Dynamic Deconvolution and Identification of Independent Autoregressive Sources Online Appendix

Christian Gourieroux * and Joann Jasiak ${ }^{\dagger}$
July 21, 2021, revised January 31, 2022

[^0]
Full Rank of the System

Let us consider the (K, K) matrix:

$$
C=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\rho_{1} & \rho_{2} & \ldots & \rho_{K} \\
\vdots & \vdots & \vdots & \vdots \\
\rho_{1}^{K-1} & \rho_{2}^{K-1} & \ldots & \rho_{K}^{K-1}
\end{array}\right)
$$

Lemma: The matrix C is invertible if and only if $\rho_{l} \neq \rho_{k}$ for any $k \neq l$.
Proof: The determinant of C is a polynomial in $\rho_{1}, \ldots, \rho_{K}$ of degree $1+2+\ldots+$ $(K-1)=K(K-1) / 2$. Moreover if $\rho_{k}=\rho_{l}$, two columns of matrix C are equal, and then $\operatorname{det} C=0$. It follows that the polynomial determinant of C is divisible by $\rho_{k}-\rho_{l}$ for any pair $k \neq l$. Since there are $K(K-1) / 2$ such pairs, $\operatorname{det} C$ is equal to $\prod_{k<l}\left(\rho_{k}-\rho_{l}\right)$ up to a multiplicative scalar, by the fundamental theorem of algebra. Therefore, it is different from 0 , if and only if $\rho_{k} \neq \rho_{l}$ for any $k \neq l$.

[^0]: ${ }^{*}$ University of Toronto, Toulouse School of Economics and CREST, e-mail: gouriero@ensae.fr.
 ${ }^{\dagger}$ York University, Canada, e-mail: jasiakj@yorku.ca.

