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Abstract

A Degeneracy in the Analysis of Volatility and Covolatility Effects

Let us assume that A is a consistent, asymptotically normal estimator of a matrix
A (where T is the sample size), this paper shows that test statistics used in empirical
work to test 1) the noninvertibility of A, i.e. detA = 0, 2) the positivite semi-
definiteness A >> 0, have a different asymptotic distribution in the case where A =0
than in the case where A # 0. Moreover, the paper shows that an estimator of
A constrained by symmetry or reduced rank has a different asymptotic distribution
when A = 0 than when A # 0. The implication is that inference procedures that
use critical values equal to appropriate quantiles from the distribution when A # 0
may be size distorted. The paper points out how the above statistical problems arise
in standard models in Finance in the analysis of risk effects.A Monte Carlo study
explores how the asymptotic results are reflected in finite sample.

Keywords: Multivariate Volatility, Risk Premium, BEKK Model, Volatility Trans-
mission, Identifiability, Boundary, Invertibility Test.

JEL number: C10, C32, G10, G12.
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1 Introduction

In financial models, the risk on a set of assets is commonly represented by a volatility-covolatility
matrix, while the risk effect on expected returns and future volatilities is often specified as an affine
function of current and lagged realized volatilities and covolatilities. Under some specific hypothe-
ses, the regularity conditions may not hold in this particular framework, and, as a consequence,
the limiting distributions of some commonly used estimators and test statistics may differ from
the standard ones.

There are two strands of literature that are directly concerned: the literature on risk premium,
and the literature on multivariate ARCH models.

Let us first consider a simple risk premium model with 2 assets, called asset 1 and asset 2, and

the following volatility matrix

Y, = O11,t 012,t _
O12,t 022

The expected return on asset 1 can be written as:

* * *
Ei(r1t41) = Tpp41 +a1011¢ + 2010124 + c1022¢ + ajo11,0—1 + 2b]012,0—1 + {02241,

where ¢ ; is the riskfree return, and coefficients (a1, b1, ¢1), (a7, b7, cf) are the elements of matrices

_ a1 b1
4= b1 C1
premium and to test the statistical significance and positivity of the risk premium. Technically,

> and A*, respectively. This model allows us to estimate the ex-ante equity risk

these two tests concern the significance and sign of matrix A (resp. A*). Regarding the sign, there
exists evidence that suggests that risk premium can be either positive or negative. In particular,
Boudoukh et al (1993), Ostdiek (1985), Arnott, Ryan (2001), Arnott, Bernstein (2002), Chen,
Guo, Zhang (2006), Walsh (2006) tested the positivity of the conditional risk premium using the
method of instrumental variables and showed that risk premium can be of either sign, depending
on the environment. The rank of risk premium is also unclear. The theory underlying the CAPM
model suggests the existence of a relationship between the expected return and the variance of a
single market portfolio that captures the entire effect of variances and covariances of all assets.
This would imply that matrix A, in the above risk premium model, is not of full rank.

A similar ambiguity concerning the sign and rank of risk premium arises in foreign exchange
markets [see e.g. Domowitz, Hakkio (1985), Macklem (1991) , Hakkio, Sibert (1995)]. The lit-

erature suggests that the sign of the foreign exchange real risk premium can vary depending on
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the ratio of market volatilities in both countries. The significance of risk premium is of economic
interest too, as it has an important interpretation in the context of exchange rates. In particular,
if the risk premium is zero, the forward exchange rate becomes an unbiased predictor of the future
spot exchange rate.

In multivariate ARCH models, the expected future volatility is defined by linear functions of
volatility-covolatility (see, e.g. Engle, Granger, Kraft (1984), Bollerslev, Engle, Wooldridge (1988),

Bollerslev, Chou, Kroner (1992)). For example, the so-called vech-representation is:

~ ~ ~ * ~ * ~ * ~
Vi(rip41) =d+a1611,4 + 2016124 + €1022 + a1611,6—1 + 2b]F12,0—1 + 1 Fa2,0—1,

where ;¢ = i, ©,j = 1,2, and as before, the remaining coeflicients are elements of matrices
A and A*.

In this model, it is interesting to test the significance of lagged realized volatility, and the
existence of a factor representation of realized volatility, as in the BEKK model (Baba, Engle,
Kraft, Kroner (1990)). These tests directly concern the rank and sign of matrix A (resp. A*), as
it was the case in the risk premium model discussed in the previous paragraphs.

In this paper, we assume that matrix A is estimated from a sample of asset returns of size T,
and that estimator A7 is a consistent, asymptotically normal estimator of A. Our study is focused
on the tests of various hypotheses concerning matrix A, mainly for A of dimension 2 x 2, for clarity
of exposition.

The hypotheses of interest discussed in this paper are:

1) the hypothesis of noninvertibility of matrix A;

2) the hypothesis that matrix A is positive semi-definite.

This last hypothesis is equivalent to the hypothesis of nonnegativity of the linear form 7'r(AX)
(see Appendix 1, Lemma 1). Indeed, the linear form in volatilities-covolatilities that appears in

the risk premium model and the vech-representation above can be rewritten as:

ao11 + 2b1012 + coge =T'r [( Z Ic) > ( 2; Z;z >] =Tr(AY), say,
where Tr is the trace operator.
Moreover, we will also investigate
3) constrained estimation of A

when the constraint implies that the rank of A is less or equal to 1.
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At a first sight, the above hypotheses tests and constrained estimation ! seem quite standard.
Indeed, the invertibility of matrix A (hypothesis 1) is usually tested from the singular value decom-
position of the (asymptotically) Gaussian random matrix Ar [see Anderson (1989), Gourieroux,
Monfort, Renault (1995), Bilodeau, Brenner (1999)]. As for hypothesis 2), the tests of matrix
positivity are based on asymptotic tests of the following inequality restrictions ac — b> > 0, a > 0
[see e.g. Gourieroux, Monfort (1989), Wolak (1991)]. Finally, estimation of A under the hypothesis
of reduced rank is commonly performed by a quasi-maximum likelihood method, as in the BEKK
model [Engle, Kroner (1995), Jeantheau (1998), Comte, Lieberman (2000)].

The purpose of this paper is to point out the identifiability problems, boundary problems and
degeneracies that may be encountered while performing the aforementioned tests and estimation in
the framework of risk premium and multivariate ARCH models. In the presence of these effects, the
asymptotic distributions of estimators and test statistics can be non-standard. This can render the
outcomes of standard inference misleading and the stylized facts questionable. The degeneracies
discussed in the paper concern some commonly used estimators and test statistics for which the
true asymptotic distributions are derived. In particular, the asymptotic admissibility of the test
statistics and their potential improvements are out of the scope of the present paper.

The paper is organized as follows. Section 2 considers the Wald test of non-invertibility of
matrix A based on the estimated determinant det Ap. It shows that in the degenerate case A=0
the Wald test statistic has a non-Gaussian distribution and that this distribution depends on the
asymptotic variance of random matrix Ar. Section 3 discusses the constrained estimation of A
when it is not of full rank. We point out that when A=0, the distribution of the constrained
estimator is non-standard. Section 4 considers the test of positive semi-definiteness, that is, of
the hypothesis defined by inequality constraints a > 0,c > 0,ac — b> > 0. We show that when
A=0, the standard asymptotic theory is no longer valid. The necessary adjustments are given for
an unconstrained A [respectively, for A of reduced rank] under the maintained hypothesis. Finite
sample properties of the standard test statistics in the degenerate case are presented in Section 5.

Section 6 concludes.

ISimilar problems arise in the so-called vech-diagonal multivariate ARCH models, such as 0ijt = dij + aij0ij ¢,
i,j=1,2,¢ < j. It is easy to check that the expected volatility-covolatility matrix is positive semi-definite, if and only
if, the matrix A = (a;;) is positive semi-definite. This condition is sufficient only for matrices of larger dimension
(Silberberg, Pafka (2001)).
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2 Invertibility Tests

Let us consider the test of invertibility of matrix A, based on the significance of its determinant.

The null hypothesis is:

Ho : (det A = 0). (2.1)
2.1 The unconstrained model

Let us consider a n x n matrix of parameters A, and its consistent, asymptotically Gaussian
estimator Ar. vec A denotes a vector of length n? obtained by stacking the columns of matrix A.

We assume that:

VT vec(Ar) — vee(4)] 5 N(0,9), (2.2)

where 2 is a (n? x n?) invertible matrix and 4 denotes the convergence in distribution. Ar conveys
all relevant information about A contained in the data. From now on, model (2.2) is referred to

as the unconstrained (asymptotic) model.

2.2 Wald test statistic

A standard method for testing the null hypothesis Hy in (2.1) is based on the estimated determinant
detAq and its asymptotic distribution obtained by applying the d-method.
Since % = wvec|cof(A)], where cof(A) is the (n xn) matrix whose elements are the

cofactors? of elements of A, we get:

VT (detAr — detA) KN N(0,vec[cof (A)]' Quec|cof (A)]). (2.3)

The Wald test statistic for testing the null hypothesis (2.1) is:

~ \/TdetAT
_ _ : _ , 2.4
" ecleof GAn) Oy vecleo (A 2 .

where Q7 is a consistent estimator of Q. If vec[cof (A)] # 0, this Wald statistic follows asymptoti-
cally a standard normal distribution and a critical region of the type {|ép| > 1.96} defines a test

at asymptotic level 5%.

2A cofactor is a determinant obtained by deleting the row and column of a given element of a matrix preceded
by a + or - sign depending whether the element is in a + or - position.
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2.3 The degenerate case

The standard asymptotic properties of the test are valid as long as vec[cof(A)] # 0, that is, if
A # 0. Otherwise, the asymptotic properties of the Wald test statistic are significantly altered.

i) Asymptotic Properties of the Estimated Determinant

When A = 0, we have vVTvec(Ar) 4 vec(Ass) ~ N(0,9), say. Thus we have: det(vTAr) 4

det(Ay), or equivalently

T2 detAr % det(As). (2.5)

When n > 2, the asymptotic behavior differs from the standard behavior, since:

i) the speed of convergence is 1/(T"™/?) instead of 1/v/T, that is greater;

ii) the limiting distribution is not Gaussian, but instead, it is a determinant transformation of
a multivariate Gaussian distribution.

ii) Asymptotic Properties of the Wald Test Statistic

Similarly, we can examine the test statistic &7 when A=0. Since cof (VT Ar) = T=Y/2¢of (A7),

we see that &p 4 £(Ay), where

B det(As)
~ {vec[cof (A )] Queccof (A }1/2

iii) Comparison with the Literature

§(Ax) (2.6)

The degenerate case considered here does not belong to those discussed in Andrews (2001), in
which some parameters are not identifiable under the null. In our framework, matrix A is always
identifiable. This explains why the asymptotic distribution of the Wald statistic differs from the
distribution derived by Andrews (2001).

This degeneracy cannot be disregarded or circumvented, for example, by introducing a sequence
of null hypotheses indexed by the number T of observations, such as Ho 1 : [detA = 0, ||A|| > h(T)]
, where ||A[|?> denotes the largest eigenvalue of AA’ and h(T) is strictly positive and tends to
zero at an appropriate rate, when T tends to infinity ®. Indeed, the hypothesis Hy : {A = 0}
does not belong in the union of this sequence of hypothesis Hy 7, and hypothesis Hy has often
structural interpretations whereas the sequence Hy v does not. For instance, the test of Hy allows

for determining the autoregressive order of a multivariate ARCH model %. In the application to

3Such a methodology is followed in the test of switching regimes, for the parameter representing the unknown
switching date [Andrews (1993)].
4See Andrews (2001), Francq, Zakoian (2006) for tests concerning the orders of univariate GARCH processes.
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risk premium, the condition A=0 characterizes the hypothesis of nonpredictability of asset returns

that is of economic interest.

2.4 Critical values

1) Asymptotic Size of the Test

The multiplicity of limiting distributions of the Wald test statistic under the null hypothesis
suggests that a detailed analysis of the type I error is needed, as the condition of asymptotic
similarity on the boundary condition is violated [see Hansen (2003)]. For instance, suppose that
the null hypothesis is rejected when the Wald statistic {—CT is larger in absolute value than the
critical value c, and let us denote A, the set of noninvertible matrices A.

The size of the test for a finite sample of length T is equal to:

ar(c) = supaca, Pa(ér > o),

and is reached for matrix A% in A,.
Then, it is possible to define

(*) the asymptotic null rejection probability as:

Qoo (C) = sSupaca, Tlgnoo Pa(ér > ¢);

(**) the asymptotic size of the test as:

Goo(c) = lim ap(c) = lim supaea, Pa(ér > c).

In the sequel, we assume that limp_,, and supae4, can commute, which implies a ”uniform
convergence” condition of the finite sample distribution of Ar towards its asymptotic Gaussian
distribution.

Assumption A.1:

The asymptotic size of the test is equal to the asymptotic null rejection probability.

In the applications, Assumption A.1. has to be verified case by case according to the type of
asymptotically Gaussian estimator A which is used.

Under Assumption A.1, the asymptotic size of the test is:

ax(c) = SUPHOTIEI;OPA[|3T|>C]



THIS VERSION: February 6, 2009 8

= sup[supa.geta—o,azo lim Pa(|ér| > ¢),supao lim Pa(|ér| > ¢)]
T—o00 T— 00

= sup[(P(|X]| > ¢), P(I{(Ax)| > )] (where X ~ N(0,1)).

By inverting this relationship, we deduce the critical value for an asymptotic size ay, = a:

c(a) = Maz[®~ (1 — a/2),Q(a, V)],

where @ is the cdf of the standard normal, and Q(a, Q) is the quantile computed from:

PllE(As)] > Q(a, )] = a, (2.7)

where vec(Ay) ~ N(0,Q).
Function Q is too complicated to be calculated analytically, but the value Q(«, ) can be easily
approximated by Monte-Carlo simulations. Let us denote by Qor an estimator of Q, which is
consistent under the null and by Q(a, QOT) the associated value of () derived by simulations. The
critical value will be chosen as é&(a) = Maz[®~' (1 — a/2), Q(, Qor)]-

ii) Comparison with Sequential Procedures

Under Assumption A.1, the procedure above provides the correct asymptotic size of the test of
the null hypothesis Hy : {det A = 0}. It is an alternative to the sequential procedures described

below, which are asymptotically size distorted.

i) A two-step procedure can be as follows. In the first step, we consider a Fisher statistic F for
testing the hypothesis Hj : {A = 0} with critical value f,,, say, corresponding to level ag. If
F < f,,, the null hypothesis Hy is accepted. Otherwise, in the second step we perform a test
based on the determinant at level ay, and accept Hy, if &7 < ®~1(1 — a1 /2). The critical region

of the sequential test is:

W ={F > fo,,ér>® (1 —a;/2)}.

For a given choice of g, a1, the asymptotic size® of this test is equal to

SUpA:det(A):O Th—r>noo P[W > faoagT > q)_l(l - 041/2)].

The asymptotic size can be bounded by a known function of ag, a1, but depends on ayg, a; and

2, in general. Thus, this sequential test can be asymptotically size distorted.

5 Assumed equal to the asymptotic null rejection probability.
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ii) Another sequential procedure can be based on the analysis of the rank of matrix A [ see e.g.
Anderson (1989), Gill, Lewbel (1992), Cragg, Donald (1996), (1997), Bilodeau, Bremer (1999),

Robin, Smith (2000)]. Indeed, for a matrix of dimension (n x n), we know that

Hy : {detA =0} = {rank(A)=0}U{rank(A)=1}U... {rank(4)=n—-1}

= {rank(A) <n}.

Thus, we can first test if rankA = 0; then, if this hypothesis is rejected, we test if rankA = 1, etc.
As above, the asymptotic size of this sequential test can be easily bounded, but its exact value is
difficult to derive. The interpretation in terms of rank shows that a) a reason for the degenerate
asymptotic behavior of statistic fT is that the null hypothesis Hy is a union of elementary null
hypotheses {rank(A) = p}; b) the only elementary hypothesis that causes the degeneracy is
{rank(A) = 0}, whereas the other elementary hypotheses {rank(A) = p}, p = 1,...,n — 1 have

been jointly accommodated in the single statistic éT.

2.5 Symmetric matrix A of dimension (2,2)

Let us consider the estimator of a square (2,2) symmetric matrix
. ar b . . b
A = ar ) and its convergence limit A,, = (oo Voo
br c¢r boo Cxo
derive the asymptotic critical values of the Wald test for any possible matrix 2. Matrix {2 contains

). The aim of this section is to

6 different elements. First, we show that the critical values depend on 2 by only three parameters
and the sign. This finding allow us to simplify the display of critical values.

The test statistic £(Aoo) is such that E(PA. P') = £(Ax), for any matrix P of dimension (nxmn)
(see Proposition A.1, ii) in Appendix 2). We infer that the quantiles Q(a, ) and Q(a, Q(P)) are
identical if Q = V]vec(Awo)] and Q(P) = V]vec(PAx P')], for any P. By choosing an appropriate
linear transformation P, we show in Appendix 2, b) that the quantiles Q(«, 2), V2 , depend in

fact, on a number of parameters much smaller than the number of elements in 2.

Proposition 1: Up to a transformation A,, — PA, P', matrix € can be defined as:

Goo 1 0 ep?
Q=Var| b | = 0 % 0 ,
Coo ep? 0 1

where parameters p and 7y are nonnegative, p < 1, and € is equal to +1 or -1, according to the sign

of correlation between ao, and co.
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Thus, the set of admissible quantiles {Q(«, ), >> 0}, where Q >> 0 means that the matrix
is symmetric, positive semi-definite, coincides with the set of quantiles {Q[a, Q(e, p,7)], e = £1,0 <
p<1l,v>0}.

The Wald test statistic with Q(e, p, y) is:

UooCoo — b2

\/(cooa _2b007 GOO)Q(G, P 7)(0007 _2b007 a’OO)I

UooCoo — D2
- 2 2 = 002 2 ~2 (2.8)
V& + a2 + 26p2Cooloe + 4b2 7y

g(Aoo) =

Table 1 provides the upper quantiles at 10%, 5% and 1% of the variable |¢(Ax )| for different
values of parameters p,y and € = +/—1. The quantiles are obtained from Monte-Carlo experiments
with 5000 replications. They can be directly compared to the critical values 1.64, 1.96, 2.57 of
the standard normal distribution, which correspond to the case when detA = 0 with A # 0. We
observe that all these values are smaller than their Gaussian counterparts. This implies that, under
Assumption A.1. for a (2,2) symmetric matrix A the asymptotic size of the standard Wald test
does not need to be corrected for degeneracy A=0, but likely, the magnitude of size distortion
depends on the dimension of matrix A. Moreover, we show that such a size correction is needed

for other inference on matrix A.

3 Constrained Estimation of A

3.1 The Example of BEKK model

To ensure the positivity of volatility matrix H; = Vi(r¢4+1), the multivariate GARCH literature

(Engle, Kroner (1995)) proposed the following constrained specification °:

p q
Hy=Co+ Y MjH; jMj+> Niri_pri Ny, say,
j=1 k=1

where M;, N, Cop are (n,n) matrices and Cy >> 0. Accordingly, the volatility of asset i is:

p q
! ! !
hiit = coii + E M;jHy ;Mj; + E Nigri—xry_ 1 Nig,
= k=1

where M;; (vesp. Nj) is the i'" row of M; (resp. Nj). A component of the first sum on the

right-hand side is of the form:

SFor ease of exposition, we introduced only 1 positive component per lag.



THIS VERSION: February 6, 2009 11

M;HM! = Tr(M;HM!) = Tr(M!M;H) = Tr(A;H), say,

where A; = MM, is of rank less or equal to 1.
Under a BEKK specification, the estimation of matrix A; has to be performed under constraints.
A common approach consists in optimizing a quasi-likelihood function with respect to parameters
M (and N) [see e.g. Engle, Kroner (1995), Comte, Lieberman (2003), Iglesias, Phillips (2005)]. Let
m2  mims

us consider matrix A of dimension two 7, A = < 9 . Due to a lack of identifiability
mimes msy

of parameter M, the following two difficulties arise:

i) First, there is a problem of global identifiability since the same matrix A is obtained for M

and -M. To solve this problem, it is common to use the following change of parameters:

Azt (i e, Y =a( § ) 6, s (31)

mg/ml (m2/m1)2

where a = m} > 0,8 = ma/m1 (whenever m; # 0, or equivalently a # 0).

ii) Second, there is a problem of local identifiability at A = 0. The reason is that the Jacobian

OvechA 27)7"71 n(z)
=V = 2 1
8(m1’ m2)l 0 2m2

is of rank 2, except when A = 0.

The asymptotic theory established for multivariate BEKK models doesn’t hold for the estima-
tors of parameters o and [ defined in (3.1), because it assumes the identifiability of parameter
M [see Assumption A.4 in Comte, Lieberman (2003)]. To overcome this difficulty Engle, Kroner
(1995) (Proposition 2.1) introduce the identifiability condition m; > 0. This condition eliminates
both the global and local identifiability problems.

In the next section, we derive the true asymptotic distributions of the minimum distance
estimators of o and [ based on a consistent, and asymptotically normal estimator of A. For
the application to BEKK model, we assume that the unconstrained quasi-maximum likelihood
estimator of A is asymptotically normal. This, in turn, requires some additional assumptions on
the BEKK model, such as the presence of at least one non-zero ARCH effect [Ny; # 0 for at least

one index k] to avoid another degeneracy pointed out in Andrews (2001).

"The results can be easily extended to matrix A of dimension (n x n) and of rank less or equal to 1.
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3.2 The constrained estimator

Let us now assume that matrix A is symmetric and of reduced rank. Then we can write A =

o < é > (1,3), where a and 3 are unconstrained 8.

The constrained estimator of A based on A is the solution of the following minimization:

dT —
(ar, fr) = argming glar — a,br — af,ér —af®)Q7' | br—aB | . (3.2)
éT — Clﬂ2

The objective function (3.2) is defined for all values of parameters a, 5. However, the stochastic
coefficients involved in the objective function cannot be normalized uniformly with respect to the
true matrix A. Therefore, Assumption 3 in Andrews (1999), p. 1349, is not satisfied and new
asymptotic results need to be derived.

The objective function can be concentrated with respect to a. Then, the solution in « for a given

B is:

1 1 1
a(B) =< vechAr, [ B >/<| B |, B >,
B? B? B
where <, > denotes the inner product associated with Q;l.
The concentrated objective function is:
) ) ) 1 2 1 1
Ur(8) =< vechAr,vechAr > — | (< vechAr,| f >)| /< 8 1, B >. (3.3)
5 3 3

The optimization of the concentrated objective function yields a finite solution (see Appendix 4).

Since the first-order condition is:

. 0 1 1 . 1 0 1
< vechAr, 1 >< B | B > — <wechAr,| B >< 1 N >=0,
26 B B B 26 B

the solution that minimizes (3.3) is a root of a polynomial of degree 5.

8We do not assume a priori that A is positive semi-definite.
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3.3 Asymptotic distribution of the constrained estimator

When A is not equal to zero (i.e. if @ # 0), the standard asymptotic theory holds and we have:

VT [( ar ) - ( : )} 4 N0, (I, A I (0, )7,

Br
L g p
0 a 2a8 )
When A=0, the Jacobian matrix is of rank 1, and the standard asymptotic theory is no longer

where the Jacobian matrix is J(a, 8) = (

valid. Let us now consider this case. It follows from (3.4) that 37 is a solution of

(1)< (2) ()
Mazg |<vechAr,| B >l /< B | B >
[ B2 J B2 B2
1 2 1 1
— Mawgl<vech(\/fflq~),(ﬂ)>] /<(,3),(,3)>.
B B B?

As a consequence, BT tends to a limit S, which is a solution to the optimization:

[ 1 ]2 1 1
Mazs | < vech(Ax), ( B ) >l /< ( B ) , ( B ) > (3.5)
[ B? J B B

Similarly, we note that:

VTar = VTao(Br)

1 1 1
= <uech(\/TflT),(6:T>>/< (B:T),<B:T)>
B% B% B%

1 1 1
aoo:<vech(Aoo),(Boo) >/<(Boo>,(ﬂoo>>. (3.6)
% % B3

Proposition 3 summarizes the above discussion.

tends to a limit
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Proposition 3
If A=0, then (\/TdT,BT) 4 (Qoos Boo), Where (o, Bxo) is a complicated nonlinear transfor-

mation of the Gaussian vector, derived from (3.5),(3.6).

Note that parameter § is not identifiable when A=0. Nevertheless its estimator BT admits a
limiting distribution.
The asymptotic limiting distributions of test statistics for a and  are non-standard too. For

instance, the t-statistic for the test of significance of parameter « is:

77% - \/TCAKT/(AT,LT,

where G, 7 is the square root of the first diagonal element of the matrix [J(d&r, BT)Q;l J(ar, BT)’]_l.
When A # 0, this statistic tends in distribution to a standard normal. When A=0, statistic %

tends to:

1
N5 =< vech(Aw), | Boo | > /0a,c0; (3.7)
B2

where 04,00 is the square root of the first diagonal element of the random matrix
Yoo = [J(aooa /Boo)ﬁil‘](aoov /Boo)’]il'

Similarly, the t-statistic for the test of significance of parameter 3,

ity = VThr/és1

tends to

% = Boo/ 05,00, (3.8)

where 03, is the square root of the second diagonal element of ¥.
Table 2 presents the quantiles at 10%, 5%, 1% of the distribution of variables [n%| and |n2 | ,
respectively, calculated for Gaussian matrices introduced in Section 2. The quantiles have been
obtained by simulations with 5000 replications.

The quantiles associated with the t-statistic for a are less sensitive to parameters p and ~ than
the quantiles associated with the t-statistics for 5. Both sets of quantiles are much more sensitive

to parameter v than to other parameters. Moreover, the quantiles differ significantly from the
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Gaussian quantiles 1.64, 1.96, 2.57, especially for parameter 5. In particular, the critical values
exceed significantly the critical values from the standard normal distribution.

Figure 1 shows the distribution of S, for p = 0,y =1. For p = 0,7 = 1, 8 is the solution
of Mazg(aeo + boofB + oo 82)? /(1 + 8% + %), where auo, boo, Coo are independent standard normal.

Since

Boo(_aom_bom_coo) Boo(aooabooacoo)a

ﬂoo(coo;booaaoo) = ]-//Boo(aoo;boo;coo);

the distribution of S, is symmetric and invariant with respect to transformation foo = 1/fc0-
This explains the shape of the distribution displayed in Figure 1, with a mode at 0 and very heavy

tails.

[Insert Figure 1: Distribution of ]

4 Positivity Test

Let us now focus on the test of positivity for a symmetric matrix A. This test depends on the
maintained hypothesis, that is, on whether we assume ” A unconstrained”, or ” A of reduced rank”.

Both cases are discussed below.

4.1 A unconstrained

A common approach to testing matrix positivity is as follows. The null hypothesis is written
as Hy : {a > 0,c > 0,ac — b> > 0}, and the test of these inequality restrictions is performed
along the lines developped ? by [ Gourieroux, Holly, Monfort (1980), (1982), Kodde, Palm (1986),
Gourieroux, Monfort (1989), Wolak (1991)]. However, in the presence of a degeneracy due to
A=0, this standard technique cannot be applied. The reason is that it requires the Jacobian of
the constraints, that is, (a,b,c¢) — (a,ac — b?) to be of full rank on the boundaries of the null
0 2 ) is of reduced rank.

—2b
Intuitively, the degeneracy can be explained as follows. The positivity condition involves three

hypothesis. For A=0, however, the Jacobian < i

restrictions and the null hypothesis should be written as Hp : {a > 0,¢ > 0,ac — b> > 0}. If either

a (resp. c) is strictly positive, than condition ac — b* > 0 implies that ¢ (resp. a) is nonnegative.

9see e.g. example iv) in Andrews, (1996), p. 705.
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Thus, one of the two first inequalities seems to be redundant. In fact, this is not the case. For
0 0

instance, the restrictions a > 0,ac — b? > 0 are satisfied for A = ( 0 —1

), which is not positive
semi-definite.
Let us now consider the asymptotic properties of the likelihood ratio test. The log-likelihood

function of the (asymptotic) unconstrained model is :

Ly(A) =T[—log2m — %log detQr — %Uech(fiT - A)'Q}lvech(AT — A)], (4.1)

where vech denotes the vec-half operator. The likelihood ratio statistic for testing the positivity

hypothesis is:

8 = 2(MazsLy(A) — Maza.as>oL7(A))

= MinassoTvech(Ap — A)'Q}lvech(AT —A). (4.2)

The estimator of matrix A constrained by the positivity condition can be equal to either of the
three following;:

i) Ar, when Ay >> 0;

a solution to (4.2), which can be either:

ii) a positive semi-definite matrix of rank 1;

iii) 0.

Under standard regularity conditions, the maximum value of type I error under the null is
attained for A=0, and is computed from a weighted mixture of chi-square distributions, with
weights equal to the probabilities of the three outcomes i), ii), iii) evaluated under A=0.

For A=0 however, some identification problems arise, as shown in the previous sections. Let
us consider the asymptotic behavior of the likelihood ratio statistic when A=0. Since the set of

positive semi-definite matrices is a positive cone, we get:

§ITJ = MinA:A>>0Tvech(/AlT — A)'Q}lvech(/iqv —A)

MinA:A>>0vech(\/TfiT — A)'Q}lvech(ﬁAT —A)

4¢P Mina.assovech(As — A)'Q tvech(As — A). (4.3)

Thus, (4.3) defines an asymptotic optimization criterion under A=0. There are 3 regimes distin-

guished by the admissible values of that objective function:
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Value in regime i) : £L.F = 0;

Value in regime ii) : 2P = vech(As — A%)'Q 'vech(A — AY),
where vech(A2) = (Qoo, Qoo Boos Ao B%);

Value in regime iii) : €58 = vech(A)'Q Tvech(As).

2 3

The asymptotic probabilities of these regimes are denoted by 7' , 72 73 .

Let us now consider the type I error. We get

SUPA>>0 Tll_I}éo P[lef > c] = sup[supa>>o0,4+0 Tll_I}éo P[lef > C],PAzo[f:; > c]].

By standard asymptotic theory underlying the tests of inequality constraints [see e.g. Gourier-
oux, Holly, Monfort (1980), Gourieroux, Monfort (1989), Wolak (1991)], the first component
SUPA>>0,420 liM7 5 00 P[f; > ¢| is bounded from above by the survival function corresponding

to a mixture of chi-square 1°:

T2 X (0) + w2 X2 (2) + w23 (3).

This survival function has to be compared with the survival function of ¢! under A=0. This

survival function is of the type:

T2 X7 (0) + 72 Qoo + T X (3),

where Q. denotes the asymptotic distribution of ¢%F. As in the previous sections, the limiting

distribution @), and the probabilities of the regimes can be easily obtained from simulations.

4.2 A of reduced rank

Section 3 considered the estimation of A when the rank of matrix A is less or equal to 1. In this
parametric framework, the positivity hypothesis can be written as Hp : (o > 0). It is usually tested
by a one-sided test based on the t-statistic 3. As shown in Section 3, the asymptotic distribution
of this test statistic is standard normal, except when o = 0 ( that is A=0). We provide in Table 3
the one-sided critical value, that is the lower quantile of n% at 1%, 5%, 10%, derived by simulation

with 5000 replications.

10Under regime ii), the standard theory implies a mixture of x2(1) and x2(2), which is bounded from above by a
2
x*(2)-
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5 Finite Sample Properties

The previous sections were focused on the asymptotic distributions of test statistics. These distri-
butions can be significantly different from the finite sample distributions.

To study the finite sample properties of standard test statistics, we generate three samples of iid
standard Gaussian returns (ry4,72,)", that are IIN(0, Id), where Id denotes the identity matrix.
The number of observations in each sample is T=50, 100, 200. Next, we consider the following
regressions:

Regression 1: 7y p =d+arf ;_y +20r1 ;1721 +0rd,y + v

Regression 2: 7§, =d+arf ;| +2br1 s 1721 +ord, g + vy

The first regression is a model with a bivariate risk premium, while the second one is a volatility
transmission model.
For each regression, we determine the finite sample distributions of épﬁ%,ﬁ?, where the Wald
statistics are derived from the OLS estimators of a,b,c with the OLS estimated variance-covariance
matrix Qp. The distributions of {—CT for the two regressions are displayed in Figures 2a-2b. We
observe fat tails, and different limiting distributions for each of the two regressions due to the

differences between the limiting OLS covariance matrices for the two regressions (see Section 2.5).

[Insert Figures 2a, 2b : Finite sample distribution of éT]
Let us now consider the finite sample distributions of the t-ratios for a and 3. All the distributions
feature fat tails due to the stochastic variance in the denominator of the t-ratio.

[Insert Figures 3a, 3b : Finite sample distribution of 7]

[Insert Figures 4a, 4b : Finite sample distribution of ﬁg]

6 Concluding Remarks

The paper derives the limiting distributions of standard estimators and test statistics for the analy-
sis of return volatility and covolatility effects on the expected returns and future volatilities. When
the volatility effects vanish, one can encounter difficulties that are due to non-identifiability of
parameters, or to non-uniform convergence of the objective function used in estimation. Similar
problems arise when the second-order causality is examined. Indeed, the null hypotheses of unidi-
rectional second-order causality involve inequality restrictions, which entail identifiability problems
of the type considered in this paper (see Gourieroux, Jasiak (2006), Gourieroux (2007), for the

definition of causality hypotheses in terms of parameter restrictions).
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Appendix 1
Positivity condition

Let us consider a linear form in symmetric positive semi-definite (2,2) matrices:

g = ( o 012 > — h(E) = aoy1 + 2bo1z + coa.
012 022

This linear form can be equivalently written as:

h(Z) = Tr[AS],

z IC) > and Tr is the trace operator, which computes the sum of diagonal elements

of a square matrix.

where A = (

Lemma 1: The linear form takes nonnegative values for any positive semi-definite matrix 3,

if and only if, matrix A is positive semi-definite.

Proof
Since the set of symmetric positive semi-definite matrices is a positive convex cone, it is equiv-
alent to check the positivity condition on the boundary of the set. This boundary corresponds to

the non invertible ¥ matrices. These matrices can be written as

=(5)en=(a 5).

We get

(%) = aa® + 2baf + cB? > 0, Va,p.

Let us assume a # 0. The condition becomes:

a+2b(B/a) +c(B/a)* >0, Ya,B,

which is equivalent to b?> — ac < 0 (the discriminant of the polynomial of degree 2 is nonpositive),
and a > 0.

By considering the other case a = 0, we see that ¢ > 0.

The set of conditions: a > 0,c¢ > 0,ac — b> > 0 is exactly the set of conditions for positive

semi-definiteness of matrix A. QED
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For dimension n larger than 2, it is known that the linear form ¥ — Tr(AY) takes nonnegative
values for any positive semi-definite matrix ¥, when A is symmetric positive semi-definite. However,
this condition is no longer necessary.

From the proof of Lemma 1, the positivity semi-definiteness condition on A is also required if
the linear form has to be nonnegative for any degenerate positive matrix ¥. This is important in
ARCH modeling where the realized volatility matrix is generally approximated by squared returns
¥y = ( ﬁrjf% rl;%?t ), that has rank 1. Thus, it is not necessary for us to assume that X; is
invertible and to average square returns over a fixed window, for this reason (as suggested, for

instance, in Tse, Tsui (2002)).

Appendix 2

Proof of Proposition 1

a) Some Invariance Properties
Proposition A.1 below illustrates invariance properties of det(A) and £(As) with respect to

linear transformations of matrix A..

Proposition A.1 Invariance Properties: For any (n x n) invertible matrices P, Q, we have:
i) det(PA»Q) = det(P)det( A )det(Q);

i) €(PAP') = £(Aw).

Proof: The proof is based on a succession of Lemmas

Lemma 2: If P and Q are (n,n) invertible matrices, we get:
cof(PAQ) = det(P)det(Q)Q *cof(A)P~L.

Proof
From the identity A cof(A) = det(A) Id, it follows that
(PAQ)Q cof(A)P~'det(P)det(Q) = det(A)det(P)det(Q) Id = det(PAQ) Id.

The result follows.

QED

Lemma 3: There exists a (n,n) permutation matrix A such that vec(A') = Avec(A). This

matrix satisfies A = A’ = A2,
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Lemma 4: i) vec(PA) = diag(P)vec(A), where diag(P) denotes the bloc-diagonal matrix,
with diagonal block P.

ii) vec(AQ) = Adiag(Q')Avec(A).

iii) vec(PAQ) = diag(P)Adiag(Q')Avec(A).

Proof
i) We have
PA = P(ay,..,a,) (where a; denotes the 5" column ofA)
= (Pay,...,Pay,).
Pa1
Thus, vec(PA) = = diag(P)vecA.
Pa,
ii) We have
vec(AQ) = Avec[(AQ)'] (by Lemma 3)
= Avec(Q'A")

= Adiag(Q")vec(A") (from part 7))
= Adiag(Q')AvecA (by Lemma 3).
iii) This follows directly from parts i) and ii).

QED
Lemma 5: For any (n,n) invertible matrix P, we have {(PAxP) = {(A).

Proof:

Let us consider the transformation:
A — AL = PALQ,

where P and Q are deterministic (n,n) invertible matrices. We have:

vec(A%) = diag(P)Adiag(Q')Avec(A) (by Lemma 4),
QO = Var[vec(AL)] = diag(P)Adiag(Q")AQAdiag(Q)Adiag(P'),
det(AL)) = det(P)det(Q)det(A),

cof(As,) = det(P)det(Q)Q ' cof(Aso) P,
vec[cof (A%))] = det(P)det(Q)diag(Q~")Adiag[(P")~"Avec[cof (Au)]-
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If detP det@ > 0, we find that:
. det(A%) det(Ax)
§(A%) = = ;
Vvec[cof (A% Q*vec[cof (A%)] Bo
where
By = wec[cof(As)] Adiag[(P)™'|Adiag[(Q")]diagPAdiag(Q")AQAdiag(Q)Adiag(P')

diag(Q 1) Adiag[(P") ] Avec[cof (As)].
It follows directly that, if Q = P’, we have
detP det@Q = (detP)* > 0,

By = vec[cof (Aso)] Quec[cof (Axo)] and §(PAsP) = £(Ax) . The result follows.
b) Proof of Proposition 1

We use the invariance properties of £(Ay) and det(As) to show Proposition 1.

i) Let us consider a matrix P = A0 . We get:
0 n

r Qoo boo At
PA P = < bodi o )

Thus, it is always possible to standardize aoo and co to get V(o) = V(cs) = 1.

ii) Let us now prove that we can find a linear transformation in order to have

Cov(aoo,boo) = Cov(Ceo, boo) = 0.

For P = < ; ? >, the matrix A* = PAP' is such that
al, = Qoo + 2boo + coo?,
b;o = aooﬂ + (1 + a/B)boo + o,
ch, = oo 32 4 2bso f + Coo.

The condition Couv(b%,, ¢t ) = 0 implies

[ ekihgee]

_ _COU(GOO/B + boo:aooﬁ2 + 2bso 8 + coo)
T Cov(boof + Coos A% + 2bscB + Coo)

22

By substituting this expression for « in the condition Cov(a®,,b%.) = 0, we get a polynomial in 38

o0 Yoo

of degree 5 (almost surely). This polynomial has at least one real root, which needs to be selected

in order to obtain zero covariances.
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Appendix 3
The solution in § is finite

When f tends to infinity, the quantity

1 1 1
ur(B) =< vechAr, | B >? /< B | B >
B2 B2 B2

tends to é%. Moreover, the condition ur(8) > ¢ is equivalent to:

1 1 1
<vechAr,| B >? 2 < B8 N >> 0.
B B B
It is satisfied for a finite beta value, since the left-hand side of the inequality is a polynomial of

degree 3.
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Table 1: Critical Values of the Wald Test Statistic for Positive and Negative e

p y € Positive € Negative

10 5 1 10 5 1
0.0 05| 0945 | 1.092 | 1.428 | 0.903 | 1.074 | 1.399
0.0 | 1.0 | 0.989 | 1.141 | 1.472 | 0.922 | 1.092 | 1.491
00| 15| 0935 | 1.074 | 1.359 | 0.898 | 1.048 | 1.423
00| 20| 089 | 1.044 | 1.336 | 0.871 | 1.014 | 1.337
0.1 0.5 0.942 | 1.081 | 1.412 | 0.930 | 1.064 | 1.393
0.1 | 1.0| 0.980 | 1.135 | 1.465 | 0.927 | 1.096 | 1.457
0.1 15| 0936 | 1.083 | 1.356 | 0.894 | 1.046 | 1.424
0.1 2.0 0.894 | 1.046 | 1.318 | 0.869 | 1.015 | 1.326
0.2 0.5 0.929 | 1.098 | 1.411 | 0.941 | 1.066 | 1.384
0.2 1.0 0975 | 1.125 | 1.420 | 0.946 | 1.089 | 1.480
0.2 |15 0930 | 1.076 | 1.335 | 0.905 | 1.037 | 1.416
0.2 20| 0.890 | 1.046 | 1.309 | 0.868 | 1.016 | 1.331
0.3 05| 0928 | 1.054 | 1.391 | 0.930 | 1.074 | 1.361
0.3 1.0 0955 | 1.119 | 1.404 | 0.959 | 1.102 | 1.470
03] 15| 0923 | 1.064 | 1.306 | 0.919 | 1.044 | 1.396
0.3 ]20]| 0.896 | 1.038 | 1.294 | 0.876 | 1.002 | 1.336
04105 0915 | 1.062 | 1.407 | 0.926 | 1.079 | 1.323
0.4 ]1.0| 0939 | 1.104 | 1.380 | 0.970 | 1.114 | 1.441
04| 15| 0904 | 1.063 | 1.270 | 0.921 | 1.052 | 1.391
0.4 ] 2.0 0.889 | 1.026 | 1.287 | 0.878 | 1.015 | 1.340
0.5 0.5 | 0910 | 1.030 | 1.367 | 0.927 | 1.075 | 1.354
0.5 1.0 0930 | 1.075 | 1.339 | 0.991 | 1.125 | 1.437
0.5 15| 0.898 | 1.049 | 1.272 | 0.937 | 1.058 | 1.380
0.5 20| 0.866 | 1.027 | 1.268 | 0.880 | 1.017 | 1.340
06| 05| 0.899 | 1.047 | 1.337 | 0.934 | 1.095 | 1.360
0.6 | 1.0 | 0.923 | 1.058 | 1.300 | 1.008 | 1.147 | 1.440
0.6 | 1.5 | 0.889 | 1.042 | 1.259 | 0.951 | 1.082 | 1.358
06| 20| 0.858 | 1.018 | 1.260 | 0.888 | 1.038 | 1.329
0.7 05| 0878 | 1.052 | 1.281 | 0.936 | 1.108 | 1.353
0.7 ] 1.0 | 0.885 | 1.020 | 1.276 | 1.019 | 1.168 | 1.414
0.7 15| 0.857 | 1.028 | 1.262 | 0.965 | 1.106 | 1.377
0.7 20| 0.850 | 1.005 | 1.263 | 0.906 | 1.057 | 1.318
0.8 105 | 0866 | 1.041 | 1.255 | 0.939 | 1.101 | 1.372
0.8 ] 1.0 | 0.859 | 1.008 | 1.228 | 1.034 | 1.196 | 1.424
0.8 | 1.5 | 0.840 | 1.020 | 1.268 | 0.986 | 1.121 | 1.387
0.8 1021 0.833 | 0996 | 1.265 | 0.923 | 1.072 | 1.333
0905 | 0.841 | 0970 | 1.238 | 0.941 | 1.094 | 1.389
0.9 | 1.0 | 0.8433 | 0.992 | 1.249 | 1.049 | 1.189 | 1.515
09|15 | 0.837 | 0.995 | 1.268 | 0.999 | 1.155 | 1.415
09120 0833 | 0995 | 1.265 | 0.938 | 1.072 | 1.327
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Table 2: Upper Quantiles of the Student Statistic for o and g

p 7| 1a(10%) | 7a(5%) | 1a(1%) | 95(10%) | 15(5%) | ns(1%)
0.000 | 0.500 1.523 1.880 2.535 0.997 1.175 1.587
0.000 | 1.000 1.621 1.963 2.614 1.258 1.500 2.069
0.000 | 1.500 1.656 1.979 2.625 1.318 1.610 2.221
0.000 | 2.000 1.657 1.973 2.611 1.331 1.630 2.276
0.100 | 0.500 1.535 1.866 2.533 1.005 1.183 1.604
0.100 | 1.000 1.625 1.965 2.593 1.270 1.527 2.064
0.100 | 1.500 1.650 1.971 2.607 1.327 1.608 2.235
0.100 | 2.000 1.658 1.966 2.609 1.333 1.635 2.273
0.200 | 0.500 1.529 1.857 2.574 1.021 1.202 1.639
0.200 | 1.000 1.631 1.965 2.634 1.300 1.561 2.080
0.200 | 1.500 1.645 1.982 2.635 1.374 1.666 2.247
0.200 | 2.000 1.651 1.974 2.621 1.380 1.691 2.315
0.300 | 0.500 1.538 1.855 2.562 1.054 1.237 1.668
0.300 | 1.000 1.640 1.959 2.614 1.335 1.622 2171
0.300 | 1.500 1.669 1.998 2.631 1.432 1.748 2.360
0.300 | 2.000 1.664 1.976 2.612 1.455 1.772 2.398
0.400 | 0.500 1.540 1.870 2.567 1.094 1.284 1.740
0.400 | 1.000 1.667 1.987 2.683 1.416 1.737 2.319
0.400 | 1.500 1.691 2.017 2.673 1.539 1.877 2477
0.400 | 2.000 1.691 2.010 2.668 1.566 1.939 2.599
0.500 | 0.500 1.555 1.866 2.548 1.159 1.359 1.843
0.500 | 1.000 1.670 1.994 2.648 1.537 1.869 2.522
0.500 | 1.500 1.710 2.025 2.697 1.681 2.047 2.732
0.500 | 2.000 1.710 2.020 2.673 1.722 2.135 2.882
0.600 | 0.500 1.551 1.851 2.505 1.248 1.469 1.998
0.600 | 1.000 1.697 2.006 2.669 1.727 2.085 2.869
0.600 | 1.500 1.743 2.043 2.721 1.920 2.300 3.131
0.600 | 2.000 1.724 2.017 2.687 1.982 2.426 3.290
0.700 | 0.500 1.565 1.901 2.503 1.392 1.641 2.254
0.700 | 1.000 1.714 2.032 2.691 1.974 2.374 3.297
0.700 | 1.500 1.741 2.065 2.728 2.252 2.701 3.682
0.700 | 2.000 1.723 2.054 2.688 2.350 2.855 3.793
0.800 | 0.500 1.573 1.885 2.516 1.639 1.947 2.670
0.800 | 1.000 1.726 2.037 2.660 2.444 2.935 4.053
0.800 | 1.500 1.737 2.074 2.694 2.827 3.359 4.622
0.800 | 2.000 1.730 2.054 2.700 2.956 3.600 4.834
0.900 | 0.500 1.607 1.904 2.556 2.281 2.697 3.666
0.900 | 1.000 1.729 2.049 2.668 3.524 4.200 9.655
0.900 | 1.500 1.731 2.028 2.694 4.044 4.843 6.567
0.900 | 2.000 1.739 2.008 2.645 4.291 5.152 6.917

25
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Table 3: Lower Quantiles of the Student Statistic for «

p Y 1a(1%) | 7a(5%) | 1a(10%)
0.000 | 0.500 | -2.250 | -1.510 | -1.103
0.000 | 1.000 | -2.283 | -1.606 | -1.248
0.000 | 1.500 | -2.298 | -1.615 | -1.263
0.000 | 2.000 | -2.312 | -1.636 | -1.264
0.100 | 0.500 | -2.263 | -1.518 | -1.109
0.100 | 1.000 | -2.313 | -1.608 | -1.239
0.100 | 1.500 | -2.312 | -1.642 | -1.264
0.100 | 2.000 | -2.327 | -1.639 | -1.266
0.200 | 0.500 | -2.248 | -1.520 | -1.122
0.200 | 1.000 | -2.314 | -1.622 | -1.234
0.200 | 1.500 | -2.334 | -1.635 | -1.265
0.200 | 2.000 | -2.327 | -1.627 | -1.262
0.300 | 0.500 | -2.230 | -1.528 | -1.146
0.300 | 1.000 | -2.267 | -1.630 | -1.260
0.300 | 1.500 | -2.296 | -1.652 | -1.279
0.300 | 2.000 | -2.326 | -1.654 | -1.281
0.400 | 0.500 | -2.225 | -1.534 | -1.159
0.400 | 1.000 | -2.290 | -1.648 | -1.279
0.400 | 1.500 | -2.331 | -1.686 | -1.290
0.400 | 2.000 | -2.317 | -1.679 | -1.300
0.500 | 0.500 | -2.231 | -1.540 | -1.157
0.500 | 1.000 | -2.309 | -1.663 | -1.281
0.500 | 1.500 | -2.394 | -1.691 | -1.301
0.500 | 2.000 | -2.344 | -1.698 | -1.308
0.600 | 0.500 | -2.203 | -1.525 | -1.170
0.600 | 1.000 | -2.352 | -1.681 | -1.285
0.600 | 1.500 | -2.416 | -1.727 | -1.317
0.600 | 2.000 | -2.391 | -1.722 | -1.316
0.700 | 0.500 | -2.218 | -1.567 | -1.215
0.700 | 1.000 | -2.461 | -1.711 | -1.316
0.700 | 1.500 | -2.506 | -1.757 | -1.335
0.700 | 2.000 | -2.468 | -1.744 | -1.320
0.800 | 0.500 | -2.241 | -1.576 | -1.238
0.800 | 1.000 | -2.435 | -1.737 | -1.331
0.800 | 1.500 | -2.510 | -1.755 | -1.360
0.800 | 2.000 | -2.413 | -1.747 | -1.342
0.900 | 0.500 | -2.265 | -1.614 | -1.242
0.900 | 1.000 | -2.423 | -1.736 | -1.365
0.900 | 1.500 | -2.427 | -1.734 | -1.331
0.900 | 2.000 | -2.377 | -1.752 | -1.317

26
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Figure 1: Distribution of beta_infinity
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Figure 2a: Finite Sample Distribution of xi_T, Regression 1
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Figure 2b: Finite Sample Distribution of xi_T, Regression 2
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Figure 3a: Finite Sample Distribution of eta(alpha) T, Reg.1
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Figure 3b: Finite Sample Distribution of eta(alpha) T, Reg.2
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Figure 4a: Finite Sample Distribution of eta(beta) T, Reg.1l
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Figure 4b: Finite Sample Distribution of eta(beta) T, Reg.2
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