise Independence Hypothesis

Proposition 2 i) is the analogue of the generalized Wald statistic introduced in Szroeter

(1983) for the Generalized Method of Moments in the identified case. It is still valid for the

GCov-based inference and in a framework of partial identification.

This statistic can be used to test the null hypothesis H0 = {Γ0(h) = 0, h = 1, ..., H}
versus the alternative H1 = {There exists h, h = 1, ..., H with Γ0(h) 6= 0}, where Γ0(h) =

Cov0(ut, ut−h). As H0 is satisfied under the hypothesis of independence of the ut’s, it can also

be used to test the pairwise independence hypothesis. It extends the residual based port-

manteau tests introduced for ARMA models to the nonlinear dynamic framework [see, Box,

Pierce (1970), Chitturi (1974), Hosking (1980) for linear dynamic models, De Gooijer (2023)

for multivariate nonlinear models with martingale difference errors]. The null hypothesis H0

is asymptotically rejected at 5% if the confidence set of the implied identified set is empty.

In such a case, it is interesting to examine closely the components of the portmanteau test

statistic ξ̂∗T . For example, in a model with serial dependence, the components are the lagged

values: ξ̂∗T =
∑H

h=1 ξ̂
∗
T,h. The components ξ̂∗T,h, h = 1, ..., H can be reported in a graph

as a function of h to help detect which lag(s) and which nonlinear autocovariances cause

the rejection of the null hypothesis, by analogy to the graphical analysis of autocorrelation

function (ACF).

In the SVAR model with primitive shocks that are mutually independent (see Section 2.3)

such covariance restrictions can help identify the model parameters. Then, the associated

test can also be considered as a test of some identifying restrictions, which is examined in

the next Section.

4 Overidentification

Let us now describe the consequences of increasing the number of autocovariances in the

portmanteau measure for a given model and discuss overidentification in partially identified

models.
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4.1 The effects of overidentification

Let us consider a given model and two nested designs for defining the portmanteau measure,

denoted by D1 ⊂ D2. The associated measures are denoted by ξ1(θ), ξ2(θ), respectively.

The designs can be nested either by increasing the number of transformations a, and/or by

increasing the lag H. We get the following result:

Proposition 3:

If D1 ⊂ D2, then ξ1(θ) ≤ ξ2(θ), ξ̂1T (θ) ≤ ξ̂2T (θ) and ξ̂∗1T ≤ ξ̂∗2T .

From Proposition 3 it follows that the implied identified sets are such that Θ∗01(f0) ⊃
Θ∗02(f0). Therefore, the increase of the design can have two effects: it either strictly reduces

the implied identified set, i.e. the dimension of the implied identified set, or improves the

efficiency of the confidence set of the implied identified set, when these latter sets are equal.

This corresponds to the problem of overidentification of the implied identified set.

4.2 The Asymptotic Distributions

The statistical inference with two nested designs is based on the asymptotic distributional

properties of the estimated identified sets and of the optimal values of the portmanteau

statistics. The following propositions are shown in Appendices 2 and 3.

Proposition 4: Let us assume that parameter θ is identifiable from the two portmanteau

optimizations. Then, if D1 ⊂ D2, we have:

i) V θ̂1T >> V θ̂2T ;

ii) T (θ̂1T − θ̂2T )′(V θ̂1T − V θ̂2T )+(θ̂1T − θ̂2T )
d→ χ2[Rk(V θ̂1T − V θ̂2T )], when T →∞,

where A+ denotes the generalized inverse of matrix A.

A similar result under partial identification can be written by considering cuts of confidence

sets. More precisely, let us consider a scalar function of parameter θ, denoted by ζ(θ). Then,

for each design Dj, j = 1, 2, we can search for an interval [mζ̂j,T ,Mζ̂j,T ], j = 1, 2, where:

mζ̂j,T = min[ζ(θ)] for θ ∈ CSΘ̂j,T ,

Mζ̂j,T = max[ζ(θ)] for θ ∈ CSΘ̂j,T .

Then, by Proposition 1, we have:

[mζ̂2,T ,Mζ̂2,T ] ⊂ [mζ̂1,T ,Mζ̂1,T ],

if d1 = d2, i.e. the degrees of implied under-identification are equal.

An alternative approach can be based on a comparison of the values of the objective

functions. For example, we have the following result:
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Proposition 5:

Let us assume D1 ⊂ D2. Then the difference:

T ξ̂∗2T − T ξ̂∗1T = T ξ̂2T (θ̂1T )− T ξ̂1T (θ̂1T ),

follows asymptotically a mixture of chi-square distributions.

In particular, even if T ξ̂∗1T and T ξ̂∗2T are asymptotically chi-square distributed, the statis-

tics T ξ̂∗1T and T ξ̂∗2T −T ξ̂∗1T are not independent and T ξ̂∗2T −T ξ̂∗1T is not chi-square distributed,

in general.

However this latter condition is satisfied if d1 + dimΘ∗0 − dimθ = 0, since ξ∗1T = 0. This

condition is satisfied if parameter θ is just identified under design D1. This explains the

interpretation of ξ∗2T as an over-identification test [Szroeter (1983)]. In particular the just

identification condition holds for the AR(p) model estimated from the first p autocorrelations

as design D1.

4.3 Estimating the dimension of the implied identified set

Under partial identification, the asymptotic confidence set in Proposition 3 as well as the

asymptotic results in Propositions 4 and 5 are not directly applicable, as they depend on the

dimension of the implied identified set, which may be unknown. Moreover, we mentioned

that it cannot be consistently estimated from the dimension of Θ∗T that is itself difficult to

evaluate in practice. However, under weak regularity conditions, we have:

dim θ − dim Θ∗0(f0) = Rk[
∂γ0(θ0)

∂θ′
]. (4.1)

Hence, the degree of partial (under) identification is:

dim Θ∗0(f0) = dim θ −Rk[
∂γ0(θ0)

∂θ′
]. (4.2)

Therefore, it is equivalent to estimate dim Θ∗0(f0), or Rk[∂γ0(θ0)
∂θ′

]. We know that:

Rk[
∂γ0(θ0)

∂θ′
] = Rk[

∂γ0(θ0)′

∂θ

∂γ0(θ0)

∂θ′
],

and that the semi-positive definite matrix ∂γ0(θ′0)/∂θ ∂γ0(θ0)/∂θ′ is consistently estimated

by the matrix:

T Ω̂T = T∂γ̂T (θ̂′T )′/∂θ ∂γ̂T (θ̂T )/∂θ′, (4.3)
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where γ, i.e. Γ, is replaced by its sample counterparts γ̂T , i.e. Γ̂T , and θ̂T is a GCov estimator

in Θ̂∗T . Then, we can estimate the rank by performing a spectral decomposition of Ω̂T , which

can be of a large dimension, and counting the number of significant eigenvalues along the

lines of [Bai (2003), Fan et al. (2020)]. The analysis of the asymptotic properties of such an

approach is out of the scope of the present paper.

An alternative approach can be based directly on the first and second-order derivatives

of the objective function ξ̂T (θ) at θ̂T .

4.4 An Asymptotic Linear Interpretation

To illustrate the identification method and to give some insights on the derivation of the

asymptotic results (see Appendix 2 for the general proof), let us consider a stationary uni-

variate time series defined by:

g(yt, yt−1; θ) = ut,

where g is invertible with respect to yt and the errors ut are i.i.d.. We do not apply any

transformations to ut and build the portmanteau statistic directly from the scalar variables

ut. Then the portmanteau measure is:

ξ(θ) =
H∑
h=1

ρ2
0(h, θ),

where ρ0(h, θ) is the true correlation between g(yt, yt−1; θ) and g(yt−h, yt−h−1; θ). Its sample

counterpart is:

ξ̂T (θ) =
H∑
h=1

ρ̂2
T (h, θ).

The implied identified set is:

Θ∗0(f0) = {θ : θ = Argminθ

H∑
h=1

ρ2
0(h, θ)}.

and a consistent estimator of this set is:

Θ̂∗T = {θ : θ = Argminθ

H∑
h=1

ρ̂2
T (h, θ)}.

It is important to note that

i) ξ∗ = Minθ∈Θξ(θ) = ξ(θ∗0) for any element θ∗0 in Θ∗0(f0).
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and

ii)
∂ξ(θ∗0)

∂θ
is independent of θ∗0 ∈ Θ∗0(f0).

A condition slightly stronger than ii) is : the derivatives
∂ρ0(h,θ∗0)

∂θ
, h=1,...,H are indepen-

dent of θ∗0 ∈ Θ∗0(f0).

Let us now consider the selection of θ̂T in Θ̂∗T . Since Θ̂∗T tends to Θ∗0(f0), the sequence θ̂T

tends to the set Θ∗0(f0), but in general not to a given point θ∗0 of this set. However, under the

assumption of compact implied identified set, any Cauchy sequence of θ̂T converges pointwise

as T tends to infinity. For ease of exposition, we consider θ̂T → θ∗0.

Then, if θ∗0 is in the interior of the implied identified set, we can perform an expansion of

the first-order conditions. We have:

∂ξ̂T (θ̂T )

∂θ
= 0

⇐⇒
H∑
h=1

∂

∂θ
[ρ̂2
T (h, θ̂T )] = 0

⇐⇒
√
T

H∑
h=1

∂

∂θ
ρ̂2
T (h, θ∗0) +

H∑
h=1

∂2

∂θ∂θ′
ρ̂2
T (h, θ∗0)

√
T (θ̂T − θ∗0) = op(1)

⇐⇒
H∑
h=1

[
∂

∂θ
ρ̂T (h, θ∗0)

√
T ρ̂T (h, θ∗0)

]

+
H∑
h=1

[
ρ̂T (h, θ∗0)

∂2

∂θ∂θ′
ρ̂T (h, θ∗0) +

∂

∂θ
ρ̂T (h, θ∗0)

∂

∂θ′
ρ̂T (h, θ∗0)

]√
T (θ̂T − θ∗0) = op(1).

We know that
√
T ρ̂T (h, θ∗0), h = 1, ..., H are the sample autocorrelations of the true

white noise ut. Therefore they are asymptotically independent standard Gaussian variables.

Asymptotically, the estimator ρ̂T can be replaced by ρ0 in all other terms. Since ρ0(h, θ∗0) = 0,

we get:

H∑
h=1

∂

∂θ
ρ0(h, θ∗0)[

√
T ρ̂T (h, θ∗0)] ≈

H∑
h=1

[
∂

∂θ
ρ0(h, θ∗0)

∂

∂θ′
ρ0(h, θ∗0)

]√
T (θ̂T − θ∗0).

Let us introduce zh = ∂
∂θ
ρ0(h, θ∗0), vh = −

√
T ρ̂T (h, θ∗0), h = 1, ..., H.

The above system can be equivalently written as:

H∑
h=1

zhvh ≈

(
H∑
h=1

zhz
′
h

)
√
T (θ̂T − θ∗0),
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where zh and the distribution of vh do not depend on θ∗0 and on the selected sequence θ̂T .

Two cases can be distinguished:

i) If Z ′Z =
∑H

h=1 zhz
′
h is of full column rank, RkZ ′Z = dim θ, then:

√
T (θ̂T − θ∗0) ≈ (Z ′Z)−1Z ′v,

can be seen as an OLS estimator obtained by regressing the independent Gaussian variables

−
√
T ρ̂T (h, θ∗0) on the explanatory variable zh = ∂

∂θ
ρ0(h, θ∗0).

ii) If Z ′Z is not invertible, RkZ ′Z < dim θ, there is an identification issue with the degree

of under-identification equal to dim θ −Rk(Z ′Z).

The above expansion shows that asymptotically in a neighbourhood of θ∗0 the manifold

Θ̂∗T can be locally replaced by a linear subspace and the asymptotic results be based on this

asymptotic linear interpretation (see Appendix 2 for this interpretation in the multivariate

framework).

Let us now focus on the minimum value of the objective function, that is ξ̂∗T = T ξ̂T (θ̂T ).

We have:

T ξ̂T (θ̂T ) ≈ T ξ̂T (θ0) +
√
T
∂ξ̂T (θ∗0)

∂θ′

√
T (θ̂T − θ∗0)

= v′v − v′Z(Z ′Z)+Z ′v

= v′(Id− Z(Z ′Z)+Z ′)v,

where (.)+ denotes a generalized inverse. It follows that asymptotically T ξ̂T (θ̂T ) has a chi-

square distribution with the degree of freedom H + dim Θ∗0(f0)− dim θ = H − Rk(Z ′Z) for

any choice of the sequence θ̂T . The expression of the confidence set at level 1 − α of the

implied identified set is obtained by inverting the test:

CSΘ̂∗T = {θ : T ξ̂T (θ) ≤ χ2
1−α(H −Rk(Z ′Z)}.

When H increases, Z ′Z increases (for the Loewner ordering on symmetric matrices 4)

as well as the statistic T ξ̂T and the rank of Z ′Z. It will be useful to evaluate this rank by

performing for each H a spectral decomposition of Ẑ ′Ẑ with ẑh = ∂
∂θ
ρ̂T (h, θ̂T ), h = 1, ..., H

and estimating the rank from the number of significant eigenvalues of Ẑ ′Ẑ .

This number of significant eigenvalues increases with H and is always less than dim θ. If

it is equal to dim θ for a large H, then θ is identifiable.

4For two symmetric matrices Σ,Σ∗ of dimension (n×n), this ordering is defined by : Σ� Σ∗, if and only
if u′Σu ≥ u′Σ∗u, for any u ∈ IRn.
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5 Illustration

Under partial identification, the dimension of the identified set is often rather large and the

estimated confidence set is difficult to visualize. In order to provide interpretable figures we

consider in this section illustrative applications, where the degree of under-identification is

0, 1, or 2.

5.1 Independent Component Analysis for Dimension 2

Let us consider the independent component analysis, discussed in Section 2.1, for dimension

K = 2. We assume that both the errors and observations Yi have mean 0 and an identity

variance-covariance matrix. It is known that matrix C is not identifiable in general, but C ′C

is identifiable. In fact, C is identifiable up to an orthonormal transformation 5. Then, we

can focus on the case:

QYi = ui, i = 1, ..., n, ⇐⇒ Yi = Q′ui, i = 1, ..., n, (4.4)

where matrix Q satisfies the condition QQ′ = Id. In this framework, there are four param-

eters corresponding to the elements of matrix Q under three independent quadratic restric-

tions. Therefore the degree of under-identification is either 0, or 1. It is equal to 1 if the

components of the error vectors follow Gaussian distributions. It is equal to 0, if at least

one component is non-Gaussian. In the latter case, the dimension of the implied identified

set can still be 1, if the moments introduced in the portmanteau statistic are not sufficiently

informative (see Section 2.1). Due to these nonlinear restrictions on the parameter Q, the

parametrization by an orthonormal matrix is not used [see Granziera, Moon, Schorfheide

(2018) for such a parametrization in a SVAR model]. Alternative parametrizations by a

skew-symmetric matrix:

B =

(
0 −b
b 0

)
with unconstrained parameter b have been introduced in the recent literature. These are:

i) the exponential transform: Q = exp(B) =
∑∞

j=0
Bj

j!
[Magnus, Pijls, Sentana (2018)];

ii) the Cayley transform:

Q = (Id−B)−1(Id+B) =
1

1 + b2

(
1− b2 −2b

2b 1− b2

)
,

5and also up to signed scaling and permutation of rows. The other multivariate scaling effects are usually
solved by pre-whitening the observations.
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[Gourieroux, Jasiak (2023)]. We choose the Cayley transform in our illustration to avoid the

numerical approximations in the exponential transform.

In the bivariate framework, any orthonormal matrix is a rotation matrix corresponding

to an angle α, α ∈ [−π, π]. Then, parameter b of the skew-symmetric matrix in the Cayley

transform is b = tan(α/2), α ∈ (−∞,∞). Under the independence hypothesis, that matrix

is identifiable up to a sign effect and permutation of u1, u2. Thus, there are still global

identification issues that are solved by constraining α to (0, π/2), or equivalently b to (0, 1).

Thus, our search for the confidence sets is carried out under the restriction 0 ≤ b ≤ 1.

5.2 The Monte-Carlo Study

We consider different Data Generating Processes (DGP) by choosing:

a) the true value of the parameter: b0 = 0.2, 0.5;

b) the true error distribution:

scheme 1: u1, u2 ∼ N(0, 1);

scheme 2: u1 ∼ N(0, 1), u2 ∼ U[−1,1], rescaled to variance 1;

scheme 3: u1 ∼ t(5), u2 ∼ U[−1,1], rescaled to variance 1;

c) the number of observations n = 100, 200, 500.

Next, we apply the GCov-based inference with the following types of nonlinear transforma-

tions:

portmanteau statistic 2 (st2) based on Cov(u1, u2), Cov(u2
1, u

2
2), Cov(u2

1, u2), Cov(u1, u
2
2) with

d = 4;

portmanteau statistic 3 (st3) based on Cov

 u1

u2
1

u3
1

 ,

 u2

u2
2

u3
2

 with d = 9.

For each simulated path, we compute the optimal value of the portmanteau statistic 6and

the estimated confidence set of the identified set at 1−α = 0.95. For each case, we compute

it with the degree of freedom d, equal to 4 and 9 and d− 1 equal to 3 and 8. The results are

given in Tables 2-4.

Table 2: Confidence Set of Implied Identified Set: Gaussian Sources

6It is possible to apply standard optimization algorithms with a given number p of iterations to get values
b̂T (p). However, due to the partial identification issue, this value b̂T (p) will not converge numerically, in
general, when p tends to infinity.
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u1, u2 ∼ N(0, 1), T=100

stat b=0.2 b=0.5

st2 DF=3 (0,1)) (0,1)
st2 DF=4 (0,1) (0,1)
st3 DF=8 (0,1) (0,1)
st3 DF=9 (0,1) (0,1)

u1, u2 ∼ N(0, 1), T=200

stat b=0.2 b=0.5

st2 DF=3 (0,1) (0,1)
st2 DF=4 (0,1) (0,1)
st3 DF=8 (0,1) [0.15, 0.99]
st3 DF=9 (0,1) [0.14, 1)

u1, u2 ∼ N(0, 1), T=500

stat b=0.2 b=0.5

st2 DF=3 (0,1) (0,1)
st2 DF=4 (0,1) (0,1)
st3 DF=8 (0,1) (0,1)
st3 DF=9 (0,1) (0,1)
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Table 3: Confidence Set of Implied Identified Set: One Gaussian Source

u1 ∼ N(0, 1), u2 ∼ U [−1, 1], T=100
stat b=0.2 b=0.5

st2 DF=3 (0,1) (0, 1)
st2 DF=4 (0,1) (0, 1)
st3 DF=8 [0.18, 0.22] ∪ [0.38, 0.90] (0, 0.56] ∪ [0.87,1)
st3 DF=9 [0.18, 0.23] ∪ [0.37, 0.90] (0, 0.56] ∪ [0.87,1)

u1 ∼ N(0, 1)u2 ∼ U [−1, 1] , T=200
stat b=0.2 b=0.5

st2 DF=3 [0.10, 1) [0.19, 0.70]
st2 DF=4 [0.10, 1) [0.15, 0.77]
st3 DF=8 [0.08, 0.33] [0.24, 0.74]
st3 DF=9 [0.08, 0.35] [0.22, 0.76]

u1 ∼ N(0, 1), u2 ∼ U [−1, 1], T=500
stat b=0.2 b=0.5

st2 DF=3 [0.07, 0.44] ∪ [0.83, 1) [0.13, 0.26] ∪ [0.62, 0.75]
st2 DF=4 [0.07, 0.46] ∪ [0.80, 1) [0.10, 0.26] ∪ [0.62, 0.79]
st3 DF=8 (0, 0.03] ∪ [0.12, 0.19] ∪ [0.41, 0.45] ∪ [0.90,1) [0.36, 0.44] ∪ [0.66, 0.72]
st3 DF=9 (0, 0.04] ∪ [0.12, 0.19] ∪ [0.41, 0.45] ∪ [0.88,1) [0.34, 0.44] ∪ [0.66, 0.73]

Table 4: Confidence Set of Implied Identified Set: No Gaussian Sources

u1, u2 ∼ U [−1, 1], T=100

stat b=0.2 b=0.5

st2 DF=3 [0.01, 1) [0.36, 0.67]
st2 DF=4 [0.01, 1) [0.32, 0.70]
st3 DF=8 [0.1, 0.29] ∪ [0.65, 0.79] [0.42, 0.65]
st3 DF=9 [0.12, 0.28] [0.40, 0.66]

u1, u2 ∼ U [−1, 1], T=200

stat b=0.2 b=0.5

st2 DF=3 [0.11, 0.29] [0.33, 0.77]
st2 DF=4 [0.08, 0.31] [0.32, 0.79]
st3 DF=8 [0.13, 0.23] [0.46, 0.61]
st3 DF=9 [0.12, 0.24] [0.45, 0.61]

u1, u2 ∼ U [−1, 1], T=500

stat b=0.2 b=0.5

st2 DF=3 [0.10, 0.32] [0.37, 0.62]
st2 DF=4 [0.09, 0.33] [0.37, 0.64]
st3 DF=8 [0.18, 0.23] [0.46, 0.54]
st3 DF=9 [0.18, 0.23] [0.46, 0.54]

The estimated confidence sets are intervals of the values of b. This corresponds to mani-

folds of dimension 1 even if b is identifiable. This shows that the dimension of Θ∗0 cannot be

consistently estimated from the dimension of Θ̂∗T .

When the two sources are Gaussian (Table 2), the confidence set is large and it is often

equal to the maximum length interval [0,1]. When one source is Gaussian and the second one
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is uniformly distributed (Table 3), there is still an implied identification issue for statistic st2

(see, Table 1). It is partly solved when more moments are included and the ”length” of the

interval decreases when the number of observations increases. Note that the confidence sets

contain the true value of parameter b.

Similar remarks can be done in the case of two non-Gaussian sources (Table 4).

We have not yet estimated the true degree of freedom of the asymptotic chi-square dis-

tribution. Let us now perform the spectral decomposition of the Ω̂T matrix defined in (4.3).

An example of such spectral decomposition is given below for the case of one Gaussian source

corresponding to Table 3, b = 0.2, b = 0.5, T = 100, 200, 500. In Tables 5 and 6, the eigen-

values of the spectral decomposition are arranged in an increasing order. In all cases one

eigenvalue is much bigger that the other ones, which indicates that parameter b can possibly

be identified.

Table 5: Eigenvalues

Statistic 2

b=0.2 b=0.5

T=100 T=200 T=500 T=100 T=200 T=500

7.1054274e-15 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
84.477243 6.0987575 11.968264 171.48689 157.48586 74.523249

Statistic 3

-6.5342252e-15 -1.1065710e-14 -3.5527137e-15 4.0993461e-15 6.4125221e-14 -4.5474735e-13
0.0000000 -2.1233290e-16 0.0000000 0.0000000 0.0000000 -7.1331829e-15

6.8870545e-15 0.0000000 0.0000000 2.5665165e-15 0.0000000 -7.1054274e-15
1.2754486e-13 4.5028131e-15 0.0000000 1.2897513e-14 1.7869588e-15 -3.1671026e-26
9.0949470e-13 1.2046207e-13 0.0000000 3.6121148e-14 2.2737368e-13 3.1671257e-26

6787.1522 1245.6222 2674.8814 1014.3788 1327.6723 2308.3416

6 Illustration

6.1 The Cayley transform

When the dimension is 3, the orthonormal matrix Q with eigenvalues different from 1 is

obtained from the rotations of a skew-symmetric matrix around an axis. The vector (x, y, z)

is a unit axis of rotation scaled by tan(θ/2), where θ is the angle. The rotations with angle

π are excluded. More precisely, the orthonormal matrix is given by:

Q =

 w2 + x2 − y2 − z2 2(xy − wz) 2(wy + xz)
2(xy + wz) w2 − x2 + y2 − z2 2(yz − wx)
2(xz − wy) 2(wx+ yz) w2 − x2 − y2 + z2

 ,
where w2 + x2 + y2 + z2 = 1. We use this normalization to be able to easily derive the

conditions on x, y, z to solve the remaining up to permutation identification. Under this
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form, the permutations on the components of the sources are equivalent to permutations

between x and y, x and z, y and z 7. This allows us for x < y < z, say. Moreover, the

sources are defined up to their sign. The last identification issue is solved by considering the

positivity constraints:

0 ≤ x ≤ y ≤ z, x2 + y2 + z2 ≤ 1, with w =
√

1− x2 − y2 − z2 (4.5)

that will be taken into account in the optimization with respect to x, y, z 8.

6.2 Estimation results

We apply the GCov-based inference methods to a trivariate series of daily financial returns.

The series of 750 daily returns on Tesla, Meta and Netflix are recorded over the period of

2019/01/02 until 2021/12/31 9. The series are displayed in Figure 1.
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Figure 1: Daily Returns on Tesla, Meta and Netflix
black: Tesla, red: Meta, green: Netflix

7This is not the case for the normalization initially proposed by Cayley, in which the matrix is divided by
w2 + x2 + y2 + z2 and then normalized with w = 1.

8This solves the identification on the interior of the set of x, y, z. There still exist remaining identification
issues on the boundaries of the set. For example, it is easy to check that two permutation matrices are
obtained for x = y = z = 0 and for x = y = z = 0.5.

9The returns are computed as the log differences of daily adjusted prices from Yahoo Finance Canada
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The ICA is applied to a series of residuals obtained after pre-whitening of the return

series. Our approach can be compared with the pre-whitening in macroeconomics, where the

ICA is applied to the residuals of an estimated (structural) VAR model:

Yt = µ+ ΦYt−1 + CQut,

where C is a low-triangular matrix (Cholesky decomposition matrix) and Q is an orthogonal

matrix. In a 3-dimensional VAR model, the number of the parameters characterizing the

cross-sectional non-linear dependence is 9, with 6 parameters in matrix C and 3 parameters

in matrix Q. This total number of parameters is less that the number of parameters in the

variance-covariance matrix of the residuals Σ = V (Yt − µ − ΦYt−1) which is 6, implying an

identification problem. Hence, in macroeconomics, the ICA is applied to the residuals, which

are linearly pre-whitened by the VAR model.

Our application shows that the ICA results depend on the quality of the pre-whitening,

and a linear pre-whitening may not suffice. In order to highlight this effect, we proceed in

two steps.

a) Linear pre-whitening

The ACF analysis shows that the returns on Tesla are serially uncorrelated, while the

returns on Meta and Netflix have small but statistically significant autocorrelations at lag

1. Therefore, these two return series are filtered by autoregressions. Next, all three return

series are transformed into a multivariate series with an identity variance-covariance matrix

by using the Cholesky decomposition. This is a linear pre-whitening, routinely used in

macroeconomics and finance.

The GCov-based method involving the autocovariances of the pre-whitened series and

their squares for a total number of 12 cross-moments results in an empty confidence set of

the identified set for matrix Q, i.e. parameters x, y, z. This implies that the hypothesis of

the existence of independent sources which are strong white noises is strongly rejected. More

precisely, the hypothesis is rejected because either the strong white noise condition, or the

independence of sources condition does not hold.

b) VAR-ARCH pre-whitening

As the financial returns display time-varying volatility, we expect the rejection to be

caused by the conditional heteroscedasticity, i.e. by the autocorrelation of squared returns.

We estimate a VAR-ARCH model, and then transform the residuals by using a Choleski

decomposition, in order to obtain standardized residuals with an identity variance-covariance

matrix.
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Figure 2 displays the 3-dimensional scatterplot describing the confidence set of the implied

identified set, obtained on a grid with width 0.01. This scatterplot is the analogue of intervals

and unions of intervals reported in Tables 2 and 3 for a univariate parameter. Figure 2 shows

two subsets, suggesting a global identification issue. The pattern of the upper subset is

interesting, as it is close to a manifold of dimension 2. It shows that the degree of (implied)

under-identification of the orthogonal matrix Q is equal to one. The visual analysis of the

confidence set provides information on the possibility to identify before the rank analysis of

Section 4.2 is applied.

Note that this result is obtained with a standard VAR-ARCH model, without an adjust-

ment for time varying risk premia (i.e. ARCH-in-mean), or for time-varying leverage effect.

Nevertheless, the leverage effect is accounted for by the portmanteau statistic, which contains

the autocovariances of the series and its squared values.
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Figure 2: Confidence Set of Tesla, Meta and Netflix

7 Concluding Remarks

Independence restrictions are often used in static or dynamic models either directly for com-

puting nonlinear impulse response functions, accommodating heavy tails of primitive shocks,

or indirectly when deriving the asymptotic results. In all these cases, the restrictions provide

information on the parameters of interest and facilitate its identification.
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The independence restrictions can be written in terms of zero covariance restrictions on

the transformed series and summarized by a portmanteau-type statistics. In this paper, we

explained how the residual-based portmanteau statistics with the GCov parameter estima-

tor can be used to define asymptotic confidence sets of the implied identified set with the

exact asymptotic level and to test the pairwise independence hypotheses. We have also de-

veloped an approach for determining the degree of under-identification based on choosing a

sequence of different designs for the portmanteau statistics. This is illustrated by examples

of independent component analysis and an application to financial returns.

The application highlights the importance of selecting an appropriate pre-whitening ap-

proach to eliminate nonlinear serial dependence before applying the independent component

analysis (ICA) approach to reveal independent latent sources. When the dimension n is

strictly larger than 3, a partial visualization of the confidence set for Q can be obtained

by considering cuts and/or projections of this set on spaces of dimension up to 3. The un-

certainty on the orthonormal transformation has to be taken into account when functions

depending on Q, such as the impulse response functions, are evaluated.
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Appendix 1

The Asymptotic Linear Approximations

Section 4.4 shows that for a univariate process the asymptotic results can be derived from

an asymptotic virtual linear model. This possibility exists also in the multivariate framework

[ Gourieroux, Jasiak (2022), supplementary material].

i) The fact that the estimated
√
T ρ̂T (h; θ0), h = 1, .., H are independent standard normal

variables under the independence hypothesis in Section 4.4 has the following multivariate

extension [Chitturi (1976)]:

Under the independence of the error terms, the estimated autocovariances
√
T Γ̂T (h; θ0), h =

1, ..., H are asymptotically independent with identical distributions:

vec[
√
T Γ̂T (h; θ0)]

d→ N [0,Γ(0, θ0)⊗ Γ(0, θ0)], (a.1)

where ⊗ is the Kronecker product.

ii) Then, the asymptotic quadratic expansion of the portmanteau dependence measure

around a true value leads to solutions satisfying the limiting first-order conditions [see,

Gourieroux, Jasiak (2022), eq. (a.8)-(a.9) in the supplemental material].

H∑
h=1

{
∂vecΓ(h; θ0)′

∂θ
[Γ(0; θ0)−1 ⊗ Γ(0; θ0)−1]

∂vecΓ(h; θ0)

∂θ′

}√
T (θ̂T − θ0)

≈
H∑
h=1

{
∂vecΓ(h; θ0)′

∂θ
[Γ(0; θ0)−1 ⊗ Γ(0; θ0)−1]vec [

√
T Γ̂T (h; θ0)]

}
. (a.2)

Thus, asymptotically the elements of the estimated implied identified set are the least

squares solutions in a virtual linear model:

vh = z′h
√
T (θ − θ0) + wh, h = 1, ..., H, (a.3)

where vh = vec [
√
T Γ̂T (h; θ0)], zh = ∂vecΓ(h;θ0)′

∂θ
and the wh are independent Gaussian vectors

with mean zero and variance-covariance matrix Γ(0; θ0)⊗ Γ(0; θ0).
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The associated virtual matrices are:

V =

 v1
...
vH

 , Z =

 z′1
...
z′H

 .

In general, the virtual matrix Z is not of full rank, which causes a problem of partial

identification. More precisely, there exists an element θ̂∗T of Θ̂∗T that is asymptotically such

that:

√
T (θ̂∗T − θ0) = [Z ′diag[Γ(0; θ0)−1 ⊗ Γ(0; θ0)−1]Z]+Z ′diag[Γ(0; θ0)−1 ⊗ Γ(0; θ0)−1]V, (a.4)

where Σ−1 ≡ diag[Γ(0; θ0)−1 ⊗ Γ(0; θ0)−1] is a diagonal matrix with identical blocks and +

denotes the pseudo-inverse of a matrix.

Then, all other elements of
√
T (Θ̂∗T − θ0) are deduced by adding to this element, that

plays the role of an origin, the null space of Z ′diag[Γ(0; θ0)−1 ⊗ Γ(0; θ0)−1]Z. In other words

asymptotically
√
T (Θ̂∗T − θ0) is a linear (stochastic) manifold.

We can also replace the asymptotic GLS expression (a.4) by an OLS expression, by

replacing Z by Z̃, V by Ṽ , with z̃h = zh[Γ(0; θ0)−1/2 ⊗ Γ(0; θ0)−1/2], ṽh = [Γ(0; θ0)−1/2 ⊗
Γ(0; θ0)−1/2]vh.

Appendix 2

Proof of Proposition 4

i) By using the notation of Appendix 1, we have:

V θ̂1T = [Z ′1Σ−1
1 Z1]−1, V θ̂2T = [Z ′2Σ−1

2 Z2]−1,

where we can decompose Z2,Σ2 into:

Z2 =

(
Z1

Z̃2

)
,Σ2 =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, it follows from the block inversion of matrix Σ2 that:

Z ′2Σ−1
2 Z2 − Z ′1Σ−1

1 Z1

= (Z̃2 − Σ21Σ−1
1 Z1)′(Σ22 − Σ21Σ−1

1 Σ12)−1(Z̃2 − Σ21Σ−1
1 Z1) >> 0. (a.5)

The result follows.
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ii) The result follows from the expansion (a.4) applied to the two designs and re-applying

the above block-inversion.

Appendix 3

Proof of Proposition 5

Let us assume designs D1 ⊂ D2. Then, we have:

√
T ξ̂∗1T ∼ Ṽ ′1 [Id1 − Z̃1(Z̃ ′1Z̃1)−1Z̃ ′1]Ṽ1. (a.6)
√
T ξ̂∗2T ∼ Ṽ ′2 [Id2 − Z̃2(Z̃ ′2Z̃2)−1Z̃ ′2]Ṽ2. (a.7)

There exist various ways of nesting the designs either by increasing the number H of lags,

or by increasing the number of transformations a.

Let us consider the first case, where the set of transformations is the same for D1 and

D2, but H1 < H2. When moving from D1 to D2, this is as if we increase the number of

observations in the virtual model (a.3) by introducing new indexes h, h = H1 + 1, ...., H2.

Therefore, we can write: Ṽ1 = (Id, 0)Ṽ2. It follows that:

√
T ξ̂∗1T = Ṽ2

(
Id1

0

)
[Id1 − Z̃1(Z̃ ′1Z̃1)−1Z̃ ′1](Id1, 0)Ṽ2, (a.8)

and similarly, we can write the difference between the optimal values in the objective functions

as:

√
T ξ̂∗2T −

√
T ξ̂∗1T = Ṽ ′2ΩṼ2,

where Ω is a symmetric matrix and Ṽ2 is a standard Gaussian vector. It is known that such

a quadratic form follows a chi-square distribution if and only if Ω2 = Ω, that is if Ω is an

orthogonal projector, and follows a mixture of chi-square distributions, otherwise.

In our framework it is easy to see that Ω does not satisfy the condition Ω2 = Ω. Note

however, that asymptotically
√
T ξ̂∗1T ,

√
T ξ̂∗2T are quadratic forms of the same Gaussian vector

and their joint distribution can be easily approximated by simulations after replacing Z by

their estimates.

A similar result is obtained when considering for example the difference
√
T ξ̂2T (θ̂1T ) −

√
T ξ̂1T (θ̂1T ) when θ is identified with design D1.
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On-Line Appendix 1

Closed-Form Expressions of Power Covariances

Let us consider the framework of ICA with dimension 2 and the observations given by:

Y = Q′u,

where the rotation matrix is parametrized by the angle θ:

Q′ =

(
cos θ − sin θ
sin θ cos θ

)
.

Then, we have

Y1 = u1 cos θ − u2 sin θ, Y2 = u1 sin θ + u2 cos θ.

We assume that the sources u1, u2 are independent, with means zero Eu1 = Eu2 = 0 and

unit variances: E(u2
1) = E(u2

2) = 1. Then it is possible to derive the closed-form expressions

of the power covariances up to power 3. We have:

Cov(Y1, Y2) = 0,

Cov(Y 2
1 , Y2) = cos2 θ sin θE(u3

1) + cos θ sin2 θE(u3
2),

Cov(Y 3
1 , Y2) = cos3 θ sin θ[E(u4

1)− 3]− cos θ sin3 θ[E(u4
2)− 3],

Cov(Y 2
1 , Y

2
2 ) = cos2 θ sin2 θ[E(u4

1) + E(u4
2)− 6],

Cov(Y 2
1 , Y

3
2 ) = cos2 θ sin3 θE(u5

1) + cos3 θ sin2 θE(u5
2)

+E(u3
1)[3 cos4 θ sin θ + 6 cos2 θ sin3 θ + sin5 θ − sin3 θ]

+E(u3
2)[3 cos θ sin4 θ − 6 cos3 θ sin2 θ + cos5 θ − cos3 θ],

Cov(Y 3
1 , Y

3
2 ) = cos3 θ sin3 θ[E(u6

1)− E(u6
2)]

+[E(u4
1)− E(u4

2)][3 cos5 θ sin θ − 9 cos3 θ sin3 θ + 3 cos θ sin5 θ]

+E(u3
1)E(u3

2)[9 cos2 θ sin4 θ − 9 cos4 θ sin2 θ]

−[E(u3
1)− E(u3

2)] cos3 θ sin3 θ.

The closed-form expressions can be used to characterize the distributions of sources u1, u2,

for which a given power covariance is not-informative, i.e. equal to zero for any value of θ.
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On-Line Appendix 2

Additional Assumptions

The additional assumptions given below complete Assumption A.1 and are sufficient to derive

Propositions 1 and 2 by applying the results in Shi, Shum (2015).

Additional Assumptions AA:

i) The parameter space Θ is compact with a non-empty interior.

ii) The function ξ(θ) is twice continuously differentiable on the interior of the parameter

space

iii) The closure of the interior of the implied identified set is such that:

cl[intΘ∗0(f0)] = Θ∗0(f0).

iv) The rank of ∂γ(θ)
∂θ′

is constant on the interior of the implied identified set.

Condition AA(ii) implies the first part of Assumption (4) in Theorem 2.1 of Shi, Shum (2015)

and corresponds to the assumption in Andrews et al. (2004). Condition AA iv) is the second

part of their Assumption (4).
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