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Abstract

The conditional Laplace transform is often easier to use in financial data
analysis than the conditional density. This paper characterizes nonlinear
causality hypotheses for models based on the conditional Laplace transform
and provides interpretations of the linear and quadratic causality in this
framework. The nonlinear causality conditions are derived for a multivariate
volatility model that describes volatility transmission accross national stock
markets, a bivariate count model for joint trading of assets and derivatives,
and a stochastic volatility model in which the drift and volatility relation is
examined.
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1 Introduction

The concept of causality was introduced in econometrics for examining dy-
namic interactions between time series. The early methodology developed by
Wiener and Granger [see, Wiener (1956), Granger (1963), (1969), Geweke
(1982), Florens, Mouchart (1985), and Geweke (1984) for a survey] con-
cerned linear dynamic macroeconomic models and investigated relationships
between the conditional means of time series. For nonlinear dynamic models
that became commonly used in Finance since early eighties, this methodology
is inadequate as interactions between nonlinear processes involve conditional
moments of higher orders.

The literature on nonlinear causality has emerged in parallel to the devel-
opment of the ARCH and ARCH-related models. This is probably the reason
why a predominant part of the existing literature on nonlinear causality (see
e.g. Engle, Granger, Robins (1986), Cheung, Ng (1996), Comte, Liberman
(2000), Hafner, Herwatz (2004)) has been focused on causality in conditional
moments up to the second order. Although this new methodology is a signif-
icant extension of the early literature, it has an important limitation in that
it disregards the dynamic relationships between, for example, the extremes.

An alternative approach to causality analysis that also exists in the lit-
erature relies on the conditional density and the Kullback measure of model
proximity [Gourieroux, Monfort, Renault (1987)]. The conditional density-
based method can account for all types of nonlinear links and accommodate
all dynamic distributional properties of the time series of interest. However, it
cannot be applied to nonlinear models that possess very complicated or non-
tractable conditional density functions (such as Levy or multivariate com-
pound Poisson densities, for example.). The dynamics of such series is more
conveniently represented by the conditional Laplace transform. This is the
case of processes in several financial applications, such as the term structure
of interest rates models [Duffie, Filipovic, Schachermayer (2003), Gourier-
oux, Monfort, Polimenis (2006), Dai, Le, Singleton (2006), Singleton (2006)],
stochastic volatility models [Gourieroux, Jasiak, Sufana (2004), Gourieroux
(2006)], and more generally risk premia models [Gourieroux, Monfort (2007)].

This paper proposes a methodology for nonlinear causality analysis in
multivariate conditional Laplace models and characterizes the nonlinear causal-
ity conditons. The advantage of this approach is that it accommodates all
aspects of the nonlinear dynamics, even if the moments do not exist, and
is feasible even when the conditional density function is not available or too
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complicated. For illustration, the causality conditions are derived for a multi-
variate volatility model that examines the volatility transmission, a bivariate
count model for stock and derivative trading and a stochastic volatility model
in which the drift- volatility relationship is studied.

The paper is organized as follows. Section 2 presents the characterization
of nonlinear noncausality from the conditional log-Laplace transform, and
provides the definitions of linear and quadratic noncausality based on the
Taylor series expansion of the conditional Laplace transform. This approach
is applied to the class of Compound Autoregressive (CaR) processes and
to their recursive specifications in Section 3. Section 4 concerns the trans-
mission of volatilities between national stock markets, and the possibility of
disregarding the covolatility effects in the analysis. Section 5 examines non-
linear causality in a dynamic bivariate count model for joint trading of an
asset and its derivatives. Section 6 investigatess the relationship between the
drift and stochastic volatility. It emphasizes the role of the information set in
causality analysis. Section 7 concludes. Proofs are gathered in Appendices.

2 Characterizations of noncausality

Let us consider a multivariate process xt = (x′1,t, x
′
2,t)
′. The component

series (x1,t) and (x2,t) are of dimensions n1 and n2, respectively. (xt) is
assumed to be a Markov process or order one 3 with the conditional log-
Laplace transform:

ψt(u) = ψt(u1, u2) = logE[exp(u′1x1,t+1 + u′2x2,t+1)|x1,t, x2,t],

for u ∈ D, where D is the domain of existence of the expectation of expo-
nential transforms of Xt.

2.1 Nonlinear causality

The nonlinear noncausality can be unidirectional or instantaneous, according
to the traditional terminology introduced by Granger(1969). These two forms
of nonlinear causality are considered below and defined from the conditional
log-Laplace transform of the series of interest. The following definitions are

3The extension to Markov process of any autoregressive order p is straightforward.
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equivalent to the conditional density definitions of nonlinear causality given
in Gourieroux, Monfort, Renault (1987).

Definition 1 :
i) Instantaneous noncausality
x1 does not (nonlinearly) instantaneously cause x2, iff x1,t+1 and x2,t+1 are
independent conditional on x1,t, x2t, or equivalently if the log-Laplace trans-
form can be written as:

ψt(u1, u2) = ψ1,t(u1) + ψ2,t(u2),

where ψj,t(uj) is a function of uj, x1,t, x2,t.

ii) Unidirectional noncausality from x1 to x2

x1 does not (nonlinearly) cause x2 iff the conditional distribution of x2,t+1

given x1,t, x2,t does not depend on x1,t. Equivalently, the log-Laplace trans-
form ψt(0, u2) does not depend on x1,t.

iii) Unidirectional noncausality from x2 to x1

x2 does not (nonlinearly) cause x1, iff ψt(u1, 0) does not depend on x2,t.

2.2 First- and Second- Order Causality

In the literature, we commonly find references to weaker notions of causality
limited to the first- and second- order conditional moments. This section
provides a new log-Laplace transform-based interpretation of the first- and
second- order causality.

(a) First-order (linear) Causality

The first-order conditional moment is equal to the first-order derivative of
the conditional log-Laplace transform evaluated at zero :

E [xt+1|xt] =
∂ψt
∂u

(0).

Hence, to find the log-Laplace equivalent of the linear causality conditions,
we consider the first-order expansion of the log-Laplace transform evaluated
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at zero4 :

ψ
(1)
t (u1, u2) = u′1

∂ψt
∂u1

(0, 0) + u′2
∂ψt
∂u2

(0, 0).

ψ
(1)
t is the log-Laplace transform of a point mass distribution with a single

admissible value equal to the conditional expectation E(xt+1|xt) =
∂ψt
∂u

(0).

Definition 2 :
The first-order (linear) noncausality is the nonlinear noncausality implied by
the first-order expansion of ψt.

The Proposition below summarizes the conditions of instantaneous and uni-
directional noncausalities.

Proposition 1 :
i) (x1) does not instantaneously cause (x2) at first-order.
ii) (x1) does not cause (x2) at first-order, iff E(x2,t+1|x1,t, x2,t) does not de-

pend of x1,t, or equivalently if :
∂ψt
∂u2

(0, 0) does not depend on x1,t.

iii) (x2) does not cause (x1) at first-order, iff E(x1,t+1|x1,t, x2,t) does not

depend on x2,t, or equivalently :
∂ψt
∂u1

(0, 0) does not depend on x2,t.

As in the initial definition by Granger (1969), (1988), the instantaneous
causality at first-order does not exist.

(b) Second-Order (quadratic) Causality

To find the log-Laplace equivalents of the conditions of second-order causality,
we need to examine the second-order expansion of the log-Laplace transform.

Since V (xt+1|xt) =
∂2ψt
∂u∂u′

(0), the second-order expansion of the log-Laplace

transform is :

4Note that ψt(0, 0) = 0.
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ψ
(2)
t (u1, u2) = u′1

∂ψt
∂u1

(0, 0) + u′2
∂ψt
∂u2

(0, 0) +
1

2
u′
∂2ψt(0, 0)

∂u∂u′
u

= u′1E(x1,t+1|x1,t, x2,t) + u′2E(x2,t+1|x1,t, x2,t) +
1

2
u′V (xt+1|xt)u.

ψ
(2)
t is the log-Laplace transform of a Gaussian distribution with meanE(xt+1|xt)

and variance-covariance matrix V (xt+1|xt). This Gaussian distribution pro-
vides the best second-order approximation to the conditional distribution of
interest (in terms of the Laplace transform).

Definition 3 :
The second-order noncausality is the nonlinear noncausality implied by the
second-order expansion of ψt.

The conditions of instantaneous and unidirectional second-order non-
causalities are given in the following proposition.
Proposition 2 :
i) (x1) does not instantaneously cause (x2) at second-order, iff :

∂2ψt
∂u1∂u2

(0, 0) = 0⇐⇒ Cov(x1,t+1, x2,t+1|x1,t, x2,t) = 0.

ii) (x1) does not cause (x2) at second-order, iff :
∂ψt
∂u2

(0, 0) and
∂2ψt
∂u2∂u′2

(0, 0)

do not depend on x1,t, or equivalently, iff : E(x2,t+1|x1,t, x2,t) and V (x2,t+1|x1,t, x2,t)
do not depend on x1,t.

iii) (x2) does not cause (x1) at second-order, iff
∂ψt
∂u1

(0, 0) and
∂2ψt
∂u1∂u′1

(0, 0) do

not depend on x2,t, or equivalently, iff : E(x1,t+1|x1,t, x2,t) and V (x1,t+1|x1,t, x2,t)
do not depend on x2,t.

This characterization is related to the definition of noncausality in vari-
ance introduced in Comte, Liberman (2000) 5, who show that unidirectional
noncausality in variance (noncausality-in-variance) implies noncausality in
mean. Therefore, x1 does not cause x2 at second-order, iff V (x2,t+1|x1,t, x2,t)
does not depend on x1,t.

5See the discussion in Caperin (2003) for a comparison of second-order noncausality to
noncausality-in-variance introduced in Engle, Granger, Robins (1986).
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The nonlinear noncausality of a given type implies the corresponding
second-order noncausality, which in turn implies the first-order noncausal-
ity of the same type. This property can be used for a sequential causality
analysis: In the first step, the hypothesis of first-order noncausality is tested.
If this hypothesis is not rejected, then the hypothesis of second-order non-
causality is considered. If it is not rejected, the test of nonlinear noncausality
should follow, etc.

3 Causality in CaR Processes

The models of multivariate volatility, bivariate count, and stochastic volatil-
ity used in causality analysis later in the text, as well as several models used
recently in the term structure analysis, belong to the family of compound au-
toregressive (CaR) processes [see Darolles, Gourieroux, Jasiak (2006)]. The
CaR processes are defined from the Laplace transforms, and arise as nonlin-
ear dynamic extensions of Gaussian VAR models. This section provides the
noncausality conditions for compound autoregressive (CaR) processes and
their recursive specifications that in some cases can be more convenient for
econometric analysis.

3.1 Compound autoregressive processes

The CaR processes 6 [see Darolles, Gourieroux, Jasiak (2006)] have condi-
tional log-Laplace transforms that are affine functions of the conditioning
variables :

ψt(u) = a′(u)xt + b(u)

= a′1(u1, u2)x1,t + a′2(u1, u2)x2,t + b(u1, u2).

The noncausality conditions concern functions a and b.

Proposition 3:
For a CaR process with twice differentiable functions a1, a2, b, we have the
following noncausality conditions:

6Also called affine processes in the continuous time financial literature [Duffie, Filipovic,
Schachermayer (2003)].
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i) Instantaneous noncausality

nonlinear : a(u1, u2) = a1(u1) + a2(u2), (with a1(0) = a2(0) = 0), and

b(u1, u2) = b1(u1) + b2(u2), (with b1(0) = b2(0) = 0);

at first-order: always;

at second-order:
∂2a

∂u1∂u′2
(0, 0) = 0, and

∂2b

∂u1∂u′2
(0, 0) = 0.

ii) Unidirectional noncausality from x1 to x2

nonlinear : a1(0, u2) = 0;

at first-order:
∂a1

∂u2

(0, 0) = 0;

at second-order:
∂a1

∂u2

(0, 0) = 0, and
∂2a1

∂u2∂u′2
(0, 0) = 0.

iii) Unidirectional noncausality from x2 to x1

nonlinear : a2(u1, 0) = 0;

at first-order:
∂a2

∂u1

(0, 0) = 0;

at second-order:
∂a2

∂u1

(0, 0) = 0, and
∂2a2

∂u1∂u′1
(0, 0) = 0.

3.2 Recursive CaR Specification

The CaR models can be specified in a recursive form. A typical example
is the Heston’s model of stochastic volatility [see Heston (1993) and Sec-
tion 6]. This section examines a recursive CaR specification defined in the
two following steps. First, the conditional Laplace transform of x1,t+1 given
x2,t+1, x1,t, x2,t is defined as:

E[exp(u′1x1,t+1)|x2,t+1, x1,t, x2,t] = exp[αt(u1)′x2,t+1 + βt(u1)], (2.1)

where αt, βt are path dependent functions. This expression assumes that the
conditional log-Laplace transform is affine with respect to x2,t+1.
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Next, the conditional Laplace transform of x2,t+1 given x1,t, x2,t is con-
sidered:

E [exp(u′2x2,t+1)|x1,t, x2,t] = exp γt(u2), (2.2)

where γt is a path-dependent function as well.

The joint conditional Laplace transform of (x1,t+1, x2,t+1) follows from
the iterated expectation theorem:

expψt(u1, u2)

= E [exp (u′1x1,t+1 + u′2x2,t+1) |x1,t, x2,t]

= E {E [exp(u′1x1,t+1)|x2,t+1, x1,t, x2,t] exp(u′2x2,t+1)|x1,t, x2,t}
= exp {γt[αt(u1) + u2] + βt(u1)} . (2.3)

The noncausality conditions for the recursive CaR specification are based on
Definition 1 and Propositions 1-3 [see Appendix 1].

Proposition 4:
For the recursive CaR specification with twice differentiable functions αt, βt, γt,
the noncausality conditions are:

i) Instantaneous noncausality

nonlinear : αt = 0, or γt linear (that is, x2 conditionally deterministic);
at first-order: always;

at second-order:
∂2γt

∂u2∂u′2
(0)

∂αt
∂u′1

, (0) = 0.

ii) Unidirectional noncausality from x1 to x2

nonlinear : γt(u2) does not depend on x1,t;

at first-order:
∂γt
∂u2

(0) does not depend on x1,t;

at second-order:
∂γt
∂u2

(0) and
∂2γt(0)

∂u2∂u′2
do not depend on x1,t

iii) Unidirectional noncausality from x2 to x1

nonlinear : γt[αt(u1)] + βt(u1) does not depend on x2,t;
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at first-order:
∂γt
∂u′2

(0)
∂αt
∂u′1

(0) +
∂βt
∂u′1

(0) does not depend on x2,t;

at second-order:
∂γt
∂u′2

(0)
∂αt
∂u′1

(0) +
∂βt
∂u′1

(0), and

n2∑
j=1

[
∂γt
∂u2j

(0)
∂2αjt
∂u1∂u′1

(0)] +
n2∑
j=1

[
∂αjt
∂u1

(0)
∂2γt

∂u2j∂u′2
(0)]

∂αt
∂u′1

(0) +
∂2βt
∂u1∂u′1

(0)

do not depend on x2,t

4 Volatility Transmission Accross Markets

There exists a large body of literature [see, e.g. Von Furstenberg, Nam Jeon
(1989), Roll (1989), King, Wadhwani (1990), Hamao, Masulis, Ng (1990),
King, Sentana, Wadhwani (1994)] on volatility transmission accross national
markets. A common approach consists in considering the returns on two mar-
ket indexes, such as the S&P and FTSE, for example, expressed in the same
currency, such as the US Dollar. The volatilities of both markets are then
computed, and noncausality tests are performed. However, this approach is
valid only if the conditional correlation between the returns on market in-
dexes has no effect on their volatilities. Thus, before considering the causality
between volatilities, it is necessary to test for noncausality between the se-
ries of correlations and the two market volatility processes. This approach
is illustrated below in the framework of a Wishart autoregressive (WAR)
process for volatility-covolatility matrices [Gourieroux (2006), Gourieroux,
Jasiak, Sufana (2007)], which belongs to the family of CaR processes.

4.1 The WAR process for stochastic volatility-covolatility

Let us denote the volatility and covolatility process by

Yt =

[
Y11,t Y12,t

Y12,t Y22,t

]
,

where Y11,t and Y22,t are the volatilities of markets 1 and 2, respectively, and
Y12,t is the covolatility. The volatility-covolatility process Yt is a WAR process
of order one with the conditional Laplace transform of Yt+1:
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Ψt(Γ) = E[expTr(ΓYt+1)|Yt]
= E [exp (γ11Y11,t+1 + γ22Y22,t+1 + 2γ12Y12,t+1) |Yt]

=
expTr [M ′Γ(Id− 2ΣΓ)−1MYt]

[det(Id− 2ΣΓ)]K/2
,

where Γ is a 2× 2 symmetric matrix of arguments of the Laplace transform,
Tr is the trace operator, and γij and Yij,t+1 the ijth element of Γ and Yt+1

respectively. M , Σ and K are the parameters: M is a 2 × 2 matrix, Σ is a
2 × 2 symmetric matrix of full rank, and K is the scalar degree of freedom
assumed greater or equal to 2: K ≥ 2.

In the remainder of this section, we are interested in nonlinear causal-
ity from stochastic correlation Y12,t(Y11,tY22,t)

−1/2 to volatilities (Y11,t, Y22,t)
[see, Jasiak, Lu (2006) for a general discussion of noncausality in WAR].
In a nonlinear framework, this noncausality is equivalent 7 to the nonlinear
noncausality from covolatility Y12,t to volatilities (Y11,t, Y22,t).

4.2 The causality condition

The following proposition is proven in Appendix 2 by considering the condi-
tional Laplace transform of (Y11,t, Y22,t) given by

Ψt(γ11, γ22)

=

expTr

[
M ′

(
γ11 0
0 γ22

)
[Id− 2Σ

(
γ11 0
0 γ22

)]−1

MYt]

det

[
Id− 2Σ

(
γ11 0
0 γ22

)]K/2 .

Proposition 5: In the WAR framework, covolatility Y12,t does not cause
nonlinearly volatilities (Y11,t, Y22,t), if and only if, one of the following condi-
tions is satisfied:

i) m11 = m21 = 0;
ii) m12 = m22 = 0;

7The possibility to replace the correlation by the covolatility is only relevant for non-
linear noncausality, and not for first-, or second-order noncausality.
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iii) m12 = m21 = σ12 = 0;
iv) m11 = m22 = σ12 = 0,

where mij (resp. σij) denote the elements of matrix M (resp. Σ).

Thus, using clear notation, the hypothesis of noncausality can be written
as the union Hi) ∪Hii) ∪Hiii) ∪Hiv), where the four elementary hypotheses
are defined by the equality constraints on the parameters. Let us now discuss
the four elementary hypotheses.

Hypothesis Hi): m11 = m21 = 0,
Under Hi), the quantity

Tr

[
M ′

(
γ11 0
0 γ22

)
[Id− 2Σ

(
γ11 0
0 γ22

)
]−1MYt

]
is proportional to Y22,t. Thus, the current value of volatility Y22,t is driving
both future volatilities.

Hypothesis Hii): m12 = m22 = 0.
This is a symmetric case with Y11,t as the driving variable.

Hypothesis Hiii): m12 = m21 = σ12 = 0.
Under Hiii), the trace in the expression of the conditional Laplace Trans-

form Ψt(γ11, γ22) becomes

m2
11γ11Y11t

1− 2σ11γ11

+
m2

22γ22Y22t

1− 2σ22γ22

,

which is a sum of functions of (γ11, Y11,t) and (γ22, Y22,t). There is noncausality
between the volatilities in the sense that (Y11,t) does not cause (Y22,t) and
(Y22,t) does not cause (Y11,t).

Hypothesis Hiv): m11 = m22 = σ12 = 0,
The trace term in the expression of the conditional Laplace Transform

Φt(γ1, γ2) becomes

m2
21γ22Y11t

1− 2σ22γ22

+
m2

12γ11Y22t

1− 2σ11γ11

.

Thus, under hypothesis Hiv), the volatilities Y11,t+1 and Y22,t+1 are condi-
tionally independent. Moreover, the volatility Y11,t+1 (resp. Y22,t+1) depends
on the past through Y22,t (resp. Y11,t) only. There is a periodic pattern of
period 2 in the causality between volatilities, since at horizon 2, Y11,t+2 (resp.
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Y22,t+2) depends on Y11,t (resp. Y22,t). This case illustrates volatility feedback
between stock markets.

The above discussion is summarized in Table 1.

Table 1 : Noncausality from covolatility to volatilities

hypothesis Hi) Hii) Hiii) Hiv)

conditions
m11 = 0
m21 = 0

m12 = 0
m22 = 0

m12 = 0
m21 = 0
σ12 = 0

m11 = 0
m22 = 0
σ12 = 0

interpretation (Y22,t) is (Y11,t) is (Y11,t) doesn’t volatility
driving driving cause (Y22,t) feedback

and (Y22,t)
doesn’t cause
(Y11,t)

5 Trading Analysis

5.1 The model

The analysis of trading processes on financial markets is commonly based
on data such as the daily counts of trades, or the intertrade durations. In
this section, we consider two types of assets, i.e. a stock and one derivative
written on this stock, and focus on the daily counts of trades. Thus, X1,t

[resp. X2,t] denotes the daily count of trades of the underlying asset [resp.
the derivative].

A dynamic Compound Poisson model is constructed by considering the
trade intensities of the two assets, and the count of market events, which can
(but not necessarily does) generate trades. More precisely, we assume:

X1,t+1 =
Zt+1∑
i=1

Y1,i,t+1, X2,t+1 =
Zt+1∑
i=1

Y2,i,t+1, (5.1)

where the conditional distribution of the count of market events Zt+1 is
Poisson P [µ + λ1X1,t + λ2X2,t]. The marks (Y1,i,t+1, Y2,i,t+1) are assumed
independent, identically distributed and independent of Zt+1 conditional on
X1,t, X2,t. The variables Y can take the values 0 and 1 and have the following
joint distribution: P [Y1,i,t = k, Y2,i,t = l] = pkl, k = 0, 1, l = 0, 1.
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At each new market event i, we can observe either trades of the two
types of assets when k = l = 1, or trades of a single type of asset, such as
the underlying asset (k = 1, l = 0) or a derivative (k = 0, l = 1), or no trades
at all (k = 0, l = 0).

Let us now derive the log-Laplace transform of the two count variables
X1, X2. We get:

Et[exp(u1X1,t+1 + u2X2,t+1)]

= Et

exp
Zt+1∑
i=1

(u1Y1,i,t+1 + u2Y2,i,t+1)


= EtE

exp Zt+1∑
i=1

(u1Y1,i,t+1 + u2Y2,i,t+1)|X1,t, X2,t, Zt+1


= Et

(
[Eexp(u1Y1,i + u2Y2,i)]

Zt+1

)
= Et

[
(p11exp(u1 + u2) + p1,0exp(u1) + p0,1exp(u2) + p0,0)Zt+1

]
= Et

[
(1− p1,1(1− exp(u1 + u2))− p1,0(1− expu1)− p0,1(1− expu2)]Zt+1

]
.

By using the expression of the Laplace transform for the Poisson variable
Zt+1, we find:

Et[exp(u1X1,t+1 + u2X2,t+1)]

= exp[−(µ+ λ1X1,t + λ2X2,t){p1,1[1− exp(u1 + u2)] + p1,0(1− expu1) + p0,1(1− expu2)}]

and

Ψt(u1, u2) = −(µ+ λ1X1,t + λ2X2,t)[p1,1(1− exp(u1 + u2)]

+ p1,0(1− expu1) + p0,1(1− expu2)]]. (5.2)

Since the conditional log-Laplace transform is affine in X1,t, X2,t, the model
is a CaR process. The first- and second-order conditional moments of the
count variables are:
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Et(Xt+1) = Et[Xt+1|Zt+1, Xt]

= Et

[
Zt+1

(
p1.

p.1

)]
,

= (µ+ λ1X1,t + λ2X2,t)

(
p1.

p.1,

)
(5.3)

where Xt = (X1,t, X2,t)
′, p1. = p1,1 + p1,0, p.1 = p1,1 + p0,1.

Vt(Xt+1) = EtV [Xt+1|Zt+1, Xt] + VtE[Xt+1|Zt+1, Xt]

(by the variance decomposition formula)

= Et

[
Zt+1

(
p1. − p2

1. p1,1 − p1.p.1
p1,1 − p1.p.1 p.1 − p2

.1

)]
+ Vt

[
Zt+1

(
p1.

p.1

)]

= (µ+ λ1X1,t + λ2X2,t)

(
p1. p1,1

p1,1 p.1

)
. (5.4)

5.2 Noncausality analysis

The noncausality conditions for the dynamic Compound Poisson model are
based on the closed-form expression of the conditional log-Laplace transform
derived in the previous section.

Proposition 6: For the dynamic Compound Poisson model, the non-
causality hypotheses are characterized as follows:

i) Instantaneous noncausality
nonlinear=second-order : p11 = 0; first-order: always.

ii) Unidirectional noncausality from x1 to x2:
nonlinear=second-order=first-order: (λ1 = 0), or (p1,1 = p0,1 = 0).

iii) Unidirectional noncausality from x2 to x1:
nonlinear=second-order=first-order: (λ2 = 0), or (p1,1 = p1,0 = 0).

As in the Gaussian VAR model, the second-order and nonlinear causality
conditions are equivalent. There is instantaneous noncausality, iff simultane-
ous trades of the two types of assets are not allowed. The test of instanta-
neous noncausality hypothesis is of special importance. Indeed, the assump-
tion of simultaneous trading underlies the standard no-arbitrage argument,
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used to compute derivative prices without ambiguity. The unidirectional
causality hypotheses are important as their tests can reveal whether the un-
derlying asset is driving its derivative markets, or vice-versa. Finally, note
that the unidirectional noncausality hypothesis from x1 to x2 can be written
as the union (λ1 = 0)∪(p1,1 = p0,1 = 0) of two elementary hypotheses defined
by equality constraints on parameters.

6 The drift-volatility relationship

According to the financial literature, there exists a positive relationship be-
tween expected returns and volatility [see,e.g. Glosten, Jaganathan, Runkle
(1993)], viewed as a consequence of the Capital Asset Pricing Model (CAPM)
[Merton (1974)]. For empirical researchers, however, the existence and sign
of this relationship is unclear. In particular, when the effects of lagged vari-
ables are taken into account, that is, when the drift includes both the current
and lagged volatilities, the sensitivity coefficient on current volatility is often
negative, while the sum of sensitivity coefficients on both volatilities is pos-
itive. In some sense, we get a negative relationship in the short run and a
positive relationship in the long run, called the volatility feedback (Bekaert,
Wu (2000)). In addition, the notions of drift and volatility depend on the
conditioning set (i.e. the information set), and so does the relationship be-
tween the drift and volatility. For example, when the drift and volatility
are defined by an ARCH-in-mean model, the drift series (resp. the volatility
series) contains the same information as the return series (resp. the series
of square returns). Therefore, there exist strong instantaneous nonlinear re-
lationships between them. On the contrary, in the absence of information,
the (unconditional) drift and volatility are constant and independent of one
another.

The aim of this section is to discuss the first-, second-order and nonlinear
causality between the drift and volatility (resp. return and volatility) in the
framework of a stochastic volatility model. This framework has been chosen
to avoid the deterministic nonlinear instantaneous relationship that exists in
ARCH models.
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6.1 The model

Let us consider a stochastic volatility model for the short term interest rate
in discrete time. The model is defined recursively: we first specify the con-
ditional distribution of interest rate rt+1 given the lagged values of interest
rate rt and the current and lagged values of the volatility factor σ2

t+1. Then,

we specify the conditional distribution of σ2
t+1 given rt, σ

2
t . These conditional

distributions are characterized by their Laplace transforms and are autore-
gressive gamma (ARG) to ensure the positivity of both rt+1 and σ2

t+1 [see
Gourieroux, Jasiak (2005) for the definition and description of autoregressive
gamma processes]. We have the following recursive CaR specification:

E
[
exp(−u1rt+1)|rt, σ2

t+1

]
= exp

[
−δ log(1 + cu1)− cu1

1 + cu1

(β0rt + β1σ
2
t + γσ2

t+1)
]
,

E
[
exp(−u2σ

2
t+1)|rt, σ2

t

]
= exp

[
−δ∗ log(1 + c∗u2)− c∗u2

1 + c∗u2

(δ0rt + δ1σ
2
t )
]
,

where the parameters are constrained by :

δ > 0, c > 0, δ∗ > 0, c∗ > 0,

β0 ≥ 0, β1 ≥ 0, γ ≥ 0, δ0 ≥ 0, δ1 ≥ 0. (5.5)

By considering the second-order expansion of the log-Laplace transforms, we
get the associated first-and second- order conditional moments : E

(
rt+1| rt, σ2

t+1

)
= c(δ + β0rt + β1σ

2
t + γσ2

t+1),

V
(
rt+1| rt, σ2

t+1

)
= c2[δ + 2(β0rt + β1σ

2
t + γσ2

t+1)],

 E
(
σ2
t+1| rt, σ2

t

)
= c∗ (δ∗ + δ0rt + δ1σ

2
t ) ,

V
(
σ2
t+1| rt, σ2

t

)
= c∗2 [δ∗ + 2(δ0rt + δ1σ

2
t )] .

Conditional on the information set : It =
(
rt, σ

2
t+1

)
, the drift and volatil-

ity of the interest rate satisfy a deterministic positive affine relationship. This
deterministic relationship is eliminated by considering a slightly smaller in-
formation set : Jt =

(
rt, σ

2
t

)
.
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6.2 Joint conditional distribution of (rt+1, σ
2
t+1)

The conditional distribution of (rt+1, σ
2
t+1) can be defined by the following

joint Laplace transform [see, Appendix 3, i)]:

E
[
exp(−u1rt+1 − u2σ

2
t+1)|rt, σ2

t

]
= expψt(u1, u2), say,

where

ψt(u1, u2) = −δ log(1 + cu1)− δ∗ log
[
1 + c∗(u2 +

γcu1

1 + cu1

)
]

− rt

β0
cu1

1 + cu1

+
δ0c
∗
[
u2 +

γcu1

1 + cu1

]
1 + c∗

[
u2 +

γcu1

1 + cu1

]


− σ2
t

β1
cu1

1 + cu1

+
δ1c
∗
[
u2 +

γcu1

1 + cu1

]
1 + c∗

[
u2 +

γcu1

1 + cu1

]
 .

The conditional log-Laplace transform is an affine function of (rt, σ
2
t ).

Therefore, the joint process (rt, σ
2
t ) is a CaR process and the results of Section

3 can be applied. In particular, the drift and volatility of the short term
interest rate, conditional on the smaller information set Jt = (rt, σ

2
t ) are affine

functions of the lagged values. By considering the second-order expansion of

ψt(u1, 0), that is, ψt(u1, 0) = −u1µt +
u2

1

2
η2
t + o(u2

1), we get [see Appendix 3

ii)] :
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µt = E
(
rt+1|rt, σ2

t

)
= c(δ + c∗γδ∗) + crt(β0 + c∗γδ0) + cσ2

t (β1 + c∗γδ1),

η2
t = V (rt+1|rt, σ2

t )

= c2(δ + 2c∗γδ∗ + c∗2γ2δ∗)

+ 2c2rt(β0 + c∗γδ0 + c∗2γ2δ0)

+ 2c2σ2
t (β1 + c∗γδ1 + c∗2γ2δ1).

6.3 Causality between drift µt and volatility η2
t .

The causality between drift µt and volatility η2
t , is equivalent to causality

between the two following parametric linear combinations of rt and σ2
t :

µ∗t = rt(β0 + c∗γδ0) + σ2
t (β1 + c∗γδ1),

η∗2t = rt(β0 + c∗γδ0 + c∗2γ2δ0) + σ2
t (β1 + c∗γδ1 + c∗2γ2δ1)

= µ∗t + c∗2γ2(rtδ0 + σ2
t δ1).

Conditional on information Jt, the drift and volatility satisfy a determin-
istic relationship iff β0δ1 − β1δ0 = 0. Otherwise, they satisfy a one-to-one
relationship with rt, σ

2
t , and we have :

rtβ0 + σ2
t β1 = µ∗t −

1

c∗γ
(η∗2t − µ∗t ),

rtδ0 + σ2
t δ1 =

1

c∗2γ2
(η∗2t − µ∗t ).

(a) Nonlinear causality

The nonlinear causality analysis is based on the conditional log-Laplace trans-
form Φt, say, of µ∗t+1, η

∗2
t+1. We get :
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exp Φt(u1, u2) = E
[
exp(−u1µ

∗
t+1 − u2η

∗2
t+1)|Jt

]
= E [exp{−rt+1 [(u1 + u2)(β0 + c∗γδ0) + u2c

∗2γ2δ0]

− σ2
t+1 [(u1 + u2)(β1 + c∗γδ1) + u2c

∗2γ2δ1}|Jt
]
.

It follows that :

Φt(u1, u2) = ψt[(u1 + u2)(β0 + c∗γδ0) + u2c
∗2γ2δ0, (u1 + u2)(β1 + c∗γδ1) + u2c

∗2γ2δ1]

= ψt[u1γ1 + u2γ
∗
1 , u1γ2 + u2γ

∗
2 ],

where

γ1 = β0 + c∗γδ0, γ2 = β1 + c∗γδ1,

γ∗1 = β0 + c∗γδ0 + c∗2γ2δ0, γ
∗
2 = β1 + c∗γδ1 + c∗2γ2δ1.

Moreover, we have :

ψt(v1, v2) = −δ log(1 + cv1)− δ∗ log
[
1 + c∗(v2 +

γcv1

1 + cv1

)
]

−
[
µ∗t −

1

c∗γ
(η∗2t − µ∗t )

]
cv1

1 + cv1

− 1

c∗γ2
(η∗2t − µ∗t )

v2 +
γcv1

1 + cv1

1 + c∗
[
v2 +

γcv1

1 + cv1

] .
These expressions allow us to find the noncausality conditions [see Appendix
3, v), vi), x)]:

Instantaneous nonlinear noncausality

The conditions are :

(β0 = β1 = γ = 0) or (β0 = β1 = δ0 = δ1 = 0).
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Unidirectional nonlinear noncausality from volatility to drift
The conditions are :

γ1 = γ2 = 0

⇐⇒ β0 + c∗γδ0 = β1 + c∗γδ1 = 0

⇐⇒


β0 = β1 = δ0 = δ1 = 0,

or β0 = β1 = γ = 0.

Unidirectional nonlinear noncausality from drift to volatility

The conditions are :

γ∗1 = γ∗2 = 0

⇐⇒ β0 + c∗γδ0 + c∗2γ2δ0 = β1 + c∗γδ1 + c∗2γ2δ1 = 0

⇐⇒


β0 = β1 = δ0 = δ1 = 0,

or β0 = β1 = γ = 0.

(b) First-order causality

The following first-order conditional moments of drift and volatility are de-
rived in Appendix 3 iii):
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E(µ∗t+1|Jt) = cte+ c(β0 + c∗γδ0)µ∗t +
1

c∗γ2
(β1 + c∗γδ1)(η∗2t − µ∗t )

= cte +cγ1µ
∗
t +

1

c∗γ2
γ2(η∗2t − µ∗t );

E(η∗2t+1|Jt) = cte+ c(β0 + c∗γδ0 + c∗2γ2δ0)µ∗t

+
1

c∗γ2
(β1 + c∗γδ1 + c∗2γ2δ1)(η∗2t − µ∗t )

= cte +cγ∗1µ
∗
t +

γ∗2
c∗γ2

γ2(η∗2t − µ∗t ).

The conditions for first-order noncausality are the following:

Unidirectional first-order noncausality from volatility to drift:

γ2 = 0⇐⇒ β1 + c∗γδ1 = 0

⇐⇒ (β1 = γ = 0)or (β1 = δ1 = 0).

Unidirectional first-order noncausality from drift to volatility

cc∗γ2γ∗1 − γ∗2 = 0

⇐⇒ (γ∗1 = γ∗2 = 0), or (γ∗2 = γ = 0)

⇐⇒ (β0 = β1 = δ0 = δ1 = 0) or (β1 = γ = 0).

(c) Second-order causality

The conditions for second-order noncausality follow directly from the second-
order expansion of the conditional log-Laplace transform (see Appendix 3 iv),
viii), ix), x)].
Instantaneous second-order noncausality
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The conditions are :

(γ1 = γ2 = 0) or (γ1 = γ∗2 = γ = 0) or (γ∗1 = γ∗2 = 0) or (γ∗1 = γ2 = γ = 0)

⇐⇒ (β0 = β1 = γ = 0) or (β0 = β1 = δ0 = δ1 = 0).

Unidirectional second-order noncausality from volatility to drift

The conditions are :

(γ2 = γ = 0) or (γ2 = γ1 = 0)

⇐⇒ (β1 = γ = 0) or (β1 = δ1 = 0).

Unidirectional second-order noncausality from drift to volatility

The conditions are :

(γ∗2 = γ = 0) or (γ∗2 = γ∗1 = 0)

⇐⇒ (β1 = γ = 0) or (β0 = β1 = δ0 = δ1 = 0).

The noncausality conditions are summarized in Table 2 below.

Table 2: Noncausality Conditions

drift → volat. volat. → drift instantaneous

first-order
β0 = β1 = δ0 = δ1 = 0

or β1 = γ = 0
β1 = δ1 = 0

or β1 = γ = 0

second-order
β0 = β1 = δ0 = δ1 = 0

or β1 = γ = 0
β1 = δ1 = 0

or β1 = γ = 0
β0 = β1 = γ = 0

or β0 = β1 = δ0 = δ1 = 0

nonlinear
β0 = β1 = γ = 0

or β0 = β1 = δ0 = δ1 = 0
β0 = β1 = γ = 0

or β0 = β1 = δ0 = δ1 = 0
β0 = β1 = γ = 0

or β0 = β1 = δ0 = δ1 = 0

The above table shows that the sets of noncausality restrictions involve the
following elementary hypotheses :
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H1 = (β1 = γ = 0) ⇒ (second-order noncausality drift to volat)
+ (second-order noncausality volat to drift)

H2 = (β0 = β1 = γ = 0) ⇒ (nonlinear noncausality drift to volat)
+(nonlinear noncausality volat to drift)
+(nonlinear instantaneous noncausality)
= (independence)

H3 = (β1 = δ1 = 0) ⇒ (second-order noncausality volat to drift)

The above parameter restrictions are easy to interpret. For instance, by
considering the expressions of µt, η

2
t , given in Section 6.2, we see that both

drift and volatility are constant, iff, (β0 = β1 = γ = 0) or (β0 = β1 = δ0 =
δ1 = 0). This explains the instantaneous independence revealed in the last
column of Table 2.

7 Conclusion

This paper introduced a characterization of nonlinear causality based on the
conditional Laplace transform. The noncausality hypotheses imply various
restrictions on the parameters in models of volatility transmission, joint asset
and derivative trading, and stochastic volatility examined in the paper. The
examples show that the causality restrictions are often more complex in non-
linear dynamic models than in the standard Gaussian VAR model. Indeed,
these hypotheses are in general written as unions of elementary hypotheses
defined by equality constraints on the parameters, while in the Gaussian
VAR they coincide with a unique elementary hypothesis. Therefore, when
standard likelihood ratio tests are used for testing the causality hypotheses,
the critical values have to be changed to account for the effect of a union of
elementary hypotheses. Moreover, the asymptotic distributions of the like-
lihood ratio test statistics is not α-similar and can even be degenerate on
the boundary of the null hypothesis of noncausality, especially for stochas-
tic volatility models [see Gourieroux, Jasiak (2007)]. The development of
causality tests is clearly out of the scope of this paper and left for future
research.
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Appendix 1

Proof of Proposition 4

The conditions are easily derived by considering the first- and second-order
derivatives of the conditional log-Laplace transform.

i) For example, the condition of instantaneous noncausality (Definition 1, i))

is equivalent to :
∂2ψt(u1, u2)

∂u2∂u′1
= 0. We get :

∂ψt(u1, u2)

∂u2

=
∂γt
∂u2

[αt(u1) + u2]

∂2ψt(u1, u2)

∂u2∂u′1
=

∂2γt
∂u2∂u′2

[αt(u1) + u2]
∂αt
∂u′1

(u1).

The condition is satisfied iff,
∂2γt

∂u2∂u′2
[αt(u1) + u2]

∂αt
∂u′1

(u1) = 0,∀u1, u2,

or, equivalently, iff
∂2γt

∂u2∂u′2
(u2) = 0,∀u2, or

∂αt
∂u1

(u1) = 0,∀u1.

The result follows by observing that γt(0) = 0, αt(0) = 0.

ii) The condition of unidirectional second-order noncausality from x2 to x1

requires a detailed computation. Indeed, it involves the second-order deriva-

tive
∂2ψt(u1, u2)

∂u1∂u′1
. We get :

∂ψt
∂u1

(u1, u2) =
∂γt
∂u′2

[αt(u1) + u2]
∂αt(u1)

∂u1

+
∂βt(u1)

∂u1

=
n2∑
j=1

∂γt
∂u2,j

[αt(u1) + u2]
∂αjt
∂u1

(u1) +
∂βt
∂u1

(u1).

We find:
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∂2ψt
∂u1∂u′1

(u1, u2) =
n2∑
j=1

∂γt
∂u2,j

[αt(u1) + u2]
∂2αj,t
∂u1∂u′1

(u1)

+
n2∑
j=1

∂αj,t
∂u1

(u1)
∂2γt(α1(u1) + u2)

∂u2,j∂u′2

∂αt(u1)

∂u′1
+
∂2βt(u1)

∂u1∂u′1
.

The result follows for u1 = u2 = 0.

QED

Appendix 2

Noncausality from Covolatility to Volatilities

The conditional distribution of (Y11,t+1, Y22,t+1) is characterized by the
conditional Laplace transform of the WAR process with γ12 = 0. We get:

Ψt(γ11, γ22)

=

expTr

[
M ′

(
γ11 0
0 γ22

)
[Id− 2Σ

(
γ11 0
0 γ22

)
]−1MYt

]

det

[
Id− 2Σ

(
γ11 0
0 γ22

)]K/2 .

Covolatility Y12,t does not nonlinearly cause (Y11,t, Y22,t), if and only if, this
conditional Laplace transform does not depend on Y12,t, or equivalently, if
and only if,

Tr

[
M ′

(
γ11 0
0 γ22

)
[Id− 2Σ

(
γ11 0
0 γ22

)
]−1MYt

]
does not depend on (Y12,t), for any admissible value of γ11, γ22.

Since this quantity is linear in Yt, the above condition is also equivalent
to:
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Tr

[
M ′

(
γ11 0
0 γ22

)
[Id− 2Σ

(
γ11 0
0 γ22

)
]−1M

(
0 1
1 0

)]
= 0,

or to the following condition (C1):

Tr

[(
m11γ11 m21γ22

m12γ11 m22γ22

)(
1− 2σ22γ22 2σ12γ22

2σ12γ11 1− 2σ11γ11

)(
m12 m11

m22 m21

)]

= (m11γ11,m21γ22)

(
1− 2σ22γ22 2σ12γ22

2σ12γ11 1− 2σ11γ11

)(
m12

m22

)

+ (m12γ11,m22γ22)

(
1− 2σ22γ22 2σ12γ22

2σ12γ11 1− 2σ11γ11

)(
m11

m21

)
= 0, ∀γ11, γ22.

This condition involves a polynomial of degree 2 in γ11, γ22, with a zero
intercept. Let us first consider the term of degree 1 (corresponding to first-
order causality). We get:

(m11γ11,m21γ22)

(
m12

m22

)
+ (m12γ11,m22γ22)

(
m11

m21

)
= 0, ∀γ11, γ22.

This equality holds when: m11m12 = 0 and m21m22 = 0.

Therefore four cases can be considered:

Case 1: If m11 = m21 = 0, we see that condition C1 is satisfied.

Case 2: If m12 = m22 = 0, we see that condition C1 is satisfied.

Case 2: If m12 = m21 = 0 and m11 6= 0,m22 6= 0, condition C1 becomes
σ12m11m22 = 0, that is, σ12 = 0.

Case 3: If m11 = m22 = 0 and m12 6= 0,m21 6= 0, condition C1 becomes
σ12m12m21 = 0, that is, σ12 = 0.
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Appendix 3

i) Joint conditional distribution of rt+1, σ
2
t+1

We get:

expψt(u1, u2) = E
[
exp(−u2σ

2
t+1)E

[
exp(−u1rt+1)|rt, σ2

t+1

]
|rt, σ2

t

]
= E

[
exp(−u2σ

2
t+1) exp

[
−δ log(1 + cu1)− cu1

1 + cu1
(β0rt + β1σ

2
t + γσ2

t+1)
]
|rt, σ2

t

]

= exp
[
−δ log(1 + cu1)− cu1

1 + cu1
(β0rt + β1σ

2
t )
]
E

[
exp{−(u2 +

γcu1

1 + cu1
)σ2
t+1}|rt, σ2

t

]

= exp
[
−δ log(1 + cu1)− cu1

1 + cu1
(β0rt + β1σ

2
t )− δ∗ log[1 + c∗(u2 +

γcu1

1 + cu1
)]

−
c∗
(
u2 +

γcu1

1 + cu1

)
1 + c∗

(
u2 +

γcu1

1 + cu1

) (δ0rt + δ1σ
2
t )

 .

ii) Conditional moments given Jt

We get :
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ψt(u1, 0)

= −δ log(1 + cu1)− δ∗ log(1 + cc∗γ
u1

1 + cu1

)

−rt

β0
cu1

1 + cu1

+
cc∗γδ0

u1

1 + cu1

1 + cc∗γ
u1

1 + cu1



−σ2
t

β1
cu1

1 + cu1

+
cc∗γδ1

u1

1 + cu1

1 + cc∗γ
u1

1 + cu1


' −δ

[
cu1 −

c2u2
1

2

]
− δ∗

[
cc∗γu1 − c2c∗γu2

1 −
c2c∗2γ2

2
u2

1

]

−rt {β0(cu1 − c2u2
1) + cc∗γδ0u1(1− cu1 − cc∗γu1)}

−σ2
t {β1(cu1 − c2u2

1) + cc∗γδ1u1(1− cu1 − cc∗γu1)} .
It follows that:

µt = E(rt+1|rt, σ2
t )

= c[δ + c∗γδ∗] + crt[β0 + c∗γδ0] + cσ2
t [β1 + c∗γδ1];

η2
t = V (rt+1|rt, σ2

t )

= c2[δ + 2c∗γδ∗ + c∗2γ2δ∗]

+ 2c2rt[β0 + c∗γδ0 + c∗2γ2δ0]

+ 2c2σ2
t [β1 + c∗γδ1 + c∗2γ2δ1].

Finally, note that :
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Cov (rt+1, σ
2
t+1|Jt)

= Cov [E(rt+1|rt, σ2
t+1)|Jt]

= cγV (σ2
t+1|Jt).

iii) First-order conditional moments of µ∗t , η
∗2
t .

We get :

E(µ∗t+1|Jt) = (β0 + c∗γδ0)µt + (β1 + c∗γδ1)E(σ2
t+1|Jt)

= cte + c(β0 + c∗γδ0)µ∗t +
1

c∗γ2
(β1 + c∗γδ1)(η∗2t − µ∗t )

= cte+ cγ1µ
∗
t +

γ2

c∗γ2
(η∗2t − µ∗t );

E(η∗2t+1|Jt) = cte + c(β0 + c∗γδ0 + c∗2γ2δ0)µ∗t

+
1

c∗γ2
(β1 + c∗γδ1 + c∗2γ2δ1)(η∗2t − µ∗t )

= cte+ cγ∗1µ
∗
t +

γ∗2
c∗γ2

[η∗2t − µ∗t ].

iv) Second-order expansion of ψt(v1, v2)

We get :

log(1 + cv1) ' cv1 −
1

2
c2v2

1,

cv1/(1 + cv1) ' cv1 − c2v2
1,(

v2 +
γcv1

1 + cv1

)
/[1 + c∗

(
v2 +

γcv1

1 + cv1

)
] ' v2 + γcv1 − γc2v2

1 − c∗(v2 + γcv1)2,

log[1 + c∗(v2 +
γcv1

1 + cv1

)] ' c∗(v2 + γcv1 − γc2v2
1)− 1

2
c∗2(v2 + γcv1)2.
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It follows that:

ψt(v1, v2)

' −δcv1 − δ∗c∗(v2 + γcv1)

−[µ∗t −
1

c∗γ
(η∗2t − µ∗t )]cv1 −

1

c∗γ2
(η∗2t − µ∗t )(v2 + γcv1)

+
1

2
δc2v2

1 + δ∗[γc∗c2v2
1 +

1

2
c∗2(v2 + γcv1)2]

+µ∗t c
2v2

1 +
1

γ2
(η∗2t − µ∗t )(v2 + γcv1)2.

In particular, we get :

Φt(u1, 0) = ψt(u1γ1, u1γ2), with γ1 = β0 + c∗γδ0, γ2 = β1 + c∗γδ1.

The second-order expansion of Φt(u1, 0) is :

Φt(u1, 0)

' −u1{γ1δc+ δ∗c∗(γ2 + γγ1c)

+[µ∗t −
1

c∗γ
(η∗2t − µ∗t )]cγ1 +

1

c∗γ2
(η∗2t − µ∗t )(γ2 + γγ1c)}

+u2
1{

1

2
δc2γ2

1 + δ∗[γc∗c2γ2
1 +

1

2
c∗2(γ2 + γγ1c)

2]

+[µ∗t −
1

c∗γ
(η∗2t − µ∗t )]c2γ2

1 +
1

c∗γ2
(η∗2t − µ∗t )[γγ2

1c
2 + c∗(γ2 + γγ1c)

2]}.

Similarly, we get :

Φt(0, u2) = ψt(u2γ
∗
1 , u2γ

∗
2),

with : γ∗1 = β0 + c∗γδ0 + c∗2γ2δ0, γ
∗
2 = β1 + c∗γδ1 + c∗2γ2δ1.
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The second-order expansion of Φt(0, u2) is similar to the second-order
expansion of Φt(u1, 0) after substituting u2 for u1, γ∗1 for γ1 and γ∗2 for γ2.

v) Unidirectional nonlinear noncausality from drift to volatility

The log-Laplace transform:

Φt(0, u2) = ψt(u2γ
∗
1 , u2γ

∗
2), say,

does not depend on µ∗t , if and only if,:

[
1 +

1

c∗γ

]
cγ∗1

1 + cu2γ∗1
− 1

c∗γ2

γ∗2 +
γcγ∗1

1 + cγ∗1u2

1 + c∗u2

[
γ∗2 +

γcγ∗1
1 + cγ∗1u2

] = 0,∀u2.

It is equivalent to :

γ∗1 = γ∗2 = 0,

or in terms of initial parameters :

β0 + c∗γδ0 + c∗2γ2δ0 = β1 + c∗γδ1 + c∗2γ2δ1 = 0.

vi) Unidirectional nonlinear noncausality from volatility to drift

We have :

Φt(u1, 0) = ψt[u1γ1, u1γ2], say.

This conditional Laplace transform does not depend on η∗2t if, and only
if,

h(u1) =
cγγ1

1 + cγ1u1

−
γ2 +

cγγ1

1 + cγγ1u1

1 + c∗u1

[
γ2 +

cγγ1

1 + cγγ1u1

] = 0,∀u1.

This condition is equivalent to : γ1 = γ2 = 0, or in terms of initial
parameters : β0 + c∗γδ0 = β1 + c∗γδ1 = 0.

vii) Unidirectional second-order noncausality from volatility to drift
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By considering the second-order expansion of Φt(u1, 0) derived in Ap-
pendix iv), we get the two conditions :

γ2 = 0,

c∗(γ2 + γγ1c)
2 = 0.

This system is equivalent to :

γ2 = 0, and c∗γ2γ2
1c

2 = 0.

⇐⇒ (γ2 = γ = 0) or (γ2 = γ1 = 0)

viii) Unidirectional second-order noncausality from drift to volatil-
ity

By considering the second-order expansion of Φt(0, u2) derived in Ap-
pendix 3 iv), and assuming that it does not depend on µ∗t , we get the following
two conditions : {

cc∗γ∗1γ
2 − γ∗2 = 0,

γ∗2 [γ∗2 + 2γγ∗1c] = 0.

These conditions equivalent to :

(γ∗2 = γ∗1 = 0) or (γ∗2 = γ = 0).

ix) Instantaneous second-order noncausality

The noncausality conditions are obtained by setting the coefficient of the
cross-term u1u2 in the second-order expansion of Φt(u1, u2) equal to zero.
The quadratic term in the expansion of ψt(v1, v2) is [see Appendix 3 iv)] :

v2
1[

1

2
δc2 + δ∗γc∗c2 + c2µ∗t ]

+(v2 + γcv1)2[
1

2
δ∗c∗2 +

1

γ2
(η∗2t − µ∗t )].

The coefficient of the cross-term in Φt(u1, u2) :
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γ1γ
∗
1 [

1

2
δc2 + δ∗γc∗c2 + c2µ∗t ]

+(γ2 + γγ1c)(γ
∗
2 + γγ∗1c)[

1

2
δ∗c∗2 +

1

γ2
(η∗2t − µ∗t )],

is equal to zero for any admissible value of µ∗t , η
∗2
t iff, γ1γ

∗
1 = 0 and

(γ2 + γγ1c)(γ
∗
2 + γγ∗1c) = 0.

This condition is equivalent to :

(γ1 = γ2 = 0) or (γ1 = γ∗2 = γ = 0) or (γ∗1 = γ∗2 = 0) or (γ∗1 = γ2 = γ = 0).

This condition can be written in terms of the primitive parameters as :

(β0 = β1 = γ = 0) or(β0 = β1 = δ0 = δ1 = 0).

x) Instantaneous noncausality

It is known that this noncausality condition requires the corresponding
second-order condition to be satisfied. Thus, we can consider the model
constrained by either (β0 = β1 = γ = 0), or (β0 = β1 = δ0 = δ1 = 0). In both
cases, we get :

Φt(u1, u2) = ψt(0, 0) = 0.

Thus, the instantaneous noncausality condition is satisfied.
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