
Dynamic Deconvolution of (Sub)Independent

Autoregressive Sources

Christian Gourieroux ∗ and Joann Jasiak †

March 30, 2020

Abstract

We consider a multivariate system Yt = AXt, where the unobserved
components (the sources) Xt are (sub)independent AR(1) processes and
the number of sources is larger than the number of observed outputs
(undetermined system). We demonstrate that the mixing matrix A,
the autoregressive coefficients and the distributions of sources can
all be identified, solving the deconvolution problem. The proof is
constructive and allows us to introduce simple consistent estimators of
all unknown scalar and functional parameters of the model. Next, the
results are extended to a noisy deconvolution Yt = AXt + ηt, with the
additional multivariate noise ηt. Applications to causal models with
structural innovations are also discussed, such as the identification in
error-in-variables models and causal mediation models.
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1 INTRODUCTION

Let us consider a linear system Yt = AXt, where Yt is a vector of observed outputs

(sensors) of dimension L, Xt is a vector of unobserved (sub)independent components

of dimension K (sources, inputs) and the mixing matrix A is unknown. There exists

a large literature on the identification of the mixing matrix and sources, when L = K

and the sources are serially independent. However, the literature on identification is

particularly sparse when the sources are serially dependent, their dynamics need to be

identified (convolutive mixtures) and/or the number of sources is strictly larger than the

number of observed outputs K > L (undetermined system) [see Hyvarinen, Karhunen,

Oja (2001), Pedersen et al. (2007), Comon, Jutten (2010), Shi (2011), Schennach (2016)

for surveys].

The objective of this paper is to provide a solution to the identification problem in

multivariate undetermined convolutive systems when the sources follow (sub)independent

autoregressive processes of order 1 (AR(1)).

For illustration, we assume there is a single output L = 1 1 The observed univariate

time series (Yt) can be written as the following sum of K component series (sources):

Yt =
K∑
k=1

(
1

1− ρkB
εkt

)
≡

K∑
k=1

Xkt, |ρk| < 1, ∀k, (1.1)

where the K sequences (εkt), k = 1, . . . ,K, are strong white noises, which are mutually

(sub)independent, with mean 0 and finite variances σ2
k, k = 1, ...,K, and B is the lag

operator. As discussed in Section 2, the independence assumption can be weakened and

replaced by a sub-independence assumption [see, Appendix A.1 and Hamedani, Maadooliat

(2015), Schennach (2019) for the definition of subindependence]. Henceforth, independence

is assumed for expository purpose to relate the text with the standard ICA literature.

We demonstrate that:

i) the number of sources K, the autoregressive coefficients ρk, k = 1, ...,K, and

ii) the marginal distributions of the K strong white noise processes

can be identified. We also introduce consistent estimators of the identifiable scalar and

functional parameters.

Let us introduce some mild identification restrictions. We observe that when ρ1 = ρ2,

for example, we get:

1This assumption will be relaxed later.
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1

1− ρ1B
ε1t +

1

1− ρ2B
ε2t =

1

1− ρ1B
(ε1t + ε2t) =

1

1− ρ1B
ε̃t,

where ε̃t = ε1t + ε2t, and the pair (ε1t, ε2t) cannot be distinguished from the pair (ε̃t, 0).

Moreover, if one εkt is zero, then Xk,t = 0 and the number K of components cannot be

identified. This leads us to the following assumption:

IDENTIFICATION ASSUMPTION A.1:

i) The K autoregressive coefficients are distinct.

ii) The marginal distribution of εkt is not degenerate with a point mass at 0, for all

k, k = 1, ...,K.

Another identification problem is in distinguishing the decomposition 1
1−ρ1B ε1t+

1
1−ρ2B ε2t

from the decomposition 1
1−ρ2B ε2t + 1

1−ρ1B ε1t, because the unobserved sources are defined

up to a permutation. To solve this second identification issue, we introduce the following

assumption:

IDENTIFICATION ASSUMPTION A.2: The autoregressive coefficients are arranged in

ascending order: ρ1 < ρ2 < . . . < ρK .

The autoregressive coefficients can be of any sign and one of them can equal 0. Model (1.1)

provides a decomposition of Yt into components with different persistence (memory)2.

Under the above Assumptions A.1-A.2, we demonstrate that all scalar and functional

parameters are identifiable. First, we obtain the identification of parameters K, ρ1, ..., ρK ,

σ2
1, . . . , σ

2
K , and next, the identification of the K distributions of sources given the param-

eters.

The paper is organized as follows. In Sections 2 and 3, the one-output (univari-

ate) model (1.1) is considered. In Section 2, we prove the second-order identification

of parameters K, ρk, σ
2
k, k = 1, ...,K. In Section 3, we show that the distributions of

sources can be identified from pairwise distributions of (Yt, Yt−1), if K ≤ 3, and of

(Yt, Yt−1), (Yt, Yt−2), (Yt, Yt−3), if K ≥ 4. This identification result is obtained by consider-

ing either the pairwise cumulant generating functions (c.g.f), or the second characteristic

functions, without assuming the non-Gaussianity of sources. Thus, pairwise analysis is

sufficient for identification, which explains why the condition of independence of sources

2See Section 6.2. for a more detailed discussion and Gourieroux, Jasiak (2020), Section 2.2.
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can be weakened to a condition of sub-independence [See, Appendix A.1]. In Section 4,

the identification results are extended to systems with any number of observed outputs

and sources. Section 5 introduces simple non-parametric estimation methods for the dis-

tributions of sources. Section 6 focuses on applications, such as the errors-in-variables

model, mediation models and filtering algorithms for factor models. Section 7 concludes.

The mathematical proofs are gathered in the Appendices.

2 Identification of autoregressive coefficients and

variances of sources

The parameters K, ρk, σk, k = 1, ...,K can be identified by considering the second-order

properties of process (Yt). This second-order analysis is based on the spectral density of

process (Yt) given by:

ϕ(w) =
K∑
k=1

[
σ2
k

2π

1

|1− ρkexp(iw)|2

]
(2.1)

=
K∑
k=1

[
σ2
k

2π

1

1 + ρ2
k − 2ρkcos(w)

]
.

where w is the frequency and i =
√
−1 is the imaginary root of −1.

PROPOSITION 1: Parameters K, ρk, σ
2
k, k = 1, ...,K are characterized by the spectral

density.

PROOF: Equation (2.1) is a partial fraction decomposition of spectral density, consid-

ered as a rational function of exp(iw) (also called the transfer function). The identification

of parameters K, ρk, σ
2
k, k = 1, ...,K, follows from the uniqueness of a partial fraction de-

composition 3 of a rational function when ρ1 < ρ2 < ... < ρK [see, e.g. Bradley, Cook

(2012)]. 4 QED

Proposition 1 implies that parameters ρk, σ
2
k, k = 1, ...,K can be consistently esti-

mated by the Gaussian Pseudo-Maximum Likelihood (PML) method for any given K.

The Gaussian PML estimator can be obtained by writing model (1.1) in a state-space

form with sources Xkt, k = 1, ...,K as the state variables. Next, the Gaussian pseudo

3A consequence of the fundamental theorem of algebra, i.e. the D’Alembert-Gauss Theorem.
4This proof shows that our results can be extended to autoregressive sources of higher order (i.e.

AR(p) sources), whenever the different lag polynomials are identifiable from the spectral density.
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log-likelihood function is maximized by using the Kalman filter. This procedure provides

consistent estimates of parameters ρk, σ
2
k, k = 1, ...,K.

When K is moderate, an alternative estimation approach is available. One can apply

to (yt) the Box-Jenkins estimation procedure for univariate ARMA processes with a single

weak white noise. Indeed, process (yt) can be viewed as a weak ARMA(p,q) and written

as:

Yt =
K∑
k=1

εkt
1− ρkB

=
1∏K

k=1(1− ρkB)


K∑
k=1

(
∏
l 6=k

(1− ρlB)]εk,t

 .
The numerator is a sum of independent moving average processes of order K − 1. The

denominator is an autoregressive polynomial of order K, if ρk 6= 0,∀k, and of order K−1,

otherwise. The sum of the moving average processes in the numerator can also be written

as a weak MA(K-1) process with a single noise [Ansley(1977)]:

Yt =

(
1−

∑K−1
j=1 θjB

j
)
ut∏K

k=1(1− ρkB)
, (2.2)

where (ut) is a weak white noise. The weak white noise (ut) = (ut, ut−1, ..., ) is serially

uncorrelated. However its terms are mutually (nonlinearly) serially dependent, except if

all noises εkt, k = 1, ...,K are Gaussian (see the discussion in Appendix 3).

It follows that process (Yt) has a weak ARMA (K-1,K) representation, if ρk 6= 0, ∀k,

and a weak ARMA (K-1, K-1) representation, otherwise. Then, the moving average

parameters θj , j = 1, ...,K−1, autoregressive parameters ρk, k = 1, ...,K, and the variance

of the weak white noise σ2 = V ar(ut) can be estimated by the Box-Jenkins procedure, i.e.

by maximizing the Gaussian likelihood-function of a univariate ARMA(K-1,K) process.

Next, the estimators of σ2
k, ρk, k = 1, ...,K, are found by inverting the mapping, which

defines the expressions of θj , j = 1, ..,K − 1, σ2 in terms of σ2
k, k = 1, ...,K, for given

ρk, k = 1, ...,K, for example.

The second-order identification of linear filter (2.2) is a consequence of the AR(1) as-

sumption on the dynamics of sources and the uniqueness of partial fraction decomposition

of spectral density. This remains valid if additional strong ARMA(2,1) sources are added,

such as:
(1− φ1B − φ2B

2)Xt = (1− θB)εt,

where the roots of the autoregressive lag polynomial are complex conjugates, or when

the sources are strong AR(p) sources with multiple real roots (1 − ρB)pXt = εt. If
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the sources are finite-order MA(q) processes, such as the MA(1) processes for example,

the moving average coefficients θj are not second-order identifiable. In such a case, the

moving average coefficients can be identified under the additional assumption of sources

being (sub)independent and non-Gaussian, from the third and fourth order moments [see

e.g. Thi, Jutten (1995) in a general framework, Reiersol (1950), Cragg (1997), Dagenais

et al. (1997), Erickson, Whited (2002), Ben Moshe (2018b) for the errors-in-variables

model]. Moreover, the moving average coefficients can be second-order identifiable under

additional restrictions on those parameters [see Appendix 3 and e.g. Maravall (1979),

Nowak (1985), (1989)].

3 Identification of source distributions from pair-

wise nonlinear dependence

Let us now consider the identification of source distributions given the parametersK, ρk, σ
2
k,

k = 1, ...,K. For this purpose, we consider the information contained in the pairwise dis-

tributions of (Yt, Yt−h), h = 1, 2, ... In this aspect, our approach resembles the identification

based on autocovariances Cov(Yt, Yt−h), h = 1, 2..., which is commonly used in the time

series analysis at second-order. However, the second-order analysis does not suffice to

identify the distributions of sources. Therefore, we introduce a dynamic identification

approach that is valid for any number K of sources.

Let us recall the approach of Bonhomme, Robin (2010) and discuss its limitations. The

static Independent Component Analysis (ICA) is applied to the following linear model of

a bivariate vector of outputs (Yt, Yt−1)′ :(
Yt
Yt−1

)
=

(
ρ1 . . . ρK
1 . . . 1

) X1,t−1
...

XK,t−1

+

(
1 . . . 1
0 . . . 0

) ε1,t
...
εKt

 . (3.1)

The above system is equivalent to (1.1) with a linear relation between the 2-dimensional

output and 2K independent inputs. The approach of Bonhomme, Robin (2010) is valid

as long as the number of inputs 2K is less than or equal to L(L+1)
2 , where L is the number

of outputs 5. In the case when L = 2, which is the dimension of output vector in (3.1),

5More precisely, this approach is based on the identification result in Szekely, Rao (2000), in
which the number of sources is bounded. That result, in turn, follows from a version of Kotlarski’s
Lemma [see Evdokimov, White (2012)].
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that upper bound is equal to 3. Hence, the approach of Bonhomme, Robin (2010) can be

used if 2K ≤ 3, i.e. K ≤ 1, which is rather limited for practical applications.

To obtain a dynamic deconvolution approach, valid for any number K of sources, an

additional assumption is needed on the marginal distribution of the sources or, equiva-

lently, on the distributions of errors εk,t in the autoregressive representations of sources:

Xk,t =
εkt

1− ρkB
, k = 1, ...,K. (3.2)

Let us consider the cumulant generating function (c.g.f.) of the marginal (i.e. stationary)

distribution of source Xk,t:

ck(u) = logE[exp(uXk,t)], k = 1, ...,K, (3.3)

where u is possibly complex. When u is pure imaginary, equation (3.3) defines the second

characteristic function. This second characteristic function is assumed to be well-defined.

In particular, a well-defined second characteristic function requires a non-vanishing char-

acteristic function 6. When u is real, the existence of the real c.g.f. is also required.

ASSUMPTION A.3:

i) The second characteristic function is well defined, i.e. the characteristic function

does not vanish,

or ii) The real c.g.f.’s ck, k = 1, . . . ,K, with real arguments u, exist in a neighborhood

U ⊂ R of 0 and these real c.g.f.’s on U characterize the marginal distributions of (Xk,t), k =

1, ...,K.

Assumption A.3 ii) implies the existence of all power moments of Xkt, and a summa-

bility condition on these power moments, i.e. the so-called Carleman condition [Carleman

(1923)]. Hence, identification is obtained either from the second characteristic function,

which requires Assumption A.3 i) only, or from the real c.g.f., which requires Assumption

A.3 ii).

Similarly, we introduce the (complex) c.g.f. of the error:

bk(u) = logE[exp(uεkt)], k = 1, ...,K. (3.4)

6Identification results have also been derived in special cases under weaker conditions [see e.g.
Sasvari (1986), Chapter 2 in Rao (1992), Evdokimov, White (2012)].
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It is easy to see that the (complex) c.g.f. bk of error (εk) is directly linked to the (complex)

c.g.f ck of source (Xk) as follows (see Appendix A.1): bk(u) = ck(u)−ck[ρku], k = 1, ...,K.

Then, we get the following Proposition:

PROPOSITION 2: In model (1.1) under Assumptions A.1, A.2 and A.3 i) (non-vanishing

characteristic functions) (resp. Assumptions A.1, A.2, A.3 ii)), the distributions of (sub)independent

sources (Xk,t) and of errors (εkt), k = 1, ...,K are identifiable :

i) for K ≤ 3, from the pairwise second characteristic functions (resp. joint real c.g.f.)

of (Yt, Yt−1),

ii) for K ≥ 4 from the pairwise second characteristic functions (resp. joint real c.g.f.)

of (Yt, Yt−1) and (Yt, Yt−2), if all absolute values |ρk| are distinct, and from the pairwise

second characteristic functions (resp. joint real c.g.f) of (Yt, Yt−1) and (Yt, Yt−3), if some

absolute values |ρk| are equal.

PROOF: see Appendix 1. QED

The dynamic identification is obtained without the assumptions of non-Gaussianity and

a determined system, which are required for identification in the static ICA framework

[see, e.g. Comon (1994), Th.11]. This is because of the additional knowledge provided by

the autoregressive dynamic structure. The pairwise nonlinear dependence being sufficient

to identify is not surprising, as it is also the case in the static ICA [Comon (1994), Th

11]. The identification is achieved for any distributions of sources that can be continuous,

discrete, or mixtures of discrete and continuous distributions [see e.g. Zinde-Walsh (2013),

(2014) for the notion of generalized functions].

The identification of distributions for K = 1 (determined case) can be done directly.

We have Yt = X1t = ε1t
1−ρ1B . Since the distribution of (Yt) as well as parameter ρ1 are

identifiable, we can easily derive the distribution of ε1t = Yt − ρ1Yt−1. In this special

case, we identify not only the distribution of ε1t, but also the shocks ε1t themselves.

Generally, when there are strictly more sources than outputs, the relation between sources

and outputs cannot be inverted 7, to find the values of sources without ambiguity.

When the sources are independent, the result of Proposition 2 can be interpreted in

terms of deconvolution. Let us consider K = 2, for ease of exposition. The deconvo-

7except if the distributions of errors (εk,t) have sufficiently different supports [see the discussion
in Yilmaz, Rickard (2004)].
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lution concerns the bivariate density f(yt, yt−1) = f1(x1t, x1,t−1) ∗ f2(x2t, x2,t−1) 8. This

deconvolution is feasible as the joint densities f1, f2 are restricted : they depend only on

parameters ρk and univariate functions ck, k = 1, 2. These semi-parametric restrictions on

the f ′ks are sufficient for the feasibity of deconvolution.

4 Multivariate system

Proposition 2 can be used for identifying the mixing matrix of coefficients A in an unde-

termined convolutive multivariate system:

Yt = AXt, (4.1)

or with an additional noise:
Yt = AXt + ηt, (4.2)

where the number of output series is L ≥ 1, processes Xt = (X1t, ..., XKt)
′ are the

AR(1) processes of (sub)independent sources and (ηt) is a strong multivariate white noise

(sub)independent of sources (Xt). The components of noise (ηjt), j = 1, ..., L can be

mutually (linearly or nonlinearly) dependent.

A given row of the system can be written as:

Yj,t =
K∑
k=1

aj,kXkt(+ηjt) (4.3)

=
K∑
k=1

aj,kεk,t
1− ρkB

(+ηjt) (4.4)

=
K∑
k=1

ε̃jk,t
1− ρkB

(+ηjt), (4.5)

where (ε̃jk,t) are (sub)independent sequences of variables with mean 0. Thus, Proposition

2 can be applied to any fixed row in order to identify the distribution of ε̃jk,t = aj,kεk,t.

Next, by comparing the distributions of ε̃jk,t and ε̃lk,t we find the ratios aj,k/al,k (for

al,k 6= 0). More precisely, these ratios are directly identified if the distribution of εk,t is

not symmetric. Otherwise, the result is obtained by considering linear combinations of

equations as shown in the example of a linear treatment effect given later in this Section.

8In general, under the weaker assumption of subindependence, the joint density of (yt, yt−1)
cannot be characterized from the densities of (x1t, x1,t−1) and (x2t, x2,t−1) [Schennach (2019), Th.
4]
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To derive a general identification result, let us now introduce the assumption of a saturated

mixing matrix.

ASSUMPTION A.4: Saturated mixing matrix

The elements of mixing matrix A are different from 0.

Then, we obtain :

PROPOSITION 3 : Under Assumptions A.1, A.2, A.3 (i) or (ii), A.4:

i) In mixing model (4.1) each column of A is identifiable up to a scale factor.

ii) In the noisy mixing model (4.2), if the autoregressive coefficients ρk, k = 1, ...,K are

different from 0, each column of A is identifiable up to a scale factor. The joint distribution

of ηt is identifiable too.

PROOF: By considering the jth row in model (4.2), we identify the marginal distri-

bution of ηjt. We can also apply Proposition 2 to any linear combination α′Yt, and then

identify the distribution of α′ηt. As the knowledge of the joint distribution of ηt is equiv-

alent to the knowledge of the distributions of linear combinations α′ηt, for any α, the

second result ii) follows. QED

The identification result of Proposition 3 i) shows that under Assumption A.4, it is

always possible to assume all elements in the first row of matrix A are equal to 1 [see

Assumption A.2 in Szekely, Rao (2000)]

COROLLARY 1: Uniqueness:

Under the assumptions of Proposition 3, it is possible to identify each column of

the mixing matrix A, up to a scale factor, the autoregressive parameters ρ1, ..., ρK , the

distributions of sources (Xkt) and (εkt), and the joint distribution of the noise ηt.

Corollary 1 illustrates the so-called uniqueness property [Eriksson, Koivunen (2004),

p. 602] that completes the discussion of identification for multivariate noisy systems.

For a single output system, the above identification is proven under weaker assumptions

than in the existing literature, as it is valid for any number K of sources 9 and without

strong restrictions on the distributions of sources. For more than one output, the result in

Proposition 3 can be compared to the standard conditions for identification of sources that

9Identification of convolutive systems with less sources than outputs can be found in Albataineh,
Salem (2014), for example.
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are additionally assumed serially independent in the existing literature. Those conditions

are:

a) at most one source distribution is Gaussian [see e.g. Comon (1994), Hyvarinen, Karhunen,

Oja (2001), Eriksson, Koivunen (2004) Th 5. iii), Chan, Ho, Tong (2006), Ben-Moshe

(2018a,b)],

b) the moments exist up to order three, four, or six [see e.g. Comon, De Lathauwer (2010),

Erickson et al. (2014)],

c) the characteristic functions of sources have no exponential factor [Eriksson, Koivunen

(2004) Th 5, ii), iv)],

d) restrictions on the support or exclusion restrictions are imposed [Ben-Moshe (2018a),

Williams (2020)].

Moreover the number of sources can be upper bounded [De Lathauwer (2008), Bonhomme,

Robin (2010), Zinde-Walsh(2013), Section 4.2.2.3 10], or Bayesian approaches can be used

11 [Klepper, Leamer (1984), Leonard (2011)].

In our approach, the identification is achieved by taking into account the AR(1) dy-

namics of sources. From a practical perspective, these dynamics will be detected, if a

large number of observations T is available and the dimension L is fixed. As compared

to the similar identification problem encountered in panel data [see e.g. Lewbel (1997),

Bonhomme, Robin (2010), Ben Moshe (2018b), Section 3], the asymptotics are different as

N →∞, T fixed is required in those cases (where N denotes the cross-sectional dimension

of the panel), while L fixed T →∞ is assumed in our dynamic framework.

The identification in the presence of noise ηt with an unknown distribution is also

obtained. Most ICA algorithms do not allow for an additional noise and assume ηt = 0, ”

hoping that the noise-free methods work well if the signal-to-noise ratio is high enough”

[Cardoso, Pham (2011)]. Alternatively, the deconvolution literature assumes a given dis-

tribution of the additional noise [Meister (2009), Section 3.1, Zinde-Walsh (2013) p. 104,

Schennach (2016)].

Our approach for proving the identifiability is different from those described in the

literature on the BSS and ICA. Those methods consider first the identifiability of the

10as a consequence of the rank condition for matrix A assumed in Zinde-Walsh (2013), Lemma
4.1.

11See Poirier (1998) for the interpretation of Bayesian methods in nonidentified models.
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mixing coefficients A (in our framework, additionally ρk’s) and generally disregard the

identification of the distribution of εk,t. In our framework, we proceed in three steps : first

the dynamic parameters ρk are identified, next the distributions of sources are identified,

and finally, the instantaneous mixing parameters in A are identified. The rationale is the

following: by applying the approach of Section 2 to each component of Yt, it is possible to

identify the values a2
jk, σ

2
jk, j = 1, ..., L, k = 1, ...,K, and hence the |ajk| under Assump-

tion A.4, but not the signs of these mixing coefficients. To identify the signs, combinations

of pairs of outputs are needed. In the very special case of a determined system of convo-

lutive mixtures, the direct approach of Miettinen et al.(2014) based on the second order

moments could be used, although this approach is not valid for undetermined systems.

The assumptions stated in Corollary 1 are sufficient to derive the uniqueness property.

Proposition 2 can also be used to derive the uniqueness, under well-chosen exclusion

restrictions, as shown in the example below.

Example : A dynamic linear treatment effect.

Let us consider the model :


Dt = aXt + u1t,

Yt = βDt + bXt + u2t,

whereDt is the continuous treatment (an economic policy, say), Yt the continuous outcome,

and the unobserved structural shocks u1t, u2t and latent variable Xt are independent of

each other. This system is a linear analogue of the triangular binary model with factor

structure considered in the recent literature on treatment effects [see e.g. Khan, Maurel,

Zhan (2019) and the references therein]. We are interested in identifying the value of β,

that characterizes the ”causal” effect of the treatment and has to be distinguished from

the confounding effect of the common latent factor Xt. If the unobserved confounding

variable Xt follows an AR(1) process, the identification of β is obtained as follows: We

write the associated reduced form
Dt = aXt + u1t,

Yt = (b+ aβ)Xt + βu1t + u2t,

and consider different combinations of observed variables as in Szekely, Rao (2000). At

each step, Proposition 2 is used to i) identify the distribution of u1t from the first equation;
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ii) identify the distribution of vt = βu1t + u2t from the second equation; and iii) identify

the distribution of wt = (1+β)u1t+u2t from the equation for Dt+Yt. Next, iv) parameter

β is identified as β =
1

2

[
V wt − V vt
V u1t

− 1

]
and the distribution of u2t is identified by the

deconvolution of distribution of vt, with a known distribution of βu1t. It follows that

the dynamic treatment effect is identified without introducing any external instrumental

variables.

This identifiability property is an extension of a well-known identification result for

simultaneous equation models. In the presence of explanatory variables, parameter β is

identified if an explanatory variable that is present in the first equation is absent from

the second equation. The example given above extends this identifiability property to

unobservable shocks. Indeed, shock u1t, which is present in the first equation, does not

belong in the set of shocks of the second equation (i.e. it is independent of shocks in

the second equation). This is analogous to the exclusion restrictions introduced in the

errors-in-variables model in Ben Moshe (2018b).

5 Nonparametric Estimation of Distributions of

Sources

Let us introduce consistent estimation methods for the identified scalar and functional

parameters (see Corollary 1). When the noise distributions are from parametric families

of distributions, these parameters can be estimated by the Simulated Maximum Likeli-

hood, for example, to avoid integrating out the latent sources. One can also consider

nonparametric estimation methods for the distributions of sources [see e.g. Bonhomme,

Robin (2010) in a similar framework]. For AR(1) sources in our case, it is possible to use

for estimation the analytical formulas of some derivatives of the c.g.f. ck (or of the second

characteristic function) given in the proof of Proposition 2 in Appendix 1. This can be

easily done for K=2, or K=3. We describe in detail the estimators obtained in these two

cases. The extension to the case K ≥ 4 requires the estimation of additional parameters

to recover a low degree polynomial component in the c.g.f. (see Appendices 1, 5).



THIS VERSION: March 30, 2020 13

5.1 Estimation for K=2

Let us denote the pairwise (complex) c.g.f of bivariate output vector (Yt, Yt−1) by Ψ(u, v) =

logE[exp(uYt + vYt−1)]. As shown in Appendix 1, A.4, we have:

∂ψ

∂v
(u, v) =

2∑
k=1

c′k(v + uρk),

and upon the change of argument described in Appendix 1, A.2:

∂ψ

∂v

[
w2 − w1

ρ2 − ρ1
,
ρ2w1 − ρ1w2

ρ2 − ρ1

]
= c′1(w1) + c′2(w2). (5.1)

PROPOSITION 4: For K=2, we have:

c′1(w) =
∂ψ

∂v

( −w
ρ2 − ρ1

,
ρ2w

ρ2 − ρ1

)
,

c′2(w) =
∂ψ

∂v

(
w

ρ2 − ρ1
,
−ρ1w

ρ2 − ρ1

)
.

PROOF: These formulas are obtained by setting w2 = 0 (resp. w1 = 0) in equation

(5.1).

QED

When u is real, the derivative ∂ψ
∂v (u, v) is equal to:

∂ψ

∂v
(u, v) =

∂

∂v
logE[exp(uYt + vYt−1)]

=
E[Yt−1exp(uYt + vYt−1)]

Eexp(uYt + vYt−1)
, (5.2)

which is the expectation of Yt−1 with respect to density exp(uYt+vYt−1)]
Eexp(uYt+vYt−1)f(Yt, Yt−1), where

f(Yt, Yt−1) is the joint p.d.f. of Yt, Yt−1. This derivative is consistently estimated from its

empirical counterpart, and so are the derivatives c′1, c
′
2, by applying the formulas in Propo-

sition 4 (see Appendix 4 for the functional estimators and their asymptotic properties).

The closed-form formulas in Proposition 4 are valid for the pairwise real c.g.f. of

(Yt, Yt−1) as well as for the pairwise second characteristic function (with u, v replaced by

iu, iv). In that case, we write the pairwise functions Ψ and ck in terms of imaginary

arguments as follows:

Ψ(u, v) = logE{exp[i(uYt + vYt−1)]}

= log|Eexp[i(uYt + vYt−1)]|+ iArg{Eexp[i(uYt + vYt−1)]}.
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The second characteristic function is not differentiable in u, v due to the presence of

the modulus and Arg of the complex number in the polar representation. However, the

relations between the ”derivatives” are still valid with

∂Ψ

∂v
(u, v) ≡ 1

Φ(u, v)

∂Φ(u, v)

∂v
,

where Φ(u, v) = Eexp[i(uYt + vYt−1)] is the first characteristic function, by applying the

theory of generalized functions [see e.g. Zinde-Walsh (2014)].

Thus, the estimator of Ψ(u, v) may be obtained either from the estimators of E cos(uYt+

vYt−1) and E sin(uYt + vYt−1) (under A.3 i)), or from the estimator of Eexp(uYt + vYt−1)

with real u, v, (under A.3 ii)).

The above estimation method can be extended to provide the error density of ε1t, for

example, when ε1t has a continuous distribution. This can be done along the following

steps :

step 1 : Apply Proposition 4 to estimate c′1(iw) from its sample counterpart ĉ′1(iw), i.e.

replace the expectation by the sample average.

step 2 : Find the estimator of the second characteristic function c1(iw) by :

ĉ1(iw) =
∫ w

0 ĉ′1(iu)du, since c1(0) = 0.

step 3 : Compute the estimator of the second characteristic function of ε1t by :

b̂1(iw) = ĉ1(iw)− ĉ1[iρ̂1w].

The above three steps are valid for either continuous, or discrete variables.

step 4 : If ε1t is a continuous variable, its density can be obtained through a regularized

Fourier transform, in order to have a well-posed inverse problem. For example, one can

use a kernel estimator of the density of ε1t, such as [Ben-Moshe (2018a), eq.22 and p150] :

f̂1(u) =
1

2π

∫ 1

−1
exp(−iuw) exp[b̂(iw)](1− u2)3du.

In practice, the choice between using the pairwise real c.g.f. and the second characteristic

function depends on their existence. The real c.g.f. is suitable for all processes with

thin tails and the second characteristic function is suitable for all variables with finite

second-order moments, including variables with fat-tailed distributions.

5.2 Estimation for K=3

Let us now consider the case K = 3. We get the following derivative of the joint c.g.f:
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∂ψ

∂v

[
w2 − w1

ρ2 − ρ1
,
ρ2w1 − ρ1w2

ρ2 − ρ1

]
= c′1(w1) + c′2(w2) + c′3

[
(ρ2 − ρ3)w1

ρ2 − ρ1
+

(ρ3 − ρ1)w2

ρ2 − ρ1

]
. (5.3)

Let us differentiate both sides of this equality with respect to w1, say. We get:

− 1

ρ2 − ρ1

∂2Ψ

∂u∂v

[
w2 − w1

ρ2 − ρ1
,
ρ2w1 − ρ1w2

ρ2 − ρ1

]
+

ρ2

ρ2 − ρ1

∂2Ψ

∂2v2

[
w2 − w1

ρ2 − ρ1
,
ρ2w1 − ρ1w2

ρ2 − ρ1

]
= c′1(w1) +

ρ2 − ρ3

ρ2 − ρ1
c
′′
3

[
ρ2 − ρ3

ρ2 − ρ1
w1 +

ρ3 − ρ1

ρ2 − ρ1
w2

]
. (5.4)

In particular, by writing this relation for w1 = 0, w2 = w and for w1 = −ρ3−ρ1
ρ2−ρ3w, w2 = w

and combining, we get :

− 1

ρ2 − ρ1

∂2Ψ

∂u∂v

[
w

ρ2 − ρ1
,
−ρ1w

ρ2 − ρ1

]
+

ρ2

ρ2 − ρ1

∂2Ψ

∂v2

[
w

ρ2 − ρ1
,
−ρ1w

ρ2 − ρ1

]
= σ2

1 +
ρ2 − ρ3

ρ2 − ρ1
c
′′
3

[
ρ3 − ρ1

ρ2 − ρ1
w

]
. (5.5)

We deduce the closed-form expressions of the second-order derivatives of the c.g.f..

PROPOSITION 5:

For K = 3, we have:

c”
3(w) = −σ2

1

ρ2 − ρ1

ρ2 − ρ3
− 1

ρ2 − ρ3

∂2ψ

∂u∂v

[
w

ρ3 − ρ1
,
−ρ1w

ρ3 − ρ1

]

+
ρ2

ρ2 − ρ3

∂2ψ

∂v2

[
w

ρ3 − ρ1
,
−ρ1w

ρ3 − ρ1

]
.

The second-order derivatives of the real joint c.g.f. have simple expressions. For example,

from (5.2) it follows that:

∂2Ψ

∂u∂v
(u, v) =

E[YtYt−1exp(uYt + vYt−1)]

E[exp(uYt + vYt−1)]
− E[Yt−1exp(uYt + vYt−1)]

E[exp(uYt + vYt−1)]

E[Ytexp(uYt + vYt−1)]

E[exp(uYt + vYt−1)]

= Covu,v(Yt, Yt−1), (5.6)

where Covu,v is the covariance computed with respect to density {exp(uYt+vYt−1)/E[exp

(uYt + vYt−1)]}f(Yt, Yt−1). As shown in the previous Section, this type of derivative is

consistently estimated by its empirical counterpart, i.e. by replacing expectations by

sample averages.
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5.3 Estimation for K ≥ 4

In structural economic models (see Section 6), the value of K is often small. Therefore,

estimators introduced in Sections 5.1-5.2 are easily applicable. Similar estimation methods

can also be developed for K ≥ 4 from the constructive proof of Darmois Lemma. In

contrast, K can be large in applications to operational research and engineering, such as

facial or voice recognition, for example. Those applications require numerical algorithms

for the implementation of dynamic deconvolution.

5.3.1 Derivation of the baseline c.g.f.

Let us introduce the differential operators:

Dk =
∂

∂u
− ρk

∂

∂v
, k = 1, ...,K. (5.7)

These operators commute, by Schwarz Lemma, and we have:

Dk[c
′
j(v + uρj)] = (ρj − ρk)c

(2)
j (v + uρj), ∀j, k. (5.8)

Let us now consider the relation:

∂Ψ

∂v
(u, v) =

K∑
k=1

c′k[v + uρk],

and apply the operator
∏
j,j 6=kDj to both sides of the equality. We get: ∏

j,j 6=k
Dj

 ∂Ψ

∂v
(u, v) =

 ∏
j,j 6=k

Dj

[ K∑
l=1

c′l[v + uρl]

]

=
∏
j,j 6=k

(ρj − ρk)c
(k)
k (v + uρk),

whenever the c.g.f’s are differentiable up to order K. Then, the k-th order derivative is

obtained as:

c
(k)
k (v) =

 ∏
j,j 6=k

Dj

 ∂Ψ

∂v
(u, v)


u=0

/

 ∏
j,j 6=k

(ρj − ρk)

 . (5.9)

These derivatives have to be integrated out K times to recover the ck functions. The

constants of integration are obtained by using the pairwise c.g.f. of either (Yt, Yt−2), or

(Yt, Yt−3) [see Appendix 5 for K=4].

5.3.2 Learning algorithm
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This Section introduces an estimation method that does not require an assumption on

the existence of the derivatives up to order K, but only the existence of variances. It is a

learning algorithm, which is easy to implement.

Let us assume that all absolute values of autoregressive coefficients |ρk|, k = 1, ...,K are

distinct. This assumption can be tested as a null hypothesis from the first-step estimators

ρ̂k, k = 1, ...,K. Then, functions c′k(u) are identified from the pairwise c.g.f.’s Ψ(u, v) =

logE[exp(uYt + vYt−1)] and Ψ2(u, v) = logE[exp(uYt + vYt−2)], and more precisely from

their partial derivatives with respect to v that satisfy:

∂Ψ(u, v)

∂v
=

K∑
k=1

c′k(v + uρk), (5.10)

∂Ψ2(u, v)

∂v
=

K∑
k=1

c′k(v + uρ2
k), (5.11)

Let us denote the sample counterparts of these partial derivatives by ∂Ψ̂(u,v)
∂v , ∂Ψ̂2(u,v)

∂v and

introduce a suitable basis of functions gj(u), j = 1, ..., J , that will be used to approxi-

mate the c′k(u) functions as: c′k(u) ≈
∑J
j=1 ak,jgj(u). Then, nonparametric estimators of

functions c′k(u) are the functions:

ĉ′k(u) =
J∑
j=1

âkjgj(u), k = 1, ...,K, (5.12)

where the coefficients âkj , k = 1, ...,K, j = 1, ..., J minimize the following objective func-

tion:

â = Argminakj

∫ ∫ ∂Ψ̂(u, v)

∂v
−

K∑
k=1

J∑
j=1

akjgj(v + uρ̂k)

2

π(u, v)dudv

+ γ

∫ ∫ ∂Ψ̂2(u, v)

∂v
−

K∑
k=1

J∑
j=1

akjgj(v + uρ̂2
k)

2

π(u, v)dudv, (5.13)

where π(u, v) and γ are given weights 12. This is a least-squares optimization that is

easily solved numerically. However, given the number KJ of unknown parameters, the

least squares estimator formula requires the inversion of a KJ × KJ matrix, which can

12It is out of the scope of this paper to discuss the appropriate choices of basis gj(u), j = 1, ..., J
and weights. These choices depend on whether the calibration relies on the real c.g.f., or on the
second charasteristic function. For the second characteristic function, a basis of sine and cosine
could be used, with weighting functions with support [0, 2π]2.
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be of a very large dimension. In such a case, the results may become costly and non-

robust. As a solution, one can consider only the diagonal elements of this matrix, as it

is commonly done in the machine learning methodology. Then, we need to implement a

simple error correction algorithm where, at each step p, the values â
(p)
kj are updated by

taking into account the prediction error and its sign. That algorithm is as follows:

â
(p+1)
kj − â(p)

kj (5.14)

=

∫ ∫
gj(v + uρ̂k)

[
∂Ψ̂(u, v)

∂v
−

K∑
k=1

c
′(p)
k (v + uρ̂k)

]
π(u, v)dudv /

∫ ∫
gj(v + uρ̂k)

2π(u, v)dudv

+ γ

∫ ∫
gj(v + uρ̂2

k)

[
∂Ψ̂2(u, v)

∂v
−

K∑
k=1

c
′(p)
k (v + uρ̂2

k)

]
π(u, v)dudv /

∫ ∫
gj(v + uρ̂2

k)
2π(u, v)dudv,

where ĉ
′(p)
k =

J∑
j=1

(â
(p)
kj gj(v)).

This simplified algorithm can be applied until a numerical convergence is reached to pro-

vide in the limit a numerical solution to optimization (5.10).

It would be recommended to check at each step of the algorithm the values of
∑J
j=1(â

(p)
kj gj(0)),

k = 1, ...,K, which need to be close to 0 in the limit (the condition of zero mean) as well as

the values of
∑J
j=1(â

(p)
kj g

′
j(0)), k = 1, ...,K, that have to be close to the first-step estimate

σ̂2
k in the limit.

6 Implications for Structural Modelling

The structural economic models, also called causal models [see e.g. Pearl (2009), (2018),

Heckman, Pinto (2015)], by definition, require the assumption of shocks independence,

which allows us for (semi-) parametric identification. The assumption of subindependence

is not sufficient to define structural shocks and structural impulse response functions.

Indeed, if ε1t = ε2t are Cauchy distributed, the subindependence condition is satisfied,

but ε1t cannot be shocked alone without ε2t being shocked too. Below, we discuss the

error-in-variables model, mediation analysis and factor models.

6.1 The (structural) errors-in-variables model

The errors-in-variables models have been introduced very early in the econometric and sta-

tistical literature [Frisch (1934), Koopmans (1937), Wald(1940), Wooley (1941), Samuelson
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(1942), Berkson (1950), Madansky (1959)] and triggered a debate on the choice of a linear

versus orthogonal regression, which is equivalent to choosing between the Ordinary Least

Squares (OLS) and the Principal Component Analysis (PCA). The basic specification

13[see e.g. Fuller (1987)] concerns two latent variables X1t, X2t measured with errors:

Y1t = X1t + η1t, (6.1)

Y2t = X2t + η2t. (6.2)

The two latent variables are assumed to satisfy a deterministic linear relationship:

X2t = aX1t, say. (6.3)

Haavelmo (1944), page 3, calls variables X the theoretical variables to be distinguished

from the observable variables Y , and defines relation (6.3) as the ”hypothetical” model.

In this example, L = 2,K = 1 and the structural model can be rewritten as:

{
Y1t = X1t + η1t

Y2t = aX1t + η2t
⇐⇒ Yt =

(
1
a

)
X1t + ηt. (6.4)

It has been established in the literature that if X1t is a sequence of i.i.d. non-Gaussian

variables, then parameter a can be identified [ Geary (1942), Reiersol (1950) for linear

relationship between 2 variables, Kapteyn, Wansbeek (1983), Bekker (1986), Ben Moshe

(2018b) for more than two variables]. If (X1t) is a sequence of i.i.d. Gaussian variables,

parameter a is not identifiable, but belongs in an identifiable convex hull [see, Klepper,

Leamer (1984)]. Proposition 3 shows that if X1t = ρ1X1t−1 + ε1t, ρ1 6= 0, then parameter

a is identifiable even if the distribution of X1t is Gaussian. Moreover, we can identify the

distributions of (ε1t) and of (ηt) = (η1t, η2t)
′. Thus, the deconvolution is feasible without

the assumption of i) a given fixed distribution of the noise [see Schennach (2016), Section

3.1], or 2) a Gaussian distribution of the noise [Ben Moshe (2018b), Assumption 2.3], or 3)

the availability of additional data that make it feasible to estimate the noise distribution,

or 4) the symmetry of the noise distribution and some irregularity in the distribution of

X1 [Delaigle, Hall (2016)].

The identifiability of parameter a can be interpreted in terms of instrumental variables

as follows : Let us consider the equation:

13See Zinde-Walsh (2013), Table 4.1 for different types of measurement error models to which
our results also apply.
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Y2t = aY1t + vt,

where vt = η2t − aη1t. The lagged variable Y1,t−1 can be used as an instrument for

parameter a. Indeed, we get:

Cov(vt, Y1,t−1) = Cov(η2t − aη1t, X1,t−1 + ε1,t−1) = 0,

and
Cov(Y1t, Y1,t−1) = Cov(X1t + ε1t, X1,t−1 + ε1,t−1) = ρ1 6= 0,

by assumption. Therefore, the assumption of AR(1) source allows us to use the lagged

noisy observations as an internal instrument. Thus, even if there are more shocks than

observed variables, external instruments are not necessary for identification [see Stock,

Watson (2018) for a discussion] 14.

6.2 Causal mediation analysis

In the framework of linear causal mediation analysis, the identification result allows us

to disentangle the effect of the mediator from the effect of the confounding variable [Hol-

land (1988), Pearl (2009), Zhao, Luo (2019)]. The model below can be considered as an

extension of the example of Section 4 with an unobservable confounding variable Ct and

observable input Xt, mediator Mt and output 15 Yt. We get:

Xt = et,

Mt = aXt + Ctα+ e1t,

Yt = cXt +Mtb+ Ctβ + e2t.

This system is equivalently written as:

Xt = et,

Mt = aet + Ctα+ e1t,

Yt = (ab+ c)et + (b+
β

α
)αCtβ + be1t + e2t.

14This direct proof of identifiability of a achieved with an internal instrument is specific to the
basic errors-in-variables models and cannot be extended to the general form introduced in Section
4.

15In the neural network methodology, this is a model with 3 layers (deep neural network) and
intermediate neurons Mt.
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which is a system with the following four sources: Xt = et, Ct, e1t, e2t. We are interested

in the identification of the direct and indirect effects of X and Y that are c and ab + c,

respectively, and more generally, in identifying all the parameters. If all the sources are

independent Gaussian zero-mean variables, then six elements of the variance-covariance

matrix of the observables are available, while 8 parameters of the structural causal model

need to be found. The causal mediation model with confounding becomes identifiable

if the sources are AR(1) processes with distinct autoregressive coefficients. Then, the

identification proceeds as follows:

i) source et and its distribution are identifiable from the first equation of the system,

ii) next, from the second equation, parameter a, the distributions of e1t and of αCt are

identifiable,

iii) from the third equation we obtain ab+ c, β(b+ β/α), b and the distribution of e2t.

Thus, we can identify all parameters of interest without using any external instrumental

variables [see e.g. Angrist et al. (1996)].

6.3 Filtering and updating algorithm for factor models

Let us consider a dynamic linear factor model:

Yt = a1X1t + a2X2t + ηt,

where dimYt = L,K = 2 in the equation above, and X1t, X2t are serially dependent. In

practice, the analysis of this model is often carried out in two steps as follows: In the first

step, a static Singular Value Decomposition (i.e. a PCA adjusted for the presence of noise)

is applied to the data on Yt to find proxies of factors X̃1t, X̃2t, say. Next Yt is regressed

on the proxies to estimate the mixing coefficients a1, a2. In the last step, the dynamics

of X1t, X2t is estimated from two separate AR(1) models for X̃1t and X̃2t. This practice

is common in linear factor model analysis in Finance [Sharpe (1964), Lintner (1965)], as

these models underly the arbitrage pricing theory [Ross (1976)], and also in other fields

[see e.g. Lin, Zhang (2018)].

As the above linear factor model is undetermined, the values X̃1t, X̃2t cannot provide

consistent approximations of the true values X1t, X2t. Moreover, these smooth approxima-

tions result in unreliable estimated dynamic patterns of X1t, X2t and their distributions.

Proposition 3 shows that it is possible to avoid these drawbacks by using the joint

historical distribution of Yt, Yt−1 instead of the marginal distribution of Yt only (as in
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the PCA) and by taking into account the knowledge of the latent (identifiable) AR(1)

dynamics of X1t, X2t. In particular, we can use the semi-affine form of process (Yt) to

derive exact filtration formulas based on the characteristic functions [see Bates (2006)], as

described below 16:

i) The algorithm

Let us consider the general form :

Yt = AXt + ηt, (6.5)

where Xk,t = ρkXk,t−1 + εk,t, k = 1, . . . ,K.

Below, we develop an algorithm that computes recursively the distribution of Yt+1, Xt+1

given the current and lagged observed values Yt only. Let us denote by Gt|t(.) the charac-

teristic function of Xt given Yt :

Gt|t(µ) = E[exp(iµ′Xt)|Yt], (6.6)

and compute the joint conditional characteristic function of (Yt+1, Xt+1) given (Yt, Xt).

We have :

Φt+1|t(λ, µ) = E[exp(iλ′Yt+1 + iµ′Xt+1)|Xt, Yt]

= E(exp[i(A′λ+ µ)′Xt+1 + iλ′ηt+1]|Xt, Yt]

= E[exp(iλ′ηt+1)]E(exp[i(A′λ+ µ)′Xt+1]|Xt)

= φη(λ)E| exp[i(A′λ+ µ)′(diagρ)Xt + i(A′λ+ µ)′εt]|Xt]

= φη(λ)φε(A
′λ+ µ) exp[i(A′λ+ µ)′ (diagρ) Xt],

where φη(λ), φε(µ) are the characteristic functions of ηt and εt = (ε1t, ..., εkt)
′, respectively.

It follows the joint characteristic function of (Yt+1, Xt+1) given Yt is :

Φ̃t+1|t(λ, µ) = E[exp(iλ′Yt+1 + iµ′Xt+1)|Yt]

= E[(Φt+1|t(λ, µ)|Yt] (by iterated projection)

= φη(λ)φε(A
′λ+ µ)Gt|t[(diag ρ)(A′λ+ µ)].

16This is an alternative to the recovering of latent sources by matching [ Arellano, Bonhomme
(2018)].
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From the above joint characteristic function, we derive the characteristic function of Xt+1

given Yt+1 = (Yt+1, Yt) by applying the Bartlett formula [Bartlett (1938)]. We get:

Gt+1|t+1(µ) =

∫
Φ̃t+1|t(λ, µ) exp(−iλ′yt+1)dλ∫
Φ̃t+1|t(λ, 0) exp(−iλ′yt+1)dλ

,

which provides the recursive updating formula of the Gt|t function :

Gt+1|t+1(µ) =

∫
φη(λ)φε(A

′λ+ µ)Gt|t[(diag ρ)(A′λ+ µ)] exp(−iλ′yt+1)dλ∫
φη(λ)φε(A

′λ)Gt|t[(diag ρ)A′λ] exp(−iλ′yt+1)dλ
. (6.7)

This updating formula is easily implemented as long as the number of sources is small,

such as K ≤ 4.

Remark: In the determined case when L = K and ηt = 0, the filtering can be circumvented

as follows. From the consistent estimator ÂT of mixing matrix A, we obtain the filtered

values of sources as X̂t = Â−1
T Yt, and the estimated distribution of Xt given Y as a point

mass at X̂t. Hence, we get a degenerate distribution at X̂t.

ii) Nonlinear causality measures

The algorithm given above can be used to compare nonlinear causality measures be-

tween variables with and without measurement errors. Let us consider the case L = K = 2

of two outputs and two sources, and consider Y ∗t = AXt, where A is invertible. Suppose

that Y ∗t is the output measured without an error, while Yt = Y ∗t + ηt is the output mea-

sured with an error. Since all the underlying distributions are identifiable and consistently

estimable, we can compute the conditional reduced form distributions l(yt|yt−1) of Yt given

Yt−1 by using the algorithm given above, and also find the conditional structural distri-

bution of Y ∗t given Y ∗t−1. Let g(xt|xt−1) denote the conditional distribution of Xt given

Xt−1. Then, the conditional structural distribution of Y ∗t given Y ∗t−1 is found from the

linear transformation X → Y = AX, which provides the conditional structural density:

l∗(y∗t |y∗t−1) =
1

|detA|
g[A−1y∗t |A−1y∗t−1], (6.8)

that generally differs from l(yt|yt−1). Then, it is possible to use the conditional density

in (6.17) for nonlinear structural causality analysis. Moreover, after evaluating both con-

ditional density functions, one can compare the reduced form non-causality from y1t to
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y2t with the structural non-causality from y∗1t to y∗2t, say, in the spirit of Anderson et al.

(2019).

7 Concluding Remarks

The aim of our paper was to solve the problem of deconvolution of sources in a linear

dynamic multivariate system when the number of sources is larger than the number of

outputs. For identification, we assumed (sub)independent AR(1) sources and left the

distributions of noises unspecified. We have shown how to identify and estimate nonpara-

metrically the mixing matrix, the autoregressive coefficients, as well as the distributions

of all underlying noise processes.

The importance of this identification result has been illustrated by considering the iden-

tification in the errors-in-variables models and/or mediation models (including Gaussian

models), and structural nonlinear causality measures. We have also provided a nonlinear

filtering and prediction algorithm based on the characteristic function for dynamic factor

models.

The identification result allows for disentangling the ultra long run component from

noise in macro-economics and finance [see e.g. Gourieroux, Jasiak (2020) for the definition

of a persistent stationary AR(1) process]. The approach for identification of the mixing

matrix and the distribution of sources can also be extended to undetermined systems of

spatial processes(i.e. random fields) under suitable assumptions on autoregressive patterns

in the spatial dependencies(see e.g. Bachoc et al.(2020), Nordhausen et al.(2015) for blind

source identification for spatial processes with a number of sources equal to the number

of outputs,i.e. for determined system).
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APPENDIX 1

Identification

A.1 The formula of pairwise c.g.f. under dynamic subindependence

Let us introduce the following notation:

ck(u) = logE[exp(uXk,t)],

bk(u) = logE[exp(uεk,t)], k = 1, ...,K.

We get :

E[exp(uYt + vYt−1)] = E[exp(u
K∑
k=1

Xk,t + v
K∑
k=1

Xk,t−1)]

=
K∏
k=1

E[exp(uXk,t + vXk,t−1)].

Hence, the joint c.g.f. of (Yt, Yt−1) is the sum of the joint c.g.f. of (Xk,t, Xk,t−1), k =

1, . . . ,K. Using straightforward notation, we get:

Ψ(u, v) =
K∑
k=1

Ψk(u, v).

The above decomposition is valid whenever

E[exp(u
K∑
k=1

Xk,t + v
K∑
k=1

Xk,t−1)] =
K∏
k=1

E[exp(uXk,t + vXk,t−1)], ∀u, v.

This condition is weaker than the condition of independence equivalent to

E[exp(
K∑
k=1

ukXk,t +
K∑
k=1

vkXk,t−1)] =
K∏
k=1

E[exp(ukXk,t + vkXk,t−1)], ∀uk, vk, k = 1, ...,K.

This is a condition of ”dynamic subindependence” [see Hamedani, Maadooliat (2015),

Schennach (2019) for the general definition of subindependence].

LEMMA 1:

bk(u) = ck(u)− ck(ρku).

PROOF: We have

E[exp(uXk,t)|Xk,t−1] = E[exp(uρkXk,t−1 + uεk,t)|Xk,t−1]

= exp[uρkXk,t−1]E[exp(uεk,t)]. (a.1)
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By taking expectations of each term, we get:

exp[ck(u)] = exp[ck(uρk) + bk(u)],

which implies that bk(u) = ck(u)− ck(uρk).

LEMMA 2

Ψk(u, v) = ck(v + uρk) + ck(u)− ck(uρk).

PROOF: We have:

E[exp(uXk,t + vXk,t−1)] = EE[exp(uXk,t + vXk,t−1)|Xk,t−1]

= E{exp(vXk,t−1)E[exp(uXk,t)|Xk,t−1]}

= Eexp[(v + uρk)Xk,t−1 + bk(u)],

from equation (a.1)

= exp[ck(v + uρk) + ck(u)− ck(uρk)]

by Lemma 1.

QED

It follows that:

Ψ(u, v) =
K∑
k=1

[ck(v + uρk) + ck(u)− ck(uρk)]. (a.2)

A.2 A Change of Argument

At this point, we need to introduce the following change of arguments:

w1 = v + ρ1u, w2 = v + ρ2u.

This change of arguments is valid for K ≥ 2.

As ρ1 6= ρ2, this mapping is bijective. We have:

u =
w2 − w1

ρ2 − ρ1
v =

ρ2w1 − ρ1w2

ρ2 − ρ1
,

and in general :

v + ρu =
1

ρ2 − ρ1
[(ρ2 − ρ)w1 + (ρ− ρ1)w2], for any ρ.

This change of arguments will be applied later on to the first-order derivative of the

pairwise c.g.f..
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A.3 Darmois’ Lemma [ Darmois (1953), p.7, Kagan et al. (1973), p.89]

The proof of Proposition 2 is based on the Darmois’ Lemma. This Lemma has been

initially introduced to prove the Darmois-Skitovich Theorem, and is generally employed

to analyze the identification in static ICA [ see e.g. Comon (1994), Lemma 20, Pavan,

Miranda (2018), Lemma 1].

LEMMA 3 (Darmois) 17

Let us assume that the following condition is satisfied :
N∑
i=1

fi(aiu+ biv) = g1(u) + g2(v), ∀u, v,∈ U,

where U ⊂ R is an open set including 0, functions fi, i = 1, ..., N are continuous and

aj , bj are real numbers. Then, if ai 6= 0, i = 1, ..., N and aibj − ajbi 6= 0,∀i, j, i 6= j, the

functions fi, i = 1, ..., N, g1, g2 are necessarily polynomials of degree less or equal to N .

As the Darmois’ Lemma is written for real arguments, we use it below either for the

real c.g.f, or for the second characteristic function by distinguishing its real and imaginary

components.

In the next part of Appendix 1, the identification is proven for real c.g.f under As-

sumption A.3 ii). The proof for the second characteristic function would be similar, except

for the real and imaginary components separately considered.

A.4 The identification for K = 2, 3

Due to the existence of first and second-order moments, the pairwise joint c.g.f. of

Yt, Yt−1 is differentiable 18. Its first-order derivative with respect to v is:

∂Ψ

∂v
(u, v) =

K∑
k=1

c′k(v + uρk), u, v,⊂ U ∈ R.

Let us assume that γk, k = 1, ...,K, are other candidates for the c.g.f. of (Xkt), k =

1, ...,K. As function Ψ and its partial derivative are identifiable, we get:
K∑
k=1

c′k(v + uρk) =
K∑
k=1

γ′k(v + uρk) ∀u, v ∈ U ⊂ R.

17A proof of the Darmois Lemma under differentiability conditions can be found in Babaieh,
Zadeh (2002), or in Comon, De Lathauwer (2010).

18As mentioned in the main text, the approach below is also valid with the second characteristic

function, where by definition ∂Ψ
∂v (u, v) ≡ 1

Φ(u,v)
∂Φ(u,v)

∂v , with Φ(u, v) as the first characteristic

function, and similar definitions for the derivatives of the ck functions.
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Then we can apply the change of arguments of Appendix A.2 and write:

c′1(w1)− γ′1(w1) + c′2(w2)− γ′2(w2) +
∑K
k=3{c′k(

1
ρ2−ρ1 [(ρ2 − ρk)w1 + (ρk − ρ1)w2]

−γ′k(
1

ρ2−ρ1 [(ρ2 − ρk)w1 + (ρk − ρ1)w2]} = 0,

where the last sum disappears if K = 2.

The conditions of the Darmois Lemma are satisfied and then the differences c′k − γ′k
are polynomials of degree less or equal to N = K − 2.

i) If K = 2, c′k(u) − γ′k(u) = α, where α is a constant, and by integration γk(u) =

ck(u) + αu+ β, say.

However α = β = 0, since γk(0) = ck(0) = γ′k(0) = c′k(0) = 0 (the condition on the

first-order derivative is equivalent to the constraint of zero mean).

ii) If K = 3, c′k(u) − γ′k(u) is a polynomial of degree 1, and by integration γk(u) =

ck(u) + αu2 + βu + δ, say. But α = β = δ = 0, since γk(0) = ck(0) = γ′k(0) = c′k(0) = 0

and γ
′′
k (0) = c

′′
k(0) = σ2

k/(1− ρ2
k) is identifiable.

A.5 The identification for K ≥ 4.

When K ≥ 4, the functions ck, γk differ by a polynomial of degree higher or equal to 3,

and the knowledge of the first and second order derivatives at 0 is not sufficient to prove

that γk(u)− ck(u) = 0, ∀k, u.

When K = 4, the same reasoning as in Appendix A.4 shows that the difference γk−ck
is of the form:

γk(u)− ck(u) = δku
3, say,

where δk, k = 1, ..., 4 are scalars. By considering the identification restriction applied to

the joint c.g.f. (a.2), we infer that the unknowns δk, k = 1, ..., 4 are such that:
4∑

k=1

{δk[(v + uρk)
3 + u3 − u3ρ3

k]} = 0, ∀u, v ∈ U ⊂ R. (a.3)

That leads to a homogeneous system of 3 restrictions:
4∑

k=1

δk = 0,
4∑

k=1

δkρk = 0,
4∑

k=1

δkρ
2
k = 0. (a.4)

This is insufficient to prove that the coefficients δk, k = 1, ..., 4 are 0.

To get additional restrictions, we also have to consider nonlinear serial dependence at

higher lags.

i) If all |ρk| are distinct, that is, if does not exist j, k such that ρj = −ρk, then we can use

the pairwise dependence based on (Yt, Yt−2). Since
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Yt =
K∑
k=1

Xk,t,

where Xk,t = ρ2
kXk,t−2 + ε̃k,t, with ε̃k,t = εk,t + ρkεk,t−1, we get a condition similar to

condition (a.3) in which ρk is replaced by ρ2
k.

We deduce another set of restrictions similar to (a.4), that are:

4∑
k=1

δk = 0,
4∑

k=1

δ2
kρ

2
k = 0,

4∑
k=1

δkρ
4
k = 0, (a.5)

that is an additional restriction
∑4
k=1 δkρ

4
k = 0. Since the matrix:


1 1 1 1
ρ1 ρ2 ρ3 ρ4

ρ2
1 ρ2

2 ρ2
3 ρ2

4

ρ4
1 ρ4

2 ρ4
3 ρ4

4


is of full rank (since the |ρk| are distinct), we deduce δk = 0, k = 1, ..., 4, and the identifi-

cation follows.

ii) If two |ρk| are equal, we cannot base the result on the Darmois Lemma applied to

the pairwise distribution of (Yt, Yt−2). However, by considering the pairwise dependence

based on (Yt, Yt−3), we know that all ρ3
k are distinct and get an additional restriction∑4

k=1 δkρ
3
k = 0. The homogenous system is of full rank (see Appendix 2) and we get again

δk = 0, k = 1, ..., 4.

In general, if K > 4, the same reasoning shows that the differences γk(u) − ck(u) are

necessarily of the form γk(u)− ck(u) =
∑K−1
j=3 δkju

j . By applying the identification based

on the joint c.g.f. (a.1), we derive that for each j, j = 3, ...,K − 1, the information on the

distribution of (Yt, Yt−1) provides K−1 restrictions on the δkj , k = 1, ...,K. An additional

restriction is obtained as for K = 4 by considering either the pairwise distribution of

(Yt, Yt−2) or the pairwise distribution of (Yt, Yt−3).

APPENDIX 2

Full Rank of the System

Let us consider the (K,K) matrix:
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C =


1 1 . . . 1
ρ1 ρ2 . . . ρK
...

...
...

...

ρK−1
1 ρK−1

2 . . . ρK−1
K

 .

Lemma: The matrix C is invertible if and only if ρl 6= ρk for any k 6= l.

Proof: The determinant of C is a polynomial in ρ1, ..., ρK of degree 1 + 2 + . . .+ (K−1) =

K(K − 1)/2. Moreover, if ρk = ρl, two columns of matrix C are equal and det C = 0. It

follows that the polynomial determinant of C is divisible by ρk − ρl for any pair k 6= l.

Since there are K(K−1)/2 such pairs, det C is equal to
∏
k<l(ρk−ρl) up to a multiplicative

factor, by the fundamental theorem of algebra. Therefore, it is different from 0, if and

only if ρk 6= ρl for any k 6= l.

QED

APPENDIX 3

Sum of MA(1) Processes

Let us consider two independent MA(1) processes: Xjt = εjt + θjεj,t−1, |θj | < 1,

θj 6= 0, j = 1, 2, where (εjt) is a sequence of i.i.d. variables. As noted in Section 2, their

sum Xt =
∑2
j=1Xjt can be written as another MA(1) process : Xt = εt + θεt−1, |θ| < 1,

where (εt) is a weak white noise with variance σ2. The following Lemma characterizes the

case where (εt) is a sequence of i.i.d. variables:

Lemma: Let us assume θ1 < θ2 and the existence of second-order moments . The (εt) is

a sequence of i.i.d. variables, if and only if, all noises (εjt), j = 1, 2 are Gaussian. Then

(εt) is also Gaussian.

Proof:

Let us denote the c.g.f. of εjt, j = 1, 2 (resp. of εt) by cj(u), j = 1, 2 (resp. c(u)).

The joint c.g.f. of (Xt, Xt−1) is :

Ψ(u, v) = logEexp(uXt + vXt−1)

= c(u) + c(uθ + v) + c(vθ)

=
2∑
j=1

[cj(u) + cj(uθj + v) + cj(vθj)], ∀u, v.
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By differentiating the last equality first with respect to u and then with respect to v,

we get:

θc”(uθ + v) =
2∑
j=1

cj”(uθj + v), ∀u, v.

Therefore, by applying the Darmois’ Lemma, we find that all second-order derivatives

cj”(u), j = 1, 2, and c”(u) are polynomials of degree less or equal to 2, whenever θ 6=

θ1, θ 6= θ2. Then, the c.g.f.’s are polynomials (of degree less or equal to 4), which implies

that the distributions are Gaussian [Marcinkiewicz Theorem (Marcinkiewicz (1938), Bryc

(1995), Th 2.5.3)]. The fact that θ is both different from θ1 and θ2 follows from the

formulas of V Xt, Cov(Xt, Xt−1) used to derive θ:

Cov(Xt, Xt−1)

V ar(Xt)
=

θ

1 + θ2
=

σ2
1θ1 + σ2

2θ2

σ2
1(1 + θ2

1) + σ2
2(1 + θ2

2)

⇐⇒ θ

1 + θ2
=

σ2
1(1 + θ2

1)

σ2
1(1 + θ2

1) + σ2
2(1 + θ2

2)

θ1

1 + θ2
1

+
σ2

2(1 + θ2
2)

σ2
1(1 + θ2

1) + σ2
2(1 + θ2

2)

θ2

1 + θ2
2

,

which shows that θ
1+θ2

∈ ( θ1
1+θ21

, θ2
1+θ22

). Therefore, θ ∈ (θ1, θ2), since θ → θ
1+θ2

is strictly

increasing on [-1, 1]. QED

APPENDIX 4

Asymptotic Theory

Since the nonparametric estimators of the c.g.f.’s of the sources have closed form ex-

pressions involving the estimated pairwise c.g.f. of (Yt, Yt−h), their asymptotic properties

can be derived from the asymptotic properties of the empirical counterpart of these pair-

wise c.g.f. by applying the δ-method. In particular, if the sources are independent 19, they

are pointwise convergent at speed 1/
√
T and asymptotically normal as the assumption of

stationary AR(1) dynamics of sources implies the geometric ergodicity of the observable

process.

i) Estimation of the real c.g.f., K = 2

For illustration and to point out possible simplifications in the formula of asymptotic

variance, let us consider the real c.g.f. with K = 2. In this case, the estimators are

19Under the weaker condition of subindependence, additional regularity conditions for asymp-
totic inference have to be introduced.
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computed from the empirical partial derivatives of the pairwise c.g.f. with respect to v.

We have: ∂Ψ̂

∂v
(u, v) =

∑
t[Yt−1exp(uYt + vYt−1)]∑

t exp(uYt + vYt−1)
=

∑
tAt∑
tDt

, say.

By the δ-method, we find that:

√
T

[
∂Ψ̂

∂v
(u, v)− ∂Ψ

∂v
(u, v)

]
→ N(0, σ2(u, v)),

where
σ2(u, v) =

[
1

ED
,− EA

(ED)2

]∑
h

Γ(h)

[
1

ED
,− EA

(ED)2

]′
,

Γ(h) = Cov

[(
At
Dt

)
,

(
At−h
Dt−h

)]
= E

[(
At
Dt

)
(At−h, Dt−h)

]
−
(
EA
ED

)
(EA,ED).

It follows directly from the expression of σ2(u, v) that we can disregard the outer prod-

uct of expectations in the computation of σ2(u, v). Thus, Γ(h) can be replaced by

E

[(
At
Dt

)
(At−h, Dt−h)

]
only.

The term associated with Γ(h) involves the quadruple distributions of Yt, Yt−1, Yt−h, Yt−h−1,

for each h.

Let us derive the expression for Γ(0). The part of σ2
0(u, v) corresponding to the term

Γ(0) is:

σ2
0(u, v) =

[
1

ED
,− EA

(ED)2

](
E(A2) E(AD)
E(AD) E(D2)

)[
1

ED
,− EA

(ED)2

]′
,

in which the time index is omitted due to stationarity. Let us now denote the (real)

moment generating function by Φ(u, v) = E[exp(uYt + vYt−1)]] = exp[Ψ(u, v)]. We have:

EA =
∂Φ(u, v)

∂v
, ED = Φ(u, v), E(A2) =

∂2Φ(2u, 2v)

∂v2
,

E(AD) =
∂Φ(2u, 2v)

∂v
, E(D2) = Φ(2u, 2v).

where ∂2Φ(2u,2v)
∂v2

, (resp. ∂Φ(2u,2v)
∂v ) denotes ∂2Φ(u,v)

∂v2
|2u,2v (resp. ∂Φ(u,v)

∂v |2u,2v).

We deduce:

σ2
0(u, v) = 1

[Φ(u,v)]2

{
∂2Φ(2u,2v)

∂v2
− 2∂Φ(u,v)

∂v [Φ(u, v)]−1 ∂Φ(2u,2v)
∂v +

[
∂Φ(u,v)
∂v [Φ(u, v)]−1

]2
Φ(2u, 2v)

}
.

Since :
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1

Φ2

∂2Φ

∂v2
=
∂2 log Φ

∂v2
+

(
∂ log Φ

∂v

)2

=
∂2Ψ

∂v2
+

(
∂Ψ

∂v

)2

,

we can rewrite the expression of σ2
0(u, v) in terms of the pairwise c.g.f and its partial

derivative. We get:

σ2
0(u, v) = exp[Ψ(2u, 2v)− 2Ψ(u, v)]{

∂2Ψ(2u, 2v)

∂v2
+

[
∂Ψ(2u, 2v)

∂v

]2

− 2
∂Ψ(u, v)

∂v

∂Ψ(2u, 2v)

∂v
+

[
∂Ψ(u, v)

∂v

]2
}

= exp[Ψ(2u, 2v)− 2Ψ(u, v)]

{
∂2Ψ(2u, 2v)

∂v2
+

[
∂Ψ(2u, 2v)

∂v
− ∂Ψ(u, v)

∂v

]2
}
.

Each component in the formula above can be consistently estimated by its sample coun-

terpart.

ii) Estimation of the second characteristic function K = 2

A similar derivation can be performed for the estimated second characteristic function.

However, while the computation of derivatives can be done numerically in the complex

space, real space computations are necessary to derive the asymptotic distribution. Below,

we explain how to write explicitly the real and imaginary components of
∂ψ(u, v)

∂v
in terms

of moments. Below, i denotes the imaginary root of −1. We have :

∂ψ

∂v
(u, v) =

∂

∂v
logE[exp(iuYt + ivYt−1)]

=
E[iYt−1 exp(iuYt + ivYt−1)]

E[exp(iuYt + ivYt−1)]

=
iE[Yt−1 cos(uYt + vYt−1)]− E(Yt−1 sin(uYt + vYt−1)]

E[cos(uYt + vYt−1)] + iE[sin(uYt + vYt−1)]

= 1
M {iE[Yt−1 cos(uYt + vYt−1)]− E[Yt−1 sin(uYt + vYt−1)]}

{E[cos(uYt + vYt−1)]− iE[sin(uYt + vYt−1)]}.

where M = [Ecos(uYt + vYt−1)]]2 + [Esin(uYt + vYt−1)]2. It follows that :
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Re
∂ψ

∂v
(u, v) = 1

M {E[Yt−1 cos(uYt + vYt−1)]E[sin(uYt + vYt−1)]

− E[Yt−1 sin(uYt + vYt−1)]E[cos(uYt + vYt−1)]},

Im ∂ψ

∂v
(u, v) = 1

M {E[Yt−1 cos(uYt + vYt−1)]E[cos(uYt + vYt−1)]

+ E[Yt−1 sin(uYt + vYt−1)]E[sin(uYt + vYt−1)]}.

These real and imaginary components can be estimated by replacing each theoretical

moment by its sample counterpart.

APPENDIX 5

Direct solution for K = 4

When the coefficients |ρk| are distinct and the moments exist up to order 3, the tech-

nique introduced in Section 5.2 can be extended as follows:

i) Let us extend eq. (5.4) for K = 4. We get:

A(w1, w2) = c′1(w1) +
ρ2 − ρ3

ρ2 − ρ1
c
′′
3 [
ρ2 − ρ3

ρ2 − ρ1
w1 +

ρ3 − ρ1

ρ2 − ρ1
w2]

+
ρ2 − ρ4

ρ2 − ρ1
c
′′
4 [
ρ2 − ρ4

ρ2 − ρ1
w1 +

ρ4 − ρ1

ρ2 − ρ1
w2],

where A(w1, w2) denotes the left-hand side of eq. (5.4). Then, by considering the partial

derivative with respect to w2, we obtain:

∂A(w1, w2)

∂w1
=

(ρ2 − ρ3)(ρ3 − ρ1)

(ρ2 − ρ1)2
c

(3)
3 [

ρ2 − ρ3

ρ2 − ρ1
w1 +

ρ3 − ρ1

ρ2 − ρ1
w2]

+
(ρ2 − ρ4)(ρ4 − ρ1)

(ρ2 − ρ1)2
c

(3)
4 [

ρ2 − ρ4

ρ2 − ρ1
w1 +

ρ4 − ρ1

ρ2 − ρ1
w2],

where c
(3)
k denotes the third-order derivative of ck. By choosing carefully the pairs w1, w2,

we get c
(3)
3 (u), c

(3)
4 (u) as functions of coefficients ρk, of the associated values of partial

derivatives and of c
(3)
3 (0), c

(3)
4 (0).

ii) The last step consists in finding the values of c
(3)
3 (0), c

(3)
4 (0).

For w1 = w2 = 0, we get:
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∂A(0, 0)

∂w1
=

(ρ2 − ρ3)(ρ3 − ρ1)

(ρ2 − ρ1)2
c

(3)
3 (0) +

(ρ2 − ρ4)(ρ4 − ρ1)

(ρ2 − ρ1)2
c

(3)
4 (0). (A.1)

A similar equation can be written for the pairwise distribution of Yt, Yt−2. With obvious

notation, we get:

∂A2(0, 0)

∂w1
=

(ρ2
2 − ρ2

3)(ρ2
3 − ρ2

1)

(ρ2
2 − ρ2

1)2
c

(3)
3 (0) +

(ρ2
2 − ρ2

4)(ρ2
4 − ρ2

1)

(ρ2
2 − ρ2

1)2
c

(3)
4 (0). (A.2)

The values c
(3)
3 (0), c

(3)
4 (0) are the solutions of equations (A.1) and (A.2).


