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1 Introduction

For almost 100 years following the introductory article of Kermack, McKendrick [33], the

SIR (Susceptible-Infected-Recovered) model has remained the primary tool of analysis

for epidemiological studies and has inspired a considerable number of extensions [see

e.g. [29], [9], [51] for an overview]. However, in recent applications to the Coronavirus

pandemic, the results and forecasts obtained from SIR-type models may lack robustness.

This concerns especially the conditions of collective (herd) immunity, and the size and

timing of the peak of the epidemic. Moreover, the results can vary across the SIR-type

models [see e.g. [14] for estimation in an early phase of the epidemic and [34] for a

simulation study of the reproduction number R0 estimator].

This paper introduces a common stochastic representation of SIR-type epidemiolog-

ical models to facilitate the comparison between the models and their outcomes. This

representation is a discrete time transition model, which is used to define a typology of

epidemiological models with respect to the number of states (or compartments in the epi-

demiological terminology), their interpretation and the causal structure of time dependent

transition matrices.

The discrete time transition model is characterized by a transition matrix, which de-

termines the probabilities of transitions between the states (compartments) distinguished

in an epidemiological model. As such, it can easily accommodate individual and aggregate

count data sampled at various frequencies. In contrast, when a continuous time deter-

ministic differential system is adapted to data sampled at a fixed interval, a discretization

bias arises. This discretization bias affects the estimated collective (herd) immunity ratio

and renders uncertain its reliability and even existence. Moreover, a time discretized SIR-

type model is shown to provide different results in applications to data sampled at various

frequencies, such as the daily or weekly frequencies, due to its lack of robustness with re-

spect to the time unit. In particular, this concerns the reproduction number, which is a

commonly used epidemiological parameter. As, in practice, the aggregate epidemiological

data are updated daily, a one day timestep is adopted as the time unit of our discrete

time stochastic transition models.

When the (cross-sectional) aggregate counts are observed, all SIR-type models are

shown to have a (Gaussian) (pseudo) nonlinear state space representation, which is con-
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venient for statistical inference. We demonstrate that a quasi-maximum likelihood (QML)

estimation method can be applied to this pseudo state space representation by using nu-

merical optimization with an extended, or unscented Kalman filter algorithm for approx-

imating the unobserved state probabilities.

The paper is organized as follows. The stochastic transition model is introduced in

Section 2. First, we define the stochastic framework of individual histories, which is next

transformed into a deterministic dynamic model for the cross-sectional count aggregates

over an infinitely large number of individuals. Section 3 examines the features of the

2-state SI and 3-state SIR models. We perform the sensitivity analysis to see how the

peak of new infections and the time-to-peak depend on the transmission parameters. In

Section 4, the (pseudo) state space representation of an epidemiological model is derived

for statistical inference. In Section 5, we discuss the case when the transmission function

displays either a deterministic, or stochastic variation over time. We show that these

extensions of the model can also be examined in a (pseudo) state space framework. Sec-

tion 6 concludes. The typology of SIR type models with more than 2 states is given in

Appendix 1. Proofs are gathered in Appendix 2.

2 Contagion Modelling

This Section introduces a general specification that encompasses the main epidemiological

SIR-type models. It is a discrete time stochastic transition model that allows for mod-

elling of individual histories during an epidemic while avoiding the limitations of a time

discretized continuous time deterministic epidemiological model, such as the following:

The time discretized version of a continuous time SIR-type model may depend on the

time unit and need to be re-adjusted for the sampling frequency of the data. Moreover,

the reproduction number computed from the time discretized model depends on the time

unit as well, and takes a different value when computed from daily or weekly data. As

mentioned earlier in the Introduction, we consider the daily frequency.

2.1 The Stochastic Transition Model

We consider a large panel of individual histories Yi,t, i = 1, .., N, t = 0, .., T , where the

variable Y is qualitative polytomous with J alternatives denoted by j = 1, ..., J . These
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alternatives are the states of infection, recovery, or death, depending on the model specifi-

cation. The discrete time t is assumed to be measured in days, as daily data are commonly

used in epidemiological studies.

Assumption A1: The individual histories are such that:

i) The variables Yi,t, i = 1, .., N at time t fixed have the same marginal (i.e. cross-

sectional) distribution. This common distribution depends on time t and is discrete. It is

determined by the vector p(t) of size J with components:

pj(t) = P (Yi,t = j), j = 1, .., J.

These components are non-negative and sum up to 1 .

ii) The processes (Yi,t, t = 1, ., T ), i = 1, .., N , are independent, heterogeneous Markov

processes of order 1, with common transition probabilities. The transitions from date

t− 1 to date t are characterized by the J × J transition matrix Π[p(t− 1)]. This matrix

has nonnegative elements and each of its rows sums up to 1.

The vector p(t) represents the cross-sectional (marginal) probabilities of states. In

practice, the cross-sectional probability p(t) is close to the cross-sectional frequency f(t),

computed from the values of Yi,t. Then, transition matrix Π[p(t−1)] is close to Π[f(t−1)].

However the transitions between states have to be defined with respect to p(t−1) to remain

independent of the population size.

Assumption A2: i) The epidemic starts at time 0. ii) At time 0 all individuals are in

state j = 1, which is interpreted as the susceptible compartment.

Under Assumptions A1 and A2, the individual histories Yi,t are independent and iden-

tically distributed. Therefore, the individuals are exchangeable, i.e. have similar risk

factors (homogenous population).

The initial condition implies nonstationary evolutions of the processes of individual

histories over time. This nonstationarity and the time dependence of the transition matrix

through p(t − 1) only are the distinct characteristics of a SIR-type model. There is one

exception, however: When the SIR model is a homogenous Markov process, the transition

matrix Π is independent of p(t− 1).

In general, the transition matrix Π is time dependent. Then, the structural epidemio-

logical model is determined by the number of states, their interpretations, and the causal
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structure of the transition matrix. More specifically, the elements of the transition matrix

can be either zeros, constants, or functions of marginal probabilities p(t − 1), which is

a special form of time dependence. The models differ with respect to the form of those

functions and of the components of p(t− 1), which are their arguments.

The examples of commonly used SIR-type specifications are described in Appendix 1.

Although most of the SIR-type models are heterogeneous Markov models, the homoge-

neous Markov model mentioned above can be used for either a local analysis (see Section

2.2), or for deriving the lower and upper bounds on the trajectories of marginal proba-

bilities p(t). Those bounds are mainly determined by the maximum (resp. minimum) of

moduli of all eigenvalues of Π[p(t− 1)] over time t, called the Lyapunov exponents.

2.2 The Deterministic Model

Assumptions A1 and A2 defining the stochastic dynamics of Yi,t lead to a deterministic

nonlinear recursive model for the dynamics of marginal probabilities p(t). This determin-

istic representation (or mechanistic model, see [10]) is obtained by applying the Bayes

formula and is given by:

p(t) = Π [p(t− 1)]′p(t− 1), t = 1, .., T, (2.1)

with initial condition: p(0) = (1, 0, .., 0)′. As shown in Section 4, system 2.1 can be used

as a system of estimating equations for statistical inference, if the frequency counterparts

of p(t) are observed.

System 2.1 can be rewritten to define the dynamics of changes in marginal probabili-

ties:

∆p(t) = p(t)− p(t− 1) = {Π [p(t− 1)]− Id}p(t− 1), (2.2)

where Id denotes the identity matrix. The equation 2.2 highlights the role of the generator:

Π [p(t− 1)]− Id, in determining the changes in marginal probabilities ∆p(t).

Remark 1: Discretization bias.

A major part of literature considers epidemiological models written as deterministic

differential systems in continuous time. A continuous time analogue of the deterministic

model 2.2 is:
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dp(t)/dt = {Π[p(t)]− Id}p(t). (2.3)

In general, the system of equations 2.2 is not the exact time discretized version of the

continuous time system 2.3 [see Appendix 2 for the example of a rational recursive system

in the SI model]. Thus, due to the nonlinearities in the dynamics, a chaos effect can arise

and induce considerably different evolutions of p(t) defined from 2.2 and 2.3, especially

over the medium and long run.

To highlight the differences between the discrete and continuous time modelling, let

us consider the 2-state SIS model with a linear force of infection, i.e. a linear function π

(see Appendix 1). The probability of being infected p2(t) satisfies the following recursive

equation 1:

p2(t) = [βp2(t− 1)][1− p2(t− 1)] + (1− γ)p2(t− 1),

in discrete time and

dp2(t)/dt = bp2(t)[1− p2(t)]− cp2(t),

in continuous time. Even though both equations look similar and contain similar param-

eter symbols, the following differences can be pointed out:

i) The discrete time version of the SIS model is not time consistent, as p2(t) at lag 2

derived by recursive substitution is a quartic function of p2(t−2). Hence, this specification

needs to be modified whenever the timestep between observations changes. In practice,

this means that a specification valid for daily data is not valid for weekly data. On the

contrary, the continuous time version of SIS model is time consistent.

ii) The parameters (β, γ) and (b, c) in both the discrete and continuous time SIS models

given above depend on the selected time unit too. In the continuous time model how-

ever, the contagion parameters b and the recovery intensity c are multiplied by the same

factor when the time unit is changed. Then, the reproduction number R0 defined as the

1Coefficients β, γ are assumed constrained to ensure that p2(t) takes values between 0 and 1, for any
p2(t− 1) in [0,1].
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expected number of individuals infected by a new infected individual during his/her in-

fectious episode is equal to R0 = b/c 2. It is also invariant with respect to the time unit.

As the discrete time model is not time consistent, the reproduction number computed di-

rectly from the time discretized model R∗0 = β/γ is not invariant with respect to the time

unit either. Hence, different values of R∗0 are obtained from daily and weekly data. Any

result obtained from the time discretized differential equation (called the Euler discretiza-

tion) and interpreted in the continuous time framework needs to be used with caution.

This finding calls into question the reliability of the estimated reproduction number R0

and some of its transforms, such as the asymptotic value p2(∞), which are important

components of epidemiological studies.

iii) Although it is common to approximate the trajectory of a continuous time model

by a trajectory of one of its Euler discretizations with a small time unit [see e.g. [17],

Section 3.1], these two trajectories can still be quite different even if the timestep is

small. This difficulty has been first revealed in the SIR model with linear contagion, for

which the exact solution in continuous time has been derived [27]. More precisely, let us

consider a SIR model with a transmission function π11(p) = a(p1)p2 that depends also

on the proportion of susceptibles (i.e. the population-at-risk). For some specifications of

function a(.), the continuous time model has no collective immunity. Yet, the trajectories

of crude Euler discretizations of this SIR model always show the collective immunity exists

[see, [3], [10], Section 2.1]. In some sense, the notion of collective immunity is entirely

model-based, and is not robust with respect to changes from discrete to continuous time.

Remark 2: Non-differentiability of a continuous time frequency model

It is common to write the epidemiological model as a differential system of frequencies

f(t) computed by dividing the counts in each compartment by the population size, instead

of marginal probabilities p(t), as follows:

df(t)/dt = [Π[f(t)]− Id]f(t), (2.4)

[see e.g. [17], eq. (2.1) and eq. (2.2)]. This differential system is not compatible with the

set of admissible values of vectors f(t) 3. The components of f(t) are not continuously

2R0 has the same expression in the SIR and SI models, as the SI model is the special case of the SIR
model (see, Section 3.2.1).

3It is also the case when a stochastic feature is introduced by replacing the deterministic differential
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valued functions, as they take on values equal to the multiples of 1/N , which implies

the non-differentiability of function f(t). Therefore, this type of representation is mis-

leading. Moreover, as the model is deterministic, it cannot take into account the ex-ante

uncertainty about vectors f(t), which are random.

2.3 Local Expansions

Let us now examine the dynamics of marginal probabilities of states p(t). The analysis of

their evolution during an epidemic can be simplified if we focus on either the beginning,

or the end of the epidemic and consider local expansions.

2.3.1 Beginning of the epidemic

At time t = 0, the initial value is: p(0) = (1, 0, .., 0)′. Below, we consider expansions

of orders 1 and 2 of the recursive system 2.1 in a neighbourhood of p(0).

i) First-order expansion:

The first-order expansion is:

p(t) = Π[p(0)]′p(t− 1), (2.5)

which corresponds to a homogeneous Markov model with transition matrix Π[p(0)]. It

can be solved analytically as:

p(t) = Π [p(0)]
′tp(0), (2.6)

We find that locally the components of marginal probabilities p(t) are combinations of

exponential functions (and also of sine functions, cosine functions, which can possibly be

multiplied by polynomials, if some eigenvalues of Π [p(0)] are complex and/or multiple).

Their dynamics are constrained by the specific form of matrix Π[p(0)], which is a transition

matrix. More specifically, all components of p(t) have to take values between 0 and 1.

In order to satisfy this restriction, locally, the marginal probability p1(t) is exponentially

decreasing over time, whereas marginal probabilities of other states pj(t), j = 2, .., J are

exponentially increasing over time.

equation by a stochastic one, such as a multivariate Jacobi process to account for the positivity and
unit mass restrictions on the components of f(t) [see, [1], [31], [36] for examples of stochastic differential
epidemic models and [21] for the multivariate Jacobi process].
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ii) Second-order expansion

The second-order expansion leads to the dynamic system:

p(t) = {Π [p(0)] +
J∑

j=1

dΠ [p(0)]/dpj pj(t− 1)}′p(t− 1), (2.7)

which is a Riccati quadratic recursive system without a closed-form solution.

2.3.2 End of the epidemic

In general, the epidemiological models include some absorbing states, such as the

states of deceased, or recovered (see, examples in Section 3 and Appendix 1). In this case,

the sequence of marginal probabilities p(t) has a limit when t→∞ : p(∞), say. If there

is only one absorbing state J , say, we can get p(∞) = (0, 0, .., 1)′. Then, the first- and

second-order expansions can be performed in a neighbourhood of p(∞), yielding dynamic

approximations systems analogous to systems 2.5 and 2.7.

3 Examples

Let us now study the dynamic properties of two commonly used epidemiological models,

which are the discrete time SI and SIR transition models, respectively (see Appendix 1).

We derive the dynamic equations of marginal probabilities and describe their behavior at

the beginning and the end of an epidemic.

3.1 SI Model

3.1.1 The deterministic model

The transition model representation of the deterministic SI model involves the following

2× 2 transition matrix:

row 1, S: 1− π(p2); π(p2).

row 2, I: 0, 1.

The state I of infected, still infectious and immunized is the absorbing state. Function

π is the contagion function (called the force of infection, or transmission function) that

satisfies the following assumption:

Assumption A3: π is a non-decreasing function of p2, which takes values between 0 and

1.
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The value π(0) can be interpreted as an exogenous component of the contagion. In an

open economy, it can be due to the effect of tourism, international trade and migration.

In a closed economy, such as the world in its entirety, it can be set equal to zero. There

is a strict (endogeneous) contagion effect if function π is strictly increasing.

Example 1: A common specification of the force of infection π is the linear function:

π(p2) = b p2, where parameter b takes values between 0 and 1, or a logistic function of p2:

π(p2) = exp(a+ bp2)/[1 + exp(a+ bp2)],

where coefficient b is non-negative. In the logistic force of infection, the exogenous infec-

tion rate is measured by: exp a/[1 + exp a] and the strict endogenous contagion effect by

parameter b. Other functional forms have also been considered in the growth literature

and obtained, for instance, by replacing p2 by a power of p2 in the expressions given above

[see e.g. [44], [39], Table 1, [8], [54], [28]].

The form of the transition matrix given above leads to the following nonlinear recursive

equation of order 1 for the marginal probability of being infected:

p2(t) = π(p2(t− 1))[1− p2(t− 1)] + p2(t− 1). (3.1)

Proposition 1: Under Assumption A3, p2(t) is a non-decreasing function of time with

exponential lower and upper bounds:

1− [1− π(0)]t ≤ p2(t) ≤ 1− [1− π(1)]t.

It tends to 1 when t→∞. Hence, there is no collective immunity in the discrete time SI

model.

Proof:

i) It is non-decreasing, as p2(t)− p2(t− 1) is non-negative.

ii) The bounds are obtained by observing that p2(t) is an increasing function of π.

iii) Since p2(t) is non-decreasing and bounded by 1, it converges to a value p2(∞). This

limit is equal to 1, by considering equation 3.1 at t =∞.

QED

In particular, if there is no contagion effect, i.e. if π(p2) is constant and equal to π,

then the marginal probability of being infected is: p2(t) = 1− [1− π]t.
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3.1.2 Local Expansions

It is interesting to consider the expansions of the dynamics of the probability of being

infected in the SI model at the beginning of the contagion,i.e. when p2 is close to zero, or

at the end of the contagion, i.e. when p2 is close to 1.

i) Beginning of the contagion

A second-order expansion leads to:

p2(t)− p2(t− 1) ∝ [π(0) + dπ(0)/dp p2(t− 1)][1− p2(t− 1)]. (3.2)

ii) End of the contagion

The second-order expansion in a neighbourhood of p2 = 1 yields:

p2(t)− 1 = [π(1) + dπ(1)/dp [p2(t− 1)− 1]][1− p2(t− 1)] + p2(t− 1)− 1. (3.3)

Both approximations lead to discrete time logistic recursive equations for the probabil-

ity of being infected p2(t) and the probability of not being infected 1− p2(t), respectively,

although with different parameters.

3.1.3 Continuous time analogue

The continuous time analogue of the recursive equation 3.2 is:

dp2(t)/dt = (α + βp2(t))(1− p2(t)), (3.4)

where α = π(0), β = dπ(0)/dp are both nonnegative.

Equation 3.4 can be solved analytically.

Proposition 2: i) Assuming that the beginning of the epidemics is at time t = 0, the

solution of equation 3.4 is:

p2(t) = [α exp[(α + β)t]− α]/[α exp[(α + β)t] + β].

ii) If β > α, the solution is such that the derivative dp2(t)/dt attains the maximum

when p2(t) = (β − α)/(2β). The time-to- inflection is reached at t∗ = log(β/α)/(α+ β).

Proof: see Appendix 2.
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It follows that the probability of being infected p2(t) is a logistic function of time.

Moreover, if the strict contagion effect is large as compared to the exogenous component

of the contagion, there is a peak in the changes of ratios of infected individuals over time.

The size and timing of the peak depend on the transmission parameters. However, the SI

model has only two parameters, which is insufficient to independently determine the size

of the peak, the time to peak and other characteristics such as the flatness of the curve

at the peak (the so-called ”plateau” effect) as well as the asymmetry of the curve with

respect to the peak.

The above outcomes of the SI model 3.2 are based on a local expansion of the initial

nonlinear recursive equation and are therefore valid at the beginning of an epidemic only.

The length of the period of time over which such an expansion is valid depends on function

π, and also on the values of parameters a, b in the parametric SI model in Example 1.

There is no collective immunity in either continuous, or discrete time SI model.

3.1.4 Sensitivity analysis

Let us consider below the parametric SI model in Example 1 and illustrate graphically

its dynamics. At time 0, we fix the probability of being infected p2(0) = 0 and set the

parameters α, β, where α > 0, β > 0 equal to α = 0.005, β = 0.85.

Figure 1 below displays the dynamic of solution p(t) which satisfies the continuous

time SI model 3.4, i.e. with the logistic evolution given in Proposition 2, and its discrete

time Euler approximation at the beginning of an epidemic given in equation 3.2. It is

computed with the same values of parameters α, β given above and the same time unit

of one day. Figure 1 shows that the daily discrete time approximation 3.2 can be very

misleading when it is used for forecasting over a medium, or long run.

[Insert Figure 1: Evolutions of p(t), SI Model]

When β < α, we get an increasing concave curve that tends to 1. When β > α, as in

Figure 1, we get an exponential convex increase for small t, followed by an increasing

concave pattern of convergence to 1.

The evolutions of changes of p(t) are shown in Figure 2:

[Insert Figure 2: Evolutions of Changes in p(t), SI Model]

When β > α, we get a hump-shaped pattern with the curve decreasing at a slower rate
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after the peak than increasing before the peak.

We complete the sensitivity analysis of the main features of the SI model by examining

the size of peak (Figure 3) and the time-to-inflection (Figure 4) as functions of parameters

α, β.

[Insert Figure 3: Size of Peak, SI Model]

[Insert Figure 4: Time-to-Inflection, SI Model]

3.2 SIR Model

3.2.1 The model

Let us now consider the SIR model (see Appendix 1) with three states: S for Suscepti-

ble; I for Infected, infectious, not immunized; R for Recovered, immunized and no longer

infectious. Its transition model representation involves the 3× 3 transition matrix, which

is triangular and given by:

row 1, S: 1− π(p2); π(p2) ; 0

row 2, I : 0; p22; p23

row3,R : 0; 0; 1

where p23 is strictly positive, and R is the absorbing state.

In the limiting case p23 = 0, the 2 × 2 North-West subset of the transition matrix

corresponds to the SI model discussed in Section 3.1, with two absorbing states in the

SIR model: I and R. In this limiting case, state R cannot be reached starting from an

initial state S of susceptible individuals.

The marginal probabilities of states I and R satisfy two linearly independent estimating

equations:

p2(t) = π[p2(t− 1)][1− p2(t− 1)− p3(t− 1)] + p22p2(t− 1), (3.5)

p3(t) = p23p2(t− 1) + p3(t− 1).

From the second equation of system 3.5,we get:

p2(t− 1) = [p3(t)− p3(t− 1)]/p23, (3.6)
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and, by substituting into the first equation, we derive the recursive equation satisfied by

p3(t):

p3(t) = p3(t− 1) + π[(p3(t− 1)− p3(t− 2))/p23][p23 − p3(t− 1) + (1− p23)p3(t− 2)]

+ p22[p3(t− 1)− p3(t− 2)]. (3.7)

Proposition 3 i) The sequence p1(t) [resp. p3(t)] is decreasing [resp. increasing].

ii) The sequence p3(t) satisfies a nonlinear recursive equation of order 2.

iii) The sequence p2(t) is a linear moving average of order 1 in p3(t+ 1).

The higher order of temporal dependence in p3(t) is due to the interpretation of state I

as a transitory state between states S and R. Thus, the dynamics of p3(t) has to account

for both the entries into and exits from the state I.

Let us now discuss the behaviour of marginal probabilities p(t) when t tends to infinity.

Since p3(t) is increasing, and is upper bounded by 1, its limit exists. It is denoted by

p3(∞). From equation 3.6, it follows that the limit of p2(t) is zero. Then, by taking into

account the first equation of 3.5, we get:

Lemma 1: When t→∞,

i) p2(t) tends to 0.

ii) If π(0) is different from 0, p3(t) tends to 1.

iii) If π(0) = 0, p3(t) might tend to a limiting value p3(∞) < 1.

Determining the conditions for a convergence to p3(∞), strictly less than 1 and com-

puting this limiting value, which is interpreted as the collective immunity ratio are com-

mon topics in the epidemiological literature. For the discrete time SIR model, it has been

proven in [3] that p3(∞) is always strictly less than 1. However, estimation errors on a

long run parameter p3(∞) are large in an early phase of epidemic. Hence, the estimated

ratio of collective immunity may be unreliable.

3.2.2 Homogeneous Markov

As mentioned in Section 3.1, it is interesting to consider the homogeneous Markov

chain, obtained when function π is constant (no contagion). Then, the evolution of p(t) is
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driven by a linear recursive equation of order 1: p(t) = Π′p(t−1), where Π is a triangular

matrix with eigenvalues: 1− π, p22, 1. The following proposition is obtained:

Proposition 4: For a constant π, we have: p(t) = A(1− π)t +Bpt22 + C, where A,B,C

are 3-dimensional vectors.

The effects of entries into and exits from state I induce the two driving exponential

functions.

When function π is not constant, the decreasing sequence p1(t) and increasing sequence

p3(t) take values between their analogues computed from a homogeneous Markov chain

with π = π(0) and π = π(1), respectively.

3.2.3 Sensitivity analysis

Let us assume a linear function π(p2) = a+bp2, where a > 0, b > 0, a+b < 1. Then the

SIR model involves 3 independent parameters, and is expected to provide more flexibility

than the SI model, due to the additional parameter p23. Below, we perform a sensitivity

analysis similar to the one in Section 3.1.4 and focused on series p2(t). Parameters a, b, p23

are set equal to a = 0.005, b = 0.85, p23 = 0.5.

[Insert Figure 5: Evolution of p2(t), SIR Model]

[Insert Figure 6: Evolution of Change in p2(t), SIR Model]

The timing of a peak is determined by parameter a as shown below. We hold parameter

b = 0.85 constant and change the values of parameter a in Figure 7.

[Insert Figure 7: Timing of Peak, a varying, SIR Model]

Next, parameter a = 0.005 is held constant and the values of parameter b are allowed to

vary. The size of peak is determined by parameter b as shown in Figure 8 below.

[Insert Figure 8: Size of Peak, b varying, SIR model]

4 Statistical Inference

This section presents the methods of inference for the discrete time transition models. We

assume that the observational and model timesteps are equal.

If the individual histories, or a set of sufficient statistics for individual data were avail-

able, then the maximum likelihood (ML), or indirect inference estimators could be used.
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For example, in the limiting case of a homogeneous Markov Chain, the ML estimator of

the transition matrix is the matrix of transition frequencies that define a set of sufficient

statistics [see e.g. [10] for estimation of compartmental model from flow data]. However,

individual epidemiological data are rarely available and only aggregate counts are pro-

vided, such as the counts of new infections, and/or cross-sectional frequencies. Below, we

discuss the case when the f(t)’s are observed 4. This aggregation step makes difficult the

derivation of the likelihood function of f(t), which is commonly replaced by a misspecified

likelihood function, i.e. a quasi-likelihood function. When the quasi-likelihood function is

well chosen, the quasi-maximum likelihood estimators are consistent when the population

size is large and time T is fixed, although not fully efficient. This is the setup examined

below.

Let us now consider a parametric transition matrix Π[p(t − 1); θ], with parameter

vector θ, and assume that the empirical frequencies f(t), t = 1, .., T are observed. In

addition, we assume that this discrete time parametric model is well specified.

4.1 Distribution of Frequencies

Under Assumptions A1, A2, the observed frequencies Nf(t) follow the multinomial dis-

tribution M(N ; p(t)), at any time t, but have a rather complicated joint distribution.

However, if the size of the population is large and the observed counts Nf(t) not too

small (i.e. larger than 10-20), these frequencies converge at rate 1/
√
N to their theoreti-

cal counterparts and are asymptotically normal. Thus we can write:

f(t) = p(t) + u(t), (4.1)

where the errors u(t) are Gaussian with mean zero and the variance-covariance matrix at

lag h given below [22]:

Cov[u(t), u(t− h)] = (1/N){Π(t− 1, h)diag[p(t− h)]− p(t)p(t− h)′}, (4.2)

where: Π(t− 1, h) = Π[p(t− 1)]...Π[p(t− h)].

4For the SIR model, these frequencies are sufficient statistics. In general, there is a loss of information
when the cross-sectional counts only are used.
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This is a rather complicated serial dependence, which is due to the data aggregation.

In particular, the series f(t) is not Markov of finite order, as it is commonly assumed in

state space models.

Remark 4: Regularity Condition

The regularity conditions for consistency and asymptotic normality are not satisfied

at the very beginning of the epidemic, when for example the number of recoveries after

initial infections is low. The regularity conditions are not satisfied either if too many

compartments are introduced, for example, when taking into account the different stages

of medical care. Then, multivariate Poisson approximations have to be used instead of

normal approximations, which is out of the scope of this paper.

4.2 (Pseudo) State Space Representation

System 4.1 resembles a measurement equation in a state space system with the mea-

surement variable f(t), measurement error u(t), and the following system of transition

equations for the state variable p(t),:

p(t) = Π[p(t− 1); θ]′p(t− 1). (4.3)

However, the system of equations 4.3 and 4.1 does not fully satisfy the definition of a

state space representation because the measurement errors u(t) are serially correlated, as

shown in equation 4.2.

This difficulty is easily circumvented by assuming a pseudo Gaussian distribution for

errors u(t), and disregarding the serial correlation. Their variance-covariance matrix at

time t can be assumed equal to an identity matrix Id (Ordinary Least Squares approach),

or an unknown constant matrix Ω (Weighted Least Squares approach), or even the true

expression of V (u(t)) can be considered. The latter one is strongly recommended, as it

introduces appropriate weights during the outbreak and increases the efficiency of the

QML estimator. Upon this change of autocovariance structure, a (pseudo) state space

representation is obtained.

The parameters of the pseudo state space representation can be estimated by the

Gaussian quasi-maximum likelihood (QML). The quasi-maximum likelihood approach

has also an interpretation in terms of estimating equations and asymptotic least squares
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[see, [6], [20], [40], [32], [26], [42]]. As the asymptotic theory is established for T fixed and

N → ∞, the QML methods provide consistent estimators of parameter vector θ, which

are not fully efficient as the true structure of autocovariances of errors u(t) has not been

taken into account [see, [22], Appendix 2].

In practice, the QML estimates 5 of θ can be computed numerically from an extended,

or unscented Kalman Filter 6 applied to the (pseudo) state space model. These versions

of the Kalman filter are numerical algorithms for computing the QML estimates. They

also provide standard errors, which need to be interpreted with caution, as they are not

computed from the ”sandwich” formula that correctly accounts for serial correlation.

The estimation approach outlined above remains valid when some frequencies fj(t) are

missing (see [22], [11] for inference on latent counts of COVID-19 infected and undetected

(asymptomatic) individuals).

The extended Kalman filter provides information on the uncertainty of estimates and

predictions. This uncertainty has to be taken into account, especially at the early ascend-

ing phase of an epidemic, when the number of observations is small, the quality of data

is rather poor and the parameter of interest, such as the peak, is distant in time from the

period of observations. Then, the confidence and prediction intervals are rather wide and

the statistician has to interpret the results with caution [see e.g. [50], [14] for studies at

early stages].

The extended Kalman filter is suitable as an updating algorithm of estimates and

forecasts [43]. This is especially important at the beginning of the epidemic, when each

newly arrived observation is very informative.

5 Models with Time Dependent (Stochastic) Param-

eters

In Sections 3 and 4, we considered a deterministic transmission model and its estimation

by a (pseudo) Kalman filter to account for the measurement errors. The approach can be

extended to some stochastic transmission models while preserving a nonlinear (pseudo)

5As the QML approach does not account for the structure of the variance-covariance matrix of the
u(t)’s it can be improved by replacing a ”moment” estimator by a GMM estimator.

6see, e.g. [47], [37] for the Extended Kalman Filter.
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state space representation. The aim is to distinguish the intrinsic uncertainty due to the

stochastic transmission from the observational uncertainty due to a large, but finite size

of the population at risk. Three types of stochastic epidemiological models have been

introduced in the literature:

i) Continuous time models in which the differential system is replaced by a stochastic

differential system by adding Brownian motions to the equations. This extension has no

clear structural interpretation [see e.g. [31], [17], [45], [55], [36]] 7.

ii) Discrete time models with a stochastic duration of the incubation period. In a model

with a linear transmission function, this is commonly done by assuming a gamma or Erlang

duration distribution [see e.g. [5], [38], [34], Section 5.b, [13]]. This leads back to a model

with deterministic transmission and an increased number of compartments corresponding

to different possible (discrete) duration values, when the stochastic duration is integrated

out.

iii) It is also possible to transform the transmission function into a stochastic trans-

mission function. When the transmission function is linear π(pt) = apt, the intensity

parameter can be replaced by a stochastic function of time [see e..g. [17], eq. (2.2)].

Alternatively, in a non-parametric setup, the transmission function π(.) itself can be

assumed stochastic. This approach is developed in [23] to account for the varying indi-

vidual heterogeneity during the outbreak. In a SIR model, this approach accommodates

the mover-stayer phenomenon, i.e. the fact that the population at risk is ”on average”

becoming less vulnerable as time goes on.

This Section discusses the (pseudo) state space representation of structural extensions

of type iii), under the presence of both measurement and structural errors.

5.1 The modelling

The simple epidemiological models can be easily extended to allow for time dependent

parameters, obtained by replacing θ by a(t), b, say, to distinguish the time dependent pa-

rameter vector from the constant parameters. Then, their transition model representation

7The early literature sometimes assumed that the continuous time measurement errors are independent
Gaussian [see [12], p. 148, eq. (A.2)]. Under that assumption there is a discontinuity of the noise process
at any time t and the associated stochastic differential equations have no relevant probabilistic meaning.
This explains the need for adding instead Brownian motions to the differential system.
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involves the transition matrix Π[p(t − 1), a(t), b]. The time dependent propagation pa-

rameters can, for instance, capture the time varying implementation of social distancing

measures and the compliance with these measures [see e.g. [16], [4]]. Such an extended

model can be written also in the (pseudo) state space representation and estimated by

using the methods given in the previous Section. The (pseudo) state space representations

depend on the assumptions on the evolution of parameter vector a(t). At least three types

of modelling approaches can be considered.

i) Dynamics of a(t) left unspecified

The (pseudo) state space representation comprises the measurement equation:

f(t) = p(t) + u(t),

and the transition equations:

p(t) = Π[p(t− 1), a(t), b]′p(t− 1).

The state variables are the marginal probabilities p(t) and parameters a(t), while b is

the vector of constant parameter. They can be jointly estimated and the state variables

filtered by the extended Kalman filter, under an identification condition. In particular,

the order condition: (J − 1)(T − 1) ≥ T dima+ dim b has to be satisfied.

ii) Stochastic evolution of a(t)

An alternative model has the same measurement equation and extends the previous

(pseudo) state space representation system as it includes additional transitions such as:

a∗(t) = φa∗(t− 1) + v(t),

where the errors v(t) are Gaussian noises independent of the measurement errors u(t), a∗

is a nonlinear transformation of a, such as a∗ = log a that ensures the positive sign, and

|φ| < 1 for stationarity.

Under this representation, the state variables are the marginal probabilities p(t) and

parameters a∗(t), and b is the constant parameter vector. The extended Kalman Filter

can be used to jointly estimate b and filter the components of a∗(t).

iii) Exogenous information on a(t)
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If the indicators x(t) of social distancing are available, such as counts of travellers

[see, [30]], or the daily numbers of fines for disobeying the social distancing rules, the

model can be extended to include x(t). Then, the model is similar to the representation

above with the autoregressive dynamic replaced by an equation such as:

a∗(t) = Cx(t) + v(t)

where C is a row vector of constant coefficients to be estimated and v(t) are Gaussian

noises independent of the measurement errors u(t).

5.2 Logistic model with stochastic contagion parameter

Let us now examine the limiting case of time independent stochastic contagion param-

eters, which is a very special case of stochastic dynamics and consider the logistic model

of Proposition 2. The stochastic parameters are introduced to account for heterogeneity

of infection patterns. For ease of exposition, we assume a discrete heterogeneity distribu-

tion with weights qk, k = 1, ..., K on values (αk, βk), k = 1, ..., K [see, [24], [56]]. Then,

equation 3.4 is written conditional on α, β and defines the evolution of p2,k(t) for values

αk, βk. Next, these evolutions need to be re-integrated with respect to α, β, in order to

find the marginal probability of being infected p2(t) as follows:

p2(t) =
K∑
k=1

qkp2,k(t) =
K∑
k=1

{qk[αk[exp(αk + βk)t]− αk] / [αk exp[(αk + βk)t] + βk]}.

We get a convex combination of logistic functions 8. This additive specification implies

that p2(t) cannot follow a quadratic differential equation such as 3.4. There is a double

heterogeneity i) in coefficients α, which means that there exist multiple initial exogenous

clusters of infection of different sizes, ii) in coefficients β, which means that the speeds of

transmission of each cluster are different. This model is not a special case of (SI)K [see

Appendix 1] as there is no contagion between the sub-populations k and only contagion

within is allowed.

The presence of heterogeneity in a logistic model generates the following effects:

i) several peaks can appear in the changes in p2(t) over time. This is the wave effect

[see, [53], [24]], due to different transmission parameters of each wave.

8used as a basis of functions in neural networks.
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ii) the persistence of p2(t) increases due to the additive representation. This is a well-

known long memory effect revealed in [25] for linear autoregressive models that also exists

in nonlinear logistic models [see [46]].

Below, a three-wave pattern is illustrated in Figure 9 for the following parameter

values: α = 0.015, 0.0005, 0.0001, β = 0.95, 0.85, 0.75

[Insert Figure 9: Three-Wave Infection Pattern]

We observe the three waves with the highest peak due to the first wave. We also

observe a persistence effect as the decline following the first peak is slower than the

declines of each wave separately.

6 Concluding Remarks

Contrary to the major part of literature on epidemiological models, which considers deter-

ministic continuous time models of counts of individuals in various compartments (states),

we consider stochastic models in discrete time for variables representing individual histo-

ries [see also [3], [15] for discrete time approach]. The proposed discrete time transition

model has the following advantages:

i) It eliminates the lack of consistency between time discretized continuous time mod-

els with respect to the time unit. In the continuous time setup, it also eliminates the

assumption of differentiability of aggregate counts, which are discrete variables. This is

especially important in the early phase of an epidemic when some of these counts are low,

but not too low.

ii) The stochastic model allows us to combine different aggregate count variables and

individual medical histories of patients under medical care.

iii) The stochastic component allows us for deriving not only the point, but also the

interval forecast. This is important at the beginning of an epidemic when the number of

observations is small and the results are less reliable.

iv) The estimation of the transition model can be performed by applying an extended

Kalman filter to its (pseudo) state space representation.
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Appendix A.1

Structural Epidemiological Models

This Appendix presents a typology of basic epidemiological models that can serve as

building blocks of more complex specifications. The difference between the basic models

are with respect to:

i) the number of states ( compartments) and their interpretations as S= susceptible,

E=exposed, I =infected, R =recovered, D=deceased.

ii) The number and types of virus propagation sources,

iii) The location of zeros in the transition matrix (i.e. the causal structure),

iv) The structure of time dependent transition probabilities.

We provide below the transition probabilities along with the state interpretations. The

time dependent transition probabilities are denoted by π and are functions of (lagged)

marginal probabilities p(t).

The models described below are the following:

2-state: SI model, SIS model,

3-state: SIR model,

4-state : SIRD model, SEIR model, SIR model, (SI)2 model, S,IU ,ID, R model.

The interpretations of states and the form of transition matrices are given below. The

transmission functions are of a general form in this representation, although in practice,

they are often assumed to be linear.

2-state SI model

S= susceptible,I= infected,being immunized and staying infectious for the S people

row 1,S: π11(p2), π12(p2)

row 2, I : 0,1

One absorbing state,one source of infection, no collective immunity.

2-state SIS model

S:susceptible, I infected, can recover, but without being immunized.

row 1,S: π11(p2), π12(p2)

row 2,I: p21, p22, with p21 > 0.
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One source of infection, no absorbing state; a non degenerate stationary solution can

exist, no collective immunity [see e.g. [3], [19], [45] for the use of SIS model].

3-state SIR model

S=susceptible, I= infected, infectious, not immunized, R=recovered, no longer infec-

tious,immunized.

row1,S: π11(p), π12(p), 0

row 2, I: 0, p22, p23

row 3, R: 0,0,1

One absorbing state, one source of infection, collective immunity if the transmission func-

tion is linear [see e.g. [48], [41], [31], [27], [49], [23]]. In the basic SIR model, the transmis-

sion functions π11, π12 depend on p2 only. They depend on both p1 and p2 in extensions

accounting for the crowding effects and/or frailty phenomena.

4-state SIRD model

S=susceptible, I=infected, not immunized,infectious, R=recovered, no longer infectious,

immunized, D=deceased.

row 1, S: π11(p), π12(p), 0, p14

row 2, I : 0, p22, p23, p24

row 3, R: 0,0, p33, p34

row 4, D: 0,0,0,1

One absorbing state, one propagation source.

4-state (SI)2

The population is divided into 2 sub-populations, as region 1 & region 2, male & female,

young & old. It is easily extended to any number of regions, or categories [2].

Sj =susceptible of type j, Ij= infected, immunized, infectious of type j.

row 1, S1: π11(p3, p4), 0, π13(p3, p4), 0

row 2, S2: 0, π22(p3, p4), 0, π24(p3, p4)

row 3, I1: 0,0,1,0

row 4,I2: 0,0,0,1

Two absorbing states,two propagation sources, no collective immunity [see e.g. [19]].

4-state SEIR
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S=susceptible E= exposed, but not yet infectious (there is a latency period), not immu-

nized, I = infected and infectious, not immunized, R=recovered,no longer infectious,immunized.

row 1,S: π11(p3), π12(p3), 0, 0

row 2,E: 0, p22, p23, 0

row 3,I: 0, 0, p33, p34

row 4,R: 0,0,0,1

One absorbing state, one transmission source [see e.g. [57] , [13]].

4-state: S IU ID R

S=susceptible

IU:infected,infectious, not immunized,undetected,

ID: infected,infectious, not immunized,detected,

R:recovered,no longer infectious, immunized.

row 1, S : π11(p2, p3), π12(p2, p3), π13(p2, p3), p14

row 2, IU: 0, p22, p23, p24

row 3, ID: 0, 0, p33, p34

row 4, R: 0, 0, 0, 1

One absorbing state, two propagation sources [see e.g. [22]].

These structural models can be extended by considering other states, such as the birth
9 to offset the future number of deaths due to the coronavirus, the types of medical treat-

ment of patients in hospitals, the severity [asymptomatic (mild), symptomatic (high)], or

the type of detection (contact tracing, influenza like illness surveillance, tests, etc) [see,

e.g. [18]]. The models can also be extended by combining the basic models as building

block into 5-state models such as the SEIRD [see e.g. [35]], or S IU ID R D, and 6-state

models such as the SIU2, ID2 , R, or (SIR)2. The structure of the transition matrix can

also be modified to account for the possibility that a fraction of recovered individuals is

not entirely immunized and can be infected twice. This leads to a 4-state SIRS model [55].

9In transition models the state birth is usually introduced to balance the deaths and to provide
stationary evolutions of the processes [see e.g. [27]]. This ad-hoc introduction of births is not relevant
when the interest is in determining the nonstationary dynamic at the beginning of the epidemic, rather
than in the long run equilibrium. Indeed, the count of births (anticipated 9 months earlier) does not
increase in order to offset the increasing number of deaths due to the coronavirus.
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Appendix A.2

Rational Recursive Equations

This Appendix shows the exact solution and the exact time discretization of the prob-

ability to be infected in a continuous time SI model. We provide below the results for

a general one-dimensional Riccati equation in continuous time written on a series x(t).

Then, the results can be applied to the special case x(t) = p2(t).

Such results can be extended to other types of epidemiological models, such as the

SIR. This allows for a comparison of continuous time models and some of their Euler

discretizations.

i) The differential equation

This differential equation is:

dx(t)/dt = −λ(x(t)− a)(x(t)− b)/(a− b),

where λ is strictly positive.

ii) The exact solution

Since:

(a− b)/[(x(t)− a)(x(t)− b)] = 1/(x(t)− a)− 1/(x(t)− b),

we deduce:

dx(t)[1/(x(t)− a)− 1/(x(t)− b)] = −λdt,

and by integration:

|x(t)− a|/|x(t)− b| = exp(−λt)|x(0)− a|/|x(0)− b|.

This relation implies that the trajectory x(t) and the starting value x(0) satisfy always

the same relationship with respect to a and b, that is x(t) is in the interval (a,b) (resp.

below, above), if x(0) is in this interval (resp. below, above). Therefore, we can disregard

the absolute values to get:
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(x(t)− a)/(x(t)− b) = exp(−λt)(x(0)− a)/(x(0)− b),

for any nonnegative t.

This implies a logistic expression for x(t):

x(t) = [a− bkexp(−λt)]/[1− kexp(−λt)],

where: k = (x(0)− a)/(x(0)− b).

iii) The exact time discretized recursive model

We deduce that the exact time discretized counterpart corresponds to a rational trans-

form of x(t− 1). More precisely, we get:

x(t) = {a[x(t− 1)− b]− b[x(t− 1)− a]exp(−λ)}/{[x(t− 1)− b]− [x(t− 1)− a]exp(−λ)}.

This rational recursive equation, which is the exact time discretization of the differential

equations, differs from the crude Euler discretization of the differential equation:

x(t) = x(t− 1)− λ[x(t− 1)− a][x(t− 1)− b]/(a− b)

iv) Special case

The results above can be computed for equation 3.4 with: λ = β > 0, a = −α/β, b = 1.

Without an exogenous source of infection: α = 0 ,the interval (a, b) is the interval (0,1),

x(t) = p2(t) is decreasing and tends to 0 when t tends to infinity, for any starting value

p2(0). Therefore, there is no collective immunity, even without an exogeneous source of

infection.

vi) Extensions to SIR model

Exact solutions of other continuous time epidemiological models have been recently

derived from the SIR model with linear and non-linear transmission functions [see, [27],

[52], [7], [23]]. These can be used to construct numerical approximations of the continuous

trajectories with properties similar to the continuous trajectories themselves.
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Figure 1: Evolution of p(t), SI Model
Figure 1 shows infection rate p(t) (vertical axis) over 20 days (horizontal axis). Solid

line: infection rate of continuous time model (3.4). Dashed line: infection rate of
discrete time approximation (3.2)
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Figure 2: Evolution of Changes in p(t), SI Model
Figure 2 shows changes of infection rate ∆p(t) (vertical axis) over 20 days (horizontal

axis).
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Figure 3: Size of Peak, SI Model
Figure 3 is a contour plot showing the size of peak in p(t) curve, as a function of

parameters α and β.
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Figure 4: Time to Inflection, SI Model
Figure 4 is a contour plot showing the timing of inflection point in p(t) curve, as a

function of parameters α and β.
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Figure 5: Evolution of p2(t), SIR Model
Figure 5 shows infection rate p2(t) (vertical axis) over 40 days (horizontal axis).
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Figure 6: Evolutions of Changes in p2(t), SIR Model
Figure 6 shows changes of infection rate ∆p2(t) (vertical axis) over 40 days (horizontal

axis).
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Figure 7: Timing of Peak, a varying, SIR Model
Figure 7 shows infection rates p2(t) (vertical axis) computed for different values of

parameter a over 40 days (horizontal axis)
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Figure 8: Size of Peak, b varying, SIR Model
Figure 8 shows infection rates p2(t) (vertical axis) computed for different values of

parameter b over 40 days (horizontal axis)
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Figure 9: Three-Wave Infection Pattern
Figure 9 shows infection rate p2(t) (vertical axis) with time varying parameters a and b,

over 40 days (horizontal axis)
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